搜档网
当前位置:搜档网 › 几种阀门定位器与电气转换器工作原理的介绍(附带结构图)

几种阀门定位器与电气转换器工作原理的介绍(附带结构图)

几种阀门定位器与电气转换器工作原理的介绍(附带结构图)
几种阀门定位器与电气转换器工作原理的介绍(附带结构图)

几种阀门定位器工作原理介绍:

气动阀门定位器(一)

气动阀门定位器是按力平衡原理设计工作的,其工作原理方框见上图所示,它是按力平衡原理设计和工作的。如图所示当通入波纹管的信号压力增加时,使杠杆2绕支点转动,档板靠近喷嘴,喷嘴背压经放大器放大后,送入薄膜执行机构气室,使阀杆向下移动,并带动反馈杆(摆杆)绕支点转动,连接在同一轴上的反馈凸轮(偏心凸轮)也跟着作逆时针方向转动,通过滚轮使杠杆1绕支点转动,并将反馈弹簧拉伸、弹簧对杠杆2的拉力与信号压力作用在波纹管上的力达到力矩平衡时仪表达到平衡状态。此时,一定的信号压力就与

一定的阀门位置相对应。以上作用方式为正作用,若要改变作用方式,只要将凸轮翻转,A向变成B向等,即可。所谓正作用定位器,就是信号压力增加,输出压力亦增加;所谓反作用定位器,就是信号压力增加,输出压力则减少。一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。

气动阀门定位器(二)

气动阀门定位器是一种将电气信号转换成压力信号的转换装置,以压缩空气或氮气为工作气源来控制工业炉调节阀的开度大小。普遍用于工业炉温度自动控制系统中对气动阀门执行机构的连续控制。

气动阀门定位器是按力平衡原理工作的,实现由输入的4~20mA电流信号控制气动阀门由0~100%的开启度。其工作原理如下图。

当需要增加阀门开启度,计算机控制系统的输出电流信号就会上升,力矩马达①产生电磁场,挡板②受电磁场力远离喷嘴③。