搜档网
当前位置:搜档网 › GY-26电子指南针模块测试程序

GY-26电子指南针模块测试程序

GY-26电子指南针模块测试程序
GY-26电子指南针模块测试程序

// GY-26电子指南针模块测试程序

// 使用单片机:STC89C52

// 晶振:11.0592 M

// 液晶屏:LCD1602

#include

#include //Keil library

#include //Keil library

#include

#define uchar unsigned char

#define uint unsigned int

#define DataPort P0 //LCD1602 数据端口

sbit LCM_RS=P2^0; //LCD1602 控制端口

sbit LCM_RW=P2^1; //LCD1602 控制端口

sbit LCM_EN=P2^2; //LCD1602 控制端口

sbit KEY_1 =P2^3;

sbit KEY_2 =P2^4;

sbit KEY_3 =P2^5;

sbit KEY_4 =P2^6;

//********定义变量***************************** uchar BUF[8]; //数据缓存区

uchar cnt; //接收数据的累计值

//********定义函数***************************** void delay(unsigned int k);

void InitLcd();

void WriteDataLCM(uchar dataW);

void WriteCommandLCM(uchar CMD,uchar Attribc); void DisplayOneChar(uchar X,uchar Y,uchar DData); void SeriPushSend(uchar send_data);

void ReadKey(void);

void display(void);

//********************************************* //串口中断

void serial_serve(void) interrupt 4

{

if(RI==1){

RI=0;

BUF[cnt]=SBUF;

cnt++;

// if(cnt==7)flag=1;

}

}

//********************************************* //串口初始化

//9600 bps @ 11.059 MHz

void init_uart()

{

TMOD=0x21;

TH1=0xfd;

TL1=0xfd;

SCON=0x50;

PS=1; //串口中断设为高优先级别

TR0=1; //启动定时器

TR1=1;

ET0=1; //打开定时器0中断

ES=1;

}

//*********LCD1602初始化********************** void InitLcd()

{

WriteCommandLCM(0x38,1);

WriteCommandLCM(0x08,1);

WriteCommandLCM(0x01,1);

WriteCommandLCM(0x06,1);

WriteCommandLCM(0x0c,1);

}

//**********检测忙信号************************ void WaitForEnable(void)

{

DataPort=0xff;

LCM_RS=0;LCM_RW=1;_nop_();

LCM_EN=1;_nop_();_nop_();

while(DataPort&0x80);

LCM_EN=0;

}

//**********写命令至LCD*********************** void WriteCommandLCM(uchar CMD,uchar Attribc)

{

if(Attribc)WaitForEnable();

LCM_RS=0;LCM_RW=0;_nop_();

DataPort=CMD;_nop_();

LCM_EN=1;_nop_();_nop_();LCM_EN=0;

}

//**********写数据至LCD************************ void WriteDataLCM(uchar dataW)

{

WaitForEnable();

LCM_RS=1;LCM_RW=0;_nop_();

DataPort=dataW;_nop_();

LCM_EN=1;_nop_();_nop_();LCM_EN=0;

}

//*********写一个字符数据到指定的目标***********

void DisplayOneChar(uchar X,uchar Y,uchar DData)

{

Y&=1;

X&=15;

if(Y)X|=0x40;

X|=0x80;

WriteCommandLCM(X,0);

WriteDataLCM(DData);

}

//**********延时函数***************

void delay(unsigned int k)

{

unsigned int i,j;

for(i=0;i

{

for(j=0;j<121;j++)

{;}

}

}

//*********串口数据发送******************

void SeriPushSend(uchar send_data)

{

SBUF=send_data;

while(!TI);TI=0;

}

//*********按键检测**********************

void ReadKey(void)

{

EA=0;

if(KEY_1==0){

delay(50);

if(KEY_1==0){

SeriPushSend(0XC0); //发送校准命令。

display();

while(KEY_1==0); //等待按键放开

}

}

if(KEY_2==0){

delay(50);

if(KEY_2==0){

SeriPushSend(0XC1); //发送停止校准命令。

display();

while(KEY_2==0); //等待按键放开

}

}

if(KEY_3==0){

delay(50);

if(KEY_3==0){

SeriPushSend(0XA0); //发送恢复出厂命令。

display();

SeriPushSend(0XAA); //发送恢复出厂命令。

display();

SeriPushSend(0XA5); //发送恢复出厂命令。

display();

SeriPushSend(0XC5); //发送恢复出厂命令。

display();

while(KEY_3==0); //等待按键放开

}

}

if(KEY_4==0){

delay(50);

if(KEY_4==0){

SeriPushSend(0X3); //发送设定磁偏角高8位命令。

display();

SeriPushSend(0X0); //发送磁偏角高8位的数据。

display();

SeriPushSend(0X4); //发送设定磁偏角低8位命令

display();

SeriPushSend(0X64); //发送磁偏角低8位的数据。此时磁偏角被设定为10.0度

display();

while(KEY_4==0); //等待按键放开

}

}

/*

if(KEY_5==0){

delay(50);

if(KEY_4==0){

SeriPushSend(0XAE); //发送当前角度为0

度命令。

display();

while(KEY_4==0); //等待按键放开

}

}

*/

EA=1;

}

//*******************数据接收并显示**********************

void display(void)

{

uchar SUM;

uint i ;

for (i=0;i<3000;i++); //传送数据延时if(BUF[0]==0X0D&&BUF[1]==0X0A){ //帧头判断

SUM=BUF[6]+BUF[5]+BUF[4]+BUF[3]+BUF[2]+BUF[1]+BUF[0]; //校验和

if (BUF[7]==SUM){ //校验和判断

DisplayOneChar(0,0,BUF[2]); //角度百位值写入LCD,因为是字符类型,所以不用转换,直接显示

DisplayOneChar(1,0,BUF[3]); //角度十位值写入LCD

DisplayOneChar(2,0,BUF[4]); //角度个位值写入LCD

DisplayOneChar(3,0,BUF[5]); //小数点

DisplayOneChar(4,0,BUF[6]); //角度小数位值写入LCD

} //end if

}

}

//***************************************

//主程序

void main()

{ uint i ;

delay(500); //延时

InitLcd(); //初始化LCD

init_uart(); //初始化串口

EA=1; //开总中断

while(1){ //循环

cnt=0; //接收数据的累计值SeriPushSend(0X31); //发送1帧读取命令。

display();

ReadKey(); //按键检测

for (i=0;i<12000;i++); //一定时间的延时} //end while }

毕业论文致谢

毕业论文致谢 毕业论文致谢模板 毕业论文致谢模板(一): 感谢我的导师 教授,他们严谨细致、一丝不苟的作风一向是我工作、学习中的榜样;他们循循善诱的教导和不拘一格的思路给予我无尽的启迪。 感谢我的#老师,这片论文的每个实验细节和每个数据,都离不 开你的细心指导。而你开开朗的个性和宽容的态度,帮忙我能够很 快的融入我们这个新的实验室。 感谢我的室友们,从遥远的家来到这个陌生的城市里,是你们和我共同维系着彼此之间兄弟般的感情,维系着寝室那份家的融洽。 四年了,仿佛就在昨日。四年里,我们没有红过脸,没有吵过嘴, 没有发生上大学前所担心的任何不开心的事情。只是今后大家就难 得再聚在一齐吃每年元旦那顿饭了吧,没关系,各奔前程,大家珍重。但愿远赴M国的C平平安安,留守复旦的快快乐乐,挥师北上 的G顺顺利利,也愿离开我们寝室的开开心心。我们在一齐的日子,我会记一辈子的。 感谢我的爸爸妈妈,焉得谖草,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。 在论文即将完成之际,我的情绪无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮忙,在那里请理解我诚挚的谢意。 毕业论文致谢模板(二): 毕业论文致谢

从开始写作至论文最终定稿,总共花费了我一个月以来所有的业余时间,虽说在繁忙的工作之余要完成这样一篇论文的确不是一件很简单的事情,但我内心深处却满含深深的感激之情。感谢**单位为我们带给的这次学习机会,感谢**班所有的任课老师,感谢班主任老师**,是你们让我能够静静地坐下来,在知识的海洋里吸取更多的营养,从而能够为自己进一步的加油充电。透过论文的撰写,使我能够等系统、全面的学习有关财务管理新型的、先进的前沿理论知识,并得以借鉴众多专家学者的宝贵经验,这对于我今后的工作和我为之服务的企业,无疑是不可多得的宝贵财富。由于本理论水平比较有限,论文中的有些观点以及对企业实力的归纳和阐述难免有疏漏和不足的地方,欢迎老师和专家们指正。 毕业论文致谢模板(三): 四年的大学生活就快走入尾声,我们的校园生活就要划上句号,心中是无尽的难舍与眷恋。从那里走出,对我的人生来说,将是踏上一个新的征程,要把所学的知识应用到实际工作中去。 回首四年,取得了些许成绩,生活中有快乐也有艰辛。感谢老师四年来对我孜孜不倦的教诲,对我成长的关心和爱护。 学友情深,情同兄妹。三年的风风雨雨,我们一同走过,充满着关爱,给我留下了值得珍藏的最完美的记忆。 在我的十几年求学历程里,离不开父母的鼓励和支持,是他们辛勤的劳作,无私的付出,为我创造良好的学习条件,我才能顺利完成完成学业,感激他们一向以来对我的抚养与培育。 最后,我要个性感谢 老师、 老师。是他们在我毕业的最后关头给了我们巨大的帮忙与鼓励,使我能够顺利完成毕业设计,在此表示衷心的感激。 #老师认真负责的工作态度,严谨的治学精神和深厚的理论水平都使我收益匪浅。他无论在理论上还是在实践中,都给与我很大的

电子罗盘的工作原理及校准 电子罗盘,电子指南针,android

Android ST集成传感器方案实现电子罗盘功能 电子罗盘是一种重要的导航工具,能实时提供移动物体的航向和姿态。随着半导体工艺的 进步和手机操作系统的发展,集成了越来越多传感器的智能手机变得功能强大,很多手机 上都实现了电子罗盘的功能。而基于电子罗盘的应用(如Android的Skymap)在各个软件 平台上也流行起来。 要实现电子罗盘功能,需要一个检测磁场的三轴磁力传感器和一个三轴加速度传感器。随着微机械工艺的成熟,意法半导体推出将三轴磁力计和三轴加速计集成在一个封装里的二合一传感器模块LSM303DLH,方便用户在短时间内设计出成本低、性能高的电子罗盘。本文以LSM303DLH为例讨论该器件的工作原理、技术参数和电子罗盘的实现方法。 1. 地磁场和航向角的背景知识 如图1所示,地球的磁场象一个条形磁体一样由磁南极指向磁北极。在磁极点处磁场和当地的水平面垂直,在赤道磁场和当地的水平面平行,所以在北半球磁场方向倾斜指向地面。用来衡量磁感应强度大小的单位是Tesla或者Gauss(1Tesla=10000Gauss)。随着地理位置的不同,通常地磁场的强度是0.4-0.6 Gauss。需要注意的是,磁北极和地理上的北极并不重合,通常他们之间有11度左右的夹角。 图1 地磁场分布图 地磁场是一个矢量,对于一个固定的地点来说,这个矢量可以被分解为两个与当地水平面平行的分量和一个与当地水平面垂直的分量。如果保持电子罗盘和当地的水平面平行,那么罗盘中磁力计的三个轴就和这三个分量对应起来,如图2所示。

图2 地磁场矢量分解示意图 实际上对水平方向的两个分量来说,他们的矢量和总是指向磁北的。罗盘中的航向角(Azimuth)就是当前方向和磁北的夹角。由于罗盘保持水平,只需要用磁力计水平方向两 轴(通常为X轴和Y轴)的检测数据就可以用式1计算出航向角。当罗盘水平旋转的时候,航向角在0?- 360?之间变化。 2.ST集成磁力计和加速计的传感器模块LSM303DLH 2.1 磁力计工作原理 在LSM303DLH中磁力计采用各向异性磁致电阻(Anisotropic Magneto-Resistance)材料来检测空间中磁感应强度的大小。这种具有晶体结构的合金材料对外界的磁场很敏感,磁 场的强弱变化会导致AMR自身电阻值发生变化。 在制造过程中,将一个强磁场加在AMR上使其在某一方向上磁化,建立起一个主磁域,与主磁域垂直的轴被称为该AMR的敏感轴,如图3所示。为了使测量结果以线性的方式变化,AMR材料上的金属导线呈45º角倾斜排列,电流从这些导线上流过,如图4所示。由初始的强磁场在AMR材料上建立起来的主磁域和电流的方向有45º的夹角。 图3 AMR材料示意图 图4 45º角排列的导线

基于单片机的电子指南针的设计

龙源期刊网 https://www.sodocs.net/doc/4214535804.html, 基于单片机的电子指南针的设计 作者:刘季秋彭森 来源:《卷宗》2017年第11期 摘要:指南针是我国的四大发明之一,早期的指南针采用了磁化指针和方位盘的组合方式,这样的指南针携带起来很不方便,且指示灵敏度上有一定不足,准确性很差。本文通过对电子指南针基本工作原理的研究分析,采用磁阻(GMR)传感器采集某一方向磁场强度,然后通过MCU控制器对其进行处理并显示上传,达到了显示当前所指方向的目的。实际测试指南针模块精度达到1°,能够在LCD上显示当前方位,并能通过键盘控制上传数据到上位机。这样的指南针精度更高,更智能,在大大提高了精度的同时,也降低了成本和设计难度。 1 引言 指南针是用以判别方位的一种简单仪器,又称指北针。指南针的前身是中国古代四大发明之一的司南。主要组成部分是一根装在轴上可以自由转动的磁针。磁针在地磁场作用下能保持在磁子午线的切线方向上。磁针的北极指向地理的北极,利用这一性能可以辨别方向。 电子指南针系统是一个典型的单片机系统,了解其工作原理及其信号处理流程有利于研究更加复杂的嵌入式系统,特别是系统中采用进口的磁传感器及其相关信号的采集芯片更是有利于研究磁场传感器的实现机理,以便将其更加广泛的应用。 2 工作原理 本系统采用磁阻(GMR)传感器采集磁场强度,然后把磁场强度转换成数字量,单片机 再对这些数字量进行处理,最后将处理得到的结果进行显示。 电子指南针的系统主要由前端磁阻传感器、磁场测量专用转换芯片、单片控制器、辅助扩展电路、键盘、显示模块以及系统电源几个部分组成。 整个系统中前端的磁阻传感器负责测量地磁场的大小并将磁场的变化转化为微弱的电流的变化,专用的磁场测量芯片负责把磁阻传感器变化的电流(模拟量)转换成微控制器可以识别的数字量,然后将该数字信号即采集到的数据通过SPI总线上传给微控制器。微控制器将表征当前磁场大小的数字量按照方位进行归一化等处理后通过直观的LCD进行方位显示,同时可以通过键盘控制微控制器进行相应的操作,如将转换后的数据通过串口的形式发送到上位机。整个系统中还包含了实时时钟等一些辅助电路,使整个系统功能得到进一步的扩展,这使得电子指南针更具备实用价值。 3 电源电路

电子罗盘

电子指南针 指南针 1、概述 指南针是用以判别方位的一种简单仪器。指南针的前身是中国古代四大发明之一的司南。主要组成部分是一根装在轴上可以自由转动的磁针。磁针在地磁场作用下能保持在磁子午线的切线方向上。磁针的北极指向地理的南极,利用这一性能可以辨别方向。常用于航海、大地测量、旅行及军事等方面。 指南针的发明是我国劳动人民,在长期的实践中对物体磁性认识的结果。由于生产劳动,人们接触了磁铁矿,开始了对磁性质的了解。人们首先发现了磁石引铁的性质。后来又发现了磁石的指向性。经过多方的实验和研究,终于发明了可以实用的指南针。 2、磁偏角与磁倾角 现在人们已经知道,地球的两个磁极和地理的南北极只是接近,并不重合。磁针指向的是地球磁极而不是地理的南北极,这样磁针指的就不是正南、正北方向而略有偏差,这个角度就叫磁偏角。又因为地球近似球形,所以磁针指向磁极时必向下倾斜,和水平方向有一个夹角,这个夹角称为磁倾角。不同地点的磁偏角和磁倾角都不相同。磁偏角和磁倾角的发现使指南针的指向更加准确。

图1. 地球磁场示意图 3、罗盘定位 要确定方向除了指南针之外,还需要有方位盘相配合。最初使用指南针时,可能没有固定的方位盘,随着测方位的需要,出现了磁针和方位盘一体的罗盘 4、电子指南针 指南针是一个重要的导航工具,甚至在G P S中也会用到。电子指南针将替代旧的针式指南针或罗盘指南针,因为电子指南针全采用固态的元件,还可以简单地和其他电子系统接口。 电子指南针系统中磁场传感器的磁阻(M R)技术是最佳的解决方法,和现在很多电子指南针还在使用的磁通量闸门传感器相比较,M R技术不需要绕线圈而且可以用I C生产过程(I C-l i k e p r o c e s s)生产,是一个更值得使用的解决方案。 由于M R有高灵敏度,它甚至比这个应用范围中的霍尔元件更好。

电子专业毕业研发设计课题汇总

1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计 3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文 5.FPGA电梯控制的设计与实现 6.恒温箱单片机控制 7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文 9.函数信号发生器设计论文 10.110KV变电所一次系统设计 11.报警门铃设计论文 12.51单片机交通灯控制 13.单片机温度控制系统 14.CDMA通信系统中的接入信道部分进行仿真与分析 15.仓库温湿度的监测系统 16.基于单片机的电子密码锁 17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现 19.智能抢答器设计 20.基于LabVIEW的PC机与单片机串口通信 21.DSP设计的IIR数字高通滤波器 22.单片机数字钟设计

23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文 25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计 27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统毕业论文 29.宽带视频放大电路的设计毕业设计 30.简易数字存储示波器设计毕业论文 31.球赛计时计分器毕业设计论文 32.IIR数字滤波器的设计毕业论文 33.PC机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文 35.110kV变电站电气主接线设计 36.m序列在扩频通信中的应用 37.正弦信号发生器 38.红外报警器设计与实现 39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文 41.步进电动机竹竿舞健身娱乐器材 42.单片机控制步进电机毕业设计论文 43.单片机汽车倒车测距仪 44.基于单片机的自行车测速系统设计

电子指南针

电子指南针 概述 指南针是一种重要的导航工具,可应用在多种场合中。电子指南针内部结构固定,没有移动部分,可以简单地和其它电子系统接口,因此可代替旧的磁指南针。并以精度高、稳定性好等特点得到了广泛运用。公司生产的半导体器件KMZ52是一种专门用于电子指南针的二维磁场传感器。它采用磁场传感器的磁阻(MR)技术,并用翻转技术消除信号偏移,而用电磁反馈技术来消除温度的敏感漂移。由于外界存在干扰,该系统集成了几种特殊的抗干扰技术来提高系统精度。本文介绍了电子指南针的工作原理及电路设计,同时给出了其抗干扰设计以及信号和数据的处理方法。 编辑本段工作原理与总体方案 Z1和Z4为翻转线圈,Z2和Z3为补偿线圈。由于环境温度可能会影响系统精度,因此,在高精度系统中,可以通过补偿线圈对其进行补偿。内部有两个正交的磁场传感器? 分别对应二维平面的X轴和Y轴。磁场传感器的原理是利用磁阻(MR)组成磁式结构,这样可改变电磁物质在外部磁场中的电阻系数。以便在磁场传感器的翻转线圈Z1和Z2上加载翻转电信号后使之能够产生变化的磁场。由于该变化磁场会造成磁阻变化(ΔR)0并将其转化成变化的差动电压输出,这样,就能根据磁场大小正比于输出差动电压的原理,分别读取对应的两轴信号,然后再进行处理计算即可得到偏转角度。整个电子指南针系统主要由传感器单元、信号调整单元(SCU)、方向确定单元(DDU)和显示单元四部分组成。电子指南针的总体设计框图如图2所示。图中,磁场传感器KMZ52用于将地磁场信号转化成电信号输出,信号调整单元用于将磁场传感器单元中的输出信号成比例放大,并将其转换成合适的信号hex和hey,同时消除信号的偏移。对于保证系统的精度来说,SCU是最重要的部件。通过DDU可将信号调整单元输出的两路信号hex和hey进行放大,然后再按下式计算出偏转角度α:α=arctan?hey/hex这样根据抗干扰技术算法对α进行处理就可得出该磁场的偏转角度,最后通过显示单元进行输出。 编辑本段硬件设计 内部桥式结构的磁阻输出是差动电压,通过运算放大器可以成比例放大,因此,在测量地磁场信号时,为了将两个磁场传感器信号放大同样的倍数,可以将二者的翻转线圈串联,并对差动电压选用同样的运放结构。翻转信号从①口输入,X、Y轴差动电压信号则分别从②、③口输出。然后通过处理系统对传来的信号进行A/D采样、数值处理和校正后,即可得到所求的角度。 编辑本段数值处理 由于KMZ52的输出信号很微弱,故信号干扰较大。在输出幅值很小的位置上,通常有300mV左右且变化很大的干扰;而在输出幅值时则近似保持恒值。两路信号幅值与角度的关系如图4所示。为使二者的比值接近tanα?0<α<90°的变化,可以在幅值较大且数值变化较小的角度范围内,使幅值保持基本不变;而在幅值较小且数值变化较大的角度范围内,用一个函数改变其幅值变化曲线。具体实现时,可按照一定角度对曲线进行分段,并对各段用一次函数y=ax+b去拟合。这样,就可以使幅值变化曲线接近tanα。角度划分越细,精度越高。磁场传感器KMZ52的精度为3°,若按15°划分,可将精度提高到1°。若按5°对其划分,精度可高达0.3°。如划分更细,精度还可进一步提高。若采用高阶函数去拟合,也可以提高精度。实际上,在精度要求不高的情况下,通常以15°划分就可以达到要求。 编辑本段干扰校正

电子罗盘的方位角计算公式

BY 电子罗盘的方位角计算公式 丙寅电子 Honeywell 在中国区的特级代理。 上海丙寅电子有限公司是美国霍尼韦尔提供软硬件全套解决方案,如需要任何设计与技术方面的支的项目支持经验。 在磁阻传感器应用领域有丰富 上海丙寅电子有限公司 电话:86 021 65072675 传真:86 021 65075878 地址:中国 上海市虹口区四平路188号上海商贸大厦801室 公司主页:http://www.bingyindz.com 邮箱:by07@anotron.com 持可与我们联系,将助您在最短的时间内设计成功。

如何得到罗盘的方位角 磁阻传感器为建立罗盘导航系统提供了固态有效的解决办法!但是我们怎么才能够从简单的3轴数据得到罗盘的方位角呢?下面就将一步步告诉你如何去实现!1)当3轴磁力计工作时可以读到XYZ 三轴的磁场强度,此时的数值并不能直接用作方位角的计算!因为此时的读数可能受到器件版面上其他一些含磁材料的影响,形成圆心坐标的硬铁漂移! 用作方位角计算的XYZ 数值必须将此漂移值移除,使圆心回到原点。 上海丙寅电子上 海丙寅电子上海丙寅电子上海丙寅电子上 海丙寅电子上 海丙寅电子丙寅电子寅电子寅电

具体的办法是:1,水平匀速旋转,收集XY 轴的数据 2,转动器材90度(此时Z 轴水平)匀速旋转以收集Z 轴数据 3,将读取到的各轴数据的最大值加上最小值除以2,就得到一个各轴的offset 值 Xoffset=(Xmax+Xmin )/2 Yoffset=(Ymax+Ymin )/2 Zoffset=(Zmax+Zmin )/24,然后将磁力计读取的各轴的裸值减去前面计算所得的offset 值,就可以得到用作角度计算的Heading 值 X H =X 裸-Xoffset Y H =Y 裸-Yoffset Z H =Z 裸-Zoffset 如果只用作水平测量,则此时的方位角为 方位角=arctanY H /X H 上海丙寅电子 上海丙寅电子 上海丙寅电子 上海丙寅电子上 海丙寅电子上海丙寅电子海丙寅电子海丙寅电子 海丙寅电子

电子指南针开题报告

一、综述本课题国内外研究动态,说明选题的依据和意义 指南针是人类日常生活中不可缺少的一种判别方向的工具。在人类历史的几千年前,指南针就已经被发明并予以应用。如今,在军事,工业,导航,生活等的各个方面,指南针一如既往地发挥其作用。 中国是世界上公认发明指南针(Compass)的国家。据《古矿录》记载最早出现于战国时期的河北磁山(今河北省邯郸市磁山一带)一带。指南针的发明是我国汉族劳动人民在长期的实践中对物体磁性认识的结果。由于生产劳动,人们接触了磁铁矿,开始了对磁性质的了解。人们首先发现了磁石吸引铁的性质,后来又发现了磁石的指向性。经过多方面的实验和研究,终于发明了实用的指南针。 最早的指南针是司南。它是用天然磁石制成的。样子象一把汤勺,圆底,可以放在平滑的“地盘”上并保持平衡,且可以自由旋转。当它静止的时候,勺柄就会指向南方。司南由青铜盘和天然磁体制成的磁勺组成,青铜盘上刻有二十四向,置磁勺于盘中心圆面上,静止时,勺尾指向为南。 虽然指南针的始祖在中国被发明,但是由于社会的进步和发展,人们对方位的判断要求也随之提高。因此,古代的司南及各类机械指南针由于种种因素并未得到广泛的应用,如,天然磁体资源有限并不易找到,在后期加工时又容易因为打击、受热等工序而失磁。也是因为这样,司南的磁性比较弱,而通过接触旋转而指明方向,需要它与地盘接触处要非常光滑,否则会因转动摩擦阻力过大,而难于旋转,影响指南效果。机械指南针的可携带性以及稳定性也是导致其未能普遍使用的因素。 近几十年来,由于国内外电子技术的飞速发展,特别是在磁传感器和专用芯片(ASIC)上的发展使能指南针的基本实现机理有了质的改变,不再是机械结构而采用了磁场传感器和专用处理器对磁场进行测量和处理后指示方向,这就是当前应用较为广泛的电子式指南针。与传统的机械指针式指南针相比,因电子式指南针采用电信号传送,且以较为直观的方式显示测量的结果,所以电子式指南针无论是在灵敏度上还是在精度上都远胜前者,而且不会因为机械磨损而减短使用寿命。且电子指南针采用高度集成的功能性模块,其体积与重量可以达到很小,在可携带性上也大大优于机械指南针。 国外现阶段研究电子指南针的主要应用是提供地磁导航功能,相对于其他导航手段而言,地磁导航起步得比较晚。在20世纪60年代中期,美国的E2systems公司提出了基于地磁异常场等值线匹配的MAGCOM系统, 70年代获得测量数据后,系统进行了离线实验。20世纪80年代初,瑞典的Lund学院对船只的地磁导航进行了实验验证,实验中将地磁强度的测量数据与地磁图进行人工比对,确定船只的位置,同时根据距离已知的两个磁传感器的输出时差,确定船只的速度。

电子类毕业设计方案经典题目集

本工作室承接电子类毕业设计论文一条龙服务!!!电子毕业设计:945701216 1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计 3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文 5.FPGA电梯控制的设计与实现 6.恒温箱单片机控制 7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文 9.函数信号发生器设计论文 10.110KV变电所一次系统设计 11.报警门铃设计论文 12.51单片机交通灯控制 13.单片机温度控制系统 14.CDMA通信系统中的接入信道部分进行仿真与分析 15.仓库温湿度的监测系统 16.基于单片机的电子密码锁 17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现 19.智能抢答器设计

20.基于LabVIEW的PC机与单片机串口通信 21.DSP设计的IIR数字高通滤波器 22.单片机数字钟设计 23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文 25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计 27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统毕业论文 29.宽带视频放大电路的设计毕业设计 30.简易数字存储示波器设计毕业论文 31.球赛计时计分器毕业设计论文 32.IIR数字滤波器的设计毕业论文 33.PC机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文 35.110kV变电站电气主接线设计 36.m序列在扩频通信中的应用 37.正弦信号发生器 38.红外报警器设计与实现 39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文 41.步进电动机竹竿舞健身娱乐器材

地磁电子罗盘

磁电子罗盘是一种利用地磁场实现定向功能的装置,在移动机器人导航方面有着重要的应用价值。与传统的自主惯性导航设备相比,磁电子罗盘具有体积小、成本低、无累计误差、能够自动寻北等特点。与常规的指针型罗盘相比,磁电子罗盘在抗冲击性、抗震性等方面性能良好。并且能够对杂散磁场进行补偿,输出电信号.可方便地与其他电子设备组成应用系统。 本罗盘设计采用Philips公司的KMZ52磁阻传感器和Microchip公司的PIC16F818单片机。并对罗盘进行详细介绍。 2地磁场 由于地球本身具有磁性。在地球和近地空间之间存在磁场,称为地磁场。地磁场的强度为0.3高斯至0.6高斯,其大小和方向随地点(甚至随时间)而异。地磁场的北极、南极分别在地理南极、北极附近,彼此并不重合,而且两者间的偏差随时间缓慢变化。 本文设计的二维磁电子罗盘用于测量、计算磁场的方位角,并将其转换为电信号传输给移动机器人的控制器。此磁电子罗盘采用磁电阻传感器,移动机器人的控制器接收来自磁电阻传感器信号,此信号均为0 V~5 V模拟量,电压值的变化表现为航向角的不同,并且要求高可靠性和一定精度。 3各向异性磁阻传感器的测量原理 各向异性磁电阻效应是指对于强磁性金属(铁、钴、镍等及其合金),当外加磁场平行于磁场内部磁化方向时,阻值不变;若外界磁场方向偏离时,则其阻值减小;如果把这类金属做成薄膜带状导线,当电流通过时,其阻值大小随内外两磁场的合成磁化方向与电流流向的相对关系变化,趋于同向时阻值增大,背向时阻值减小。由于坡莫(NiFe)合金在弱磁场下的电阻变化率较大,因此适用于弱磁场中。 KMZ52是Philips公司生产的一种磁阻传感器,是利用坡莫合金薄片的磁阻效应测量磁场的高灵敏度磁阻传感器。该磁阻传感器内置两个正交磁敏电阻桥、完整的补偿线圈和设置/复位线圈。补偿线圈的输出与当前测量结果形成闭环反馈,使传感器的灵敏度不受地域限制。这种磁阻传感器主要应用于导航、通用地磁测量和交通检测。该磁阻传感器在金属铝的表面沉积了一定厚度的高磁导率的坡莫合金,在翻转线圈和外界磁场两个力的作用下,电子改变运动方向,使得磁敏电阻的阻值发生变化。同时KMZ52的斑马条电阻成45°放置,这使得电子在正反向磁场力作用下有较好的对称性。由于加入了翻转磁场,KMZ52的变化曲线与普通的磁敏电阻不同,更加线性化。KMZ52磁阻传感器的核心部分是惠斯通电桥,是由4个磁敏感元件组成的磁阻桥臂。磁敏感元件由长而薄的坡莫合金薄膜制成。在外加磁场的作用下,磁阻的变化引起输出电压的变化。 如图1所示,KMZ52磁阻传感器的等效电路,其中,R1~R4的阻值均为R,供电电源为U。在外加偏置磁场H的作用下,R1和R4的磁化方向背向电流方向转动引起阻值减小。而R2和R3的磁化方向朝向电流方向转动,阻值增大△R。计算得:

基于LSM303DLH集成传感器的电子罗盘实现方法

基于LSM303DLH集成传感器的电子罗盘实现方法 电子罗盘是一种重要的导航工具,能实时提供移动物体的航向和姿态。随着半导体工艺的进步和手机操作系统的发展,集成了越来越多传感器的智能手机变得功能强大,很多手机上都实现了电子罗盘的功能。而基于电子罗盘的应用(如Android的Skymap)在各个软件平台上也流行起来。 要实现电子罗盘功能,需要一个检测磁场的三轴磁力传感器和一个三轴加速度传感器。随着微机械工艺的成熟,意法半导体推出将三轴磁力计和三轴加速计集成在一个封装里的二合一传感器模块LSM303DLH,方便用户在短时间内设计出成本低、性能高的电子罗盘。本文以LSM303DLH为例讨论该器件的工作原理、技术参数和电子罗盘的实现方法。 1. 地磁场和航向角的背景知识 如图1所示,地球的磁场象一个条形磁体一样由磁南极指向磁北极。在磁极点处磁场和当地的水平面垂直,在赤道磁场和当地的水平面平行,所以在北半球磁场方向倾斜指向地面。用来衡量磁感应强度大小的单位是Tesla或者Gauss(1Tesla=10000Gauss)。随着地理位置的不同,通常地磁场的强度是0.4-0.6 Gauss。需要注意的是,磁北极和地理上的北极并不重合,通常他们之间有11度左右的夹角。 图1 地磁场分布图 地磁场是一个矢量,对于一个固定的地点来说,这个矢量可以被分解为两个与当地水平面平行的分量和一个与当地水平面垂直的分量。如果保持电子罗盘和当地的水平面平行,那么罗盘中磁力计的三个轴就和这三个分量对应起来,如图2所示。

图2 地磁场矢量分解示意图 实际上对水平方向的两个分量来说,他们的矢量和总是指向磁北的。罗盘中的航向角(Azimuth)就是当前方向和磁北的夹角。由于罗盘保持水平,只需要用磁力计水平方向两轴(通常为X轴和Y轴)的检测数据就可以用式1计算出航向角。当罗盘水平旋转的时候,航向角在0o- 360o之间变化。 2.ST集成磁力计和加速计的传感器模块LSM303DLH 2.1 磁力计工作原理 在LSM303DLH中磁力计采用各向异性磁致电阻(Anisotropic Magneto-Resistance)材料来检测空间中磁感应强度的大小。这种具有晶体结构的合金材料对外界的磁场很敏感,磁场的强弱变化会导致AMR自身电阻值发生变化。 在制造过程中,将一个强磁场加在AMR上使其在某一方向上磁化,建立起一个主磁域,与主磁域垂直的轴被称为该AMR的敏感轴,如图3所示。为了使测量结果以线性的方式变化,AMR材料上的金属导线呈45o角倾斜排列,电流从这些导线上流过,如图4所示。由初始的强磁场在AMR材料上建立起来的主磁域和电流的方向有45o的夹角。

基于labVIEW虚拟滤波器的设计与实现

基于labVIEW虚拟滤波器的设计与实 现 1

2

基于labVIEW虚拟滤波器的 设计与实现 2.双闭环直流调速系统设计 3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机 毕业设计论文 5.FPGA电梯控制的设计与实 现 6.恒温箱单片机控制 7.基于单片机的数字电压表 8.单片机控制步进电机毕业设 计论文 9.函数信号发生器设计论文 10.110KV变电所一次系统设计 11.报警门铃设计论文 12.51单片机交通灯控制 13.单片机温度控制系统 14.CDMA通信系统中的接入 信道部分进行仿真与分析 15.仓库温湿度的监测系统 16.基于单片机的电子密码锁17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通 滤波器的设计与实现 19.智能抢答器设计 20.基于LabVIEW的PC机与 单片机串口通信 21.DSP设计的IIR数字高通滤 波器 22.单片机数字钟设计 23.自动起闭光控窗帘毕业设计 论文 24.三容液位远程测控系统毕业 论文 25.基于Matlab的PWM波形 仿真与分析 26.集成功率放大电路的设计 27.波形发生器、频率计和数字 电压表设计 28.水位遥测自控系统毕业论文 29.宽带视频放大电路的设计毕 业设计 3

30.简易数字存储示波器设计毕 业论文 31.球赛计时计分器毕业设计论 文 32.IIR数字滤波器的设计毕业 论文 33.PC机与单片机串行通信毕 业论文 34.基于CPLD的低频信号发生 器设计毕业论文 35.110kV变电站电气主接线设 计 36.m序列在扩频通信中的应用 37.正弦信号发生器 38.红外报警器设计与实现 39.开关稳压电源设计 40.基于MCS51单片机温度控 制毕业设计论文 41.步进电动机竹竿舞健身娱乐 器材 42.单片机控制步进电机毕业设 计论文 43.单片机汽车倒车测距仪 44.基于单片机的自行车测速系 统设计 45.水电站电气一次及发电机保 护 46.基于单片机的数字显示温度 系统毕业设计论文 47.语音电子门锁设计与实现 48.工厂总降压变电所设计-毕 业论文 49.单片机无线抢答器设计 50.基于单片机控制直流电机调 速系统毕业设计论文51.单片机串行通信发射部分毕 业设计论文 52.基于VHDL语言PLD设计的出租车计费系统毕业设计论 文 53.超声波测距仪毕业设计论文 54.单片机控制的数控电流源毕 4

数字式电子罗盘毕业设计

毕业设计说明书数字式电子罗盘设计 学生姓名:孔垂礼学号: 1105044263 学院:计算机与控制工程 专业:电气工程及其自动化 指导教师:龙达峰 2015 年 06 月

数字式电子罗盘设计 摘要 数字式电子罗盘具有很多优点,例如:体积比较小、启动非常迅速、功率损耗较低、制造成本低廉等,当今社会测控技术对测向传感器提出了非常高的要求;为了提高数字 罗盘的测量精度,特意设计了一种基于HMC5883L三轴磁阻传感器[1]的数字电子罗盘;在分析相关类似产品的基础上,特别强调对电源、器件选型、信号调理电路、软件设计等方面进行了分析研究,设计出了数字罗盘并且研制了试验的样机;为验证设计效果,在双轴陀螺测试转台上进行了测试,试验结果初步验证了该设计方案的可行性;论文的研究 工作可以为研究和改良数字式磁罗盘的测量准确度提供可靠的资料. 关键词:地磁场,数字罗盘,HMC5883L三轴磁阻传感器,重力加速度计

Here is the translation of your chinese paper’s title Abstract Digital electronic compass, has small volume, quick start, low power consumption, and low cost, the modern measurement and control technology puts forward higher requirements on sensor of direction finding; In order to improve the precision of the digital compass, we design a HMC5883L triaxial magnetic resistance sensor based digital electronic compass; On the basis of the analysis of related products, focuses on the power supply, device selection, signal conditioning circuit and software design are analyzed in aspects of research, design the digital compass and test prototype was developed; To verify the design effect, on the two-axis gyro testing table was tested, experimental results verify the feasibility of the design scheme of; Thesis research work could be used to research and provide reference for improving the measuring accuracy of digital magnetic compass. Key words : Earth's magnetic field, digital compass, HMC5883L three-axis magnetic resistance sensor, the gravity accelerometer

stm32电子指南针

《小型智能电子终端》 课程设计说明书 题目:电子指南针 院(系):信息科学与工程学院 专业班级:电子1102 学生姓名:王金辉 学号:20111185061 指导教师:徐琴 20 14 年 6 月 9 日至20 14 年 6 月 25 日 华中科技大学武昌分校制

小型智能电子终端课程设计任务书

目录 1.前言 (1) 2.总体设计方案 (2) 2.1总体设计 (2) 3.硬件设计 (3) 3.1 STM32 (3) 3.2显示模块 (4) 4.软件设计 (6) 4.1 12864模块 (6) 4.2 主函数模块 (7) 5.系统调试 (10) 6.结论 (11) 7. 心得与体会 (13)

1.前言 指南针是用以判别方位的一种简单仪器,是一种重要的导航工具,可应用在多种场合中。指南针的前身是中国古代四大发明之一的司南。主要组成部分是一根装在轴上可以自由转动的磁针。磁针在地磁场作用下能保持在磁子午线的切线方向上。磁针的北极指向地理的北极,利用这一性能可以辨别方向。常用于航海、大地测量等方面。 随着人们对指南针原理认识的不断深入,指南针也由先前笨重的“司南”发展到现在的便携式的指南针。但其基本构造是没有改变的,都是属于机械的指针式,其指示的机械结构基本上没有改变,都是利用某种支撑使得磁针能够受到地磁场的影响而自由的旋转。由于机械的先天因素导致了指针式指南针在便携性、灵敏度、精度以及使用寿命上都有一定的限制。由于国内外电子技术的飞速发展,特别是在磁传感器和专用芯片上的发展使能指南针的基本实现机理有了质的改变,不再是机械结构而采用了磁场传感器和专用处理器对磁场进行测量和处理后指示方向,这就是当前应用较为广泛的电子式指南针。 电子指南针内部结构固定,没有移动部分,可以简单地和其它电子系统接口,因此可代替旧的磁指南针。并以精度高、稳定性好等特点得到了广泛运用。本设计采用Honeywell公司的各向异性磁阻(AMR)传感器芯片HMC5883L。霍尼韦尔HMC5883L是一种表面贴装的高集成模块,并带有数字接口的弱磁传感器芯片,HMC5883L包括最先进的高分辨率HMC118X系列磁阻传感器,并附带霍尼韦尔专利的集成电路包括放大器、自动消磁驱动器、偏差校准、能使指南针精度控制在1°~2°的12位模数转换器。简易的I2C 系列总线接口。HMC5883L采用霍各向异性磁阻(AMR)技术,该技术领先于这些各向异性传感器具有在轴向高灵敏度和线性高精度的特点。传感器具有的对正交轴的低灵敏度的固相结构能用于测量地球磁场的方向和大小,其测量范围从负8高斯到 8 高斯(gauss)。本文介绍了电子指南针的工作原理及电路硬件及软件的设计,同时给出了其抗干扰设计以及信号和数据的处理方法。

FAD-DCM-SPI 电子罗盘模块规格书

FAD-DCM-SPI电子罗盘模块规格书 1、模块功能: 本模块主要由高可靠、强抗干扰工业级单片机和PNI公司高可靠性的磁通传感器及驱动芯片组成,集成度非常高,实现了高可靠性、高精度、强抗磁场干扰的数码电子罗盘功能,非常方便各种产品快速增加电子罗盘功能。本电子罗盘采用SPI接口,可输出00~3590角度,并具有正北校准及硬磁补偿功能。 2、应用范围: 后视镜方向指示,车载指南针,运动表指南针等。 3、性能特征: ○ 工作电压: 5V; ○ 低功耗; ○ –20 0C ~ +70 0C; ○ 电子指南针 ● 范围: 0O ~359O; ● 精度: +/-2O; ● 分辨率: 1O; --------------------------------------------------------------------------------------------------------------------- 地址:深圳市福田区华强北路圣廷苑酒店B座1206室

4、电路方框图: 图(1) FAD-DCM-SPI电路框图 5、模块接口规则: 5.1 引脚定义(见图12) 名称输入/输出引脚号描述 VDD I 1 工作电压5V GND I 2 电源和信号地 RESET I 3 模块复位端(不用时悬空),高电平复位 SPICLK I 4 时钟输出端(模块接收同步) MISO O 5 数据输出端(模块输出数据) MOSI I 6 数据输入端(模块接收命令) /SS I 7 片选端(模块接收) --------------------------------------------------------------------------------------------------------------------- 地址:深圳市福田区华强北路圣廷苑酒店B座1206室

数字电子罗盘 型号

数字电子罗盘型号:XL49-ZCC212N-TTL-TY1 一.概述 电子罗盘是基于X,Y 两个方向的磁阻传感器测出地球磁场的水平分量,从而得出方位 角。本产品无活动件,耐振动,并具有硬铁校准功能,可以克服 周围硬铁磁场的干扰。工作电压:+5V,功耗低,体积小。以TTL 方式与上位机进行通信,.其输出波特率9600bp/s,为查询输出 方式。 二.产品特点 体积小; 重量轻; 功耗低; 耐振动;三.产品应用 手持式仪器仪表; 机器人导航、定位; 航行系统; 船用自动; 天线定位; 车载GPS 导航; 航模定四.技术参数表:

三.产品应用 手持式仪器仪表; 机器人导航、定位; 航行系统; 船用自动舵; 天线定位; 车载GPS 导航; 航模定向。 四.技术参数表: 测量范围;0°\u65374X 360° 分辨率:1 精度:<5 响应频率:5 重复性:<1 电压:5+(-)0.1V 工作电流:<30 工作温度:-40 ~+ 85 外形尺寸:22 * 25.4 * 11.5

五.通讯协议:(数据输出为ASC11 码): 1、输出协议: 每组方位数据共11 个字节,内容如下: Byte1:$[0x24] Byte2:H[0x48] Byte3:,[0x2C] Byte4:角度值的百位 Byte5:角度值的十位 Byte6:角度值的个位 Byte7:*[0x2A] Byte8:校验第一位 Byte9:校验第二位 Byte10:回车[0x0d] Byte11:换行[0x0a] 如: $H,211*30 注: 单字节传送每帧的格式为:1 位起始位,8 位数据位,1 位结束位2、用户指令:

基于单片机的电子指南针设计

目录 摘要: (1) 0 前言 (1) 1系统基本方案选择 (2) 1.1单片机的选择 (2) 1.2磁阻传感器的选择 (3) 2 主要元器件介绍 (5) 2.1 主控制器STC89C52介绍 (5) 2.2 磁阻传感器HMC5883L介绍 (6) 2.3 1602LCD液晶显示器 (9) 3 程序流程图 (11) 4 设计思路 (12) 5 内部主要程序 (12) 6实物演示 (15) 7 结论 (16) 8 参考文献 (17)

基于单片机的电子指南针设计 (河南大学物理与电子学院,河南开封,475004) 摘要: 早期的指南针采用了磁化指针和方位盘的组合方式,整个指南针从便携性、指示灵敏度上都有一定不足,极易受到外界因素的干扰。本系统采用专用的磁场传感器结合高速微控制器的电子指南针能有效解决这些问题。 系统采用了磁阻传感器采集某一方向磁场强度后通过控制器对其进行处理并显示上传,通过对电子指南针硬件电路和软件程序的分析,阐述了电子指南针基本的工作原理及实现。实际测试指南针模块精度达到1°,能够在LCD上显示当前方位。 关键词: 指南针;磁阻传感器;;液晶显示屏 0 前言 指南针是一种重要的导航工具,可应用在多种场合中。指南针的前身是中国古代四大发明之一的司南。主要组成部分是一根装在轴上可以自由转动的磁针。磁针在地磁场作用下能保持在磁子午线的切线方向上。磁针的北极指向地理的北极,利用这一性能可以辨别方向。常用于航海、大地测量、旅行及军事等方面。随着电子技术的发展,电子指南针的优势渐渐体现出来,电子指南针内部结构固定,没有移动部分,可以简单地和其它电子系统接口,因此可代替旧的磁指南针。并以精度高、稳定性好等特点得到了广泛运用。通过采集某一方向磁场强度,传至mcu对其进行处理并输出到液晶屏上显示。通过采用磁阻传感器采集地球上磁场的强度,并通过51单片机处理后显示在液晶显示屏上,有利于研究国外先进传感器工作机理,为以后做更精密的系统打下基础。指南针的始祖大约出现在战国时期。它是用天然磁石制成的。样子象一把汤勺,圆底,可以放在平滑的“地盘”上并保持平衡,且可以自由旋转。当它静止的时候,勺柄就会指向南方。后来随着人们认识的深入,指南针越来越精巧,但其基本原理还是依靠某种支撑机械式的工作,易受到外界因素的制约影响工作,随着电子技术的不断进步,人们做出了磁阻传感器,应用在导航仪,手机等电子设备中,电子指南针内部结构固定,没有移动部分,可以简单地和其它电子系统接口,因此可代替旧的磁指南针。并以精度高、稳定性好等特点得到了广泛运用,使指南针的发展有了质的发 1

基于磁阻式传感器的电子罗盘的设计大学论文

本科毕业论文 便携式电子罗盘软件设计与校准 学生姓名: 学号: 学院:机电工程学院 专业:机械设计制造及其自动化(机电一体化)指导教师: 2016年 5 月 9 日

目录 引言 (4) 第一章.电子罗盘的测量与倾角补偿原理 (5) 1.1 电子罗盘的测量原理 (5) 1.2 倾角补偿原理 (6) 第二章电子罗盘的硬件设计与实现 (7) 2.1 系统框架 (7) 2.2 传感器的选择 (7) 2.3. 单片机开发环境 (8) 第三章.电子罗盘误差分析与补偿 (9) 3.1 误差来源 (9) 3.2 误差的补偿 (10) 3.2.1 漂移补偿 (10) 3.2.2 椭球化补偿 (10) 第四章.校正及其程序设计 (12) 4.1 8字型校准 (12) 4.2 8字型校准的程序设计 (12) 4.3 倾斜补偿的程序设计与实现 (13) 4.4 滤波算法 (14) 第五章.结论与展望 (15) 致谢 (16) 参考文献 (17)

便携式电子罗盘软件设计与校准 摘要本设计采用了STM32F103C8T6高速单片机为控制核心,连接了采用IIC总线通讯方式的磁阻传感器HMC5883L集成模块和加速度传感器MMA8452集成模块,通过磁阻传感器测量大地磁场,但是测量的数据仅仅在水平面内有效。在倾斜时侧需要使用加速度计进行补偿。在经过加速度传感器的姿态数据采集后使用单片机进行数据整理、运算,经过加速度计得到的X、Y、Z三轴姿态信息进行分别计算出俯仰角PITCH和横滚角ROLL。磁阻传感器采集的大地磁场的X、Y、Z三轴数据经过单片机进行俯仰角和横滚角的倾斜度补偿。在经过补偿之后,通过SPI连接的OLED显示屏输出磁阻传感器的大地磁场角度信息。 关键词:STM32单片机磁阻传感器加速度计电子罗盘 The design and calibration of portable electronic compass system Abstract This design adopts the stm32f103c8t6 high-speed microcontroller as control core, connecting the IIC bus communication hmc5883l magnetoresistive sensor integrated module and acceleration sensor MMA8452 integrated module, by magnetoresistive sensor to measure the magnetic field of the earth, but the measurement data only in the horizontal plane effectively. Accelerometer is used to compensate for the inclination of the side. In after acceleration sensor attitude data acquisition SCM data arrangement, calculation, after acceleration meter is obtained the X, y, Z three-axis attitude information are respectively to calculate the pitching angle of pitch and transverse roll angle, roll. The X, Y and Z three axis data of the magnetic field of the magnetic field of the magnetic field of the magnetic field of the magnetic resistance sensor are carried out by the single chip microcomputer to carry on the pitch angle and roll angle of the roll angle compensation. After compensation, the earth's magnetic field angle information of the OLED display is connected with the SPI display screen. Key words STM32 MCU ; magnetoresistive sensor ;acceleration sensor; electronic compass

相关主题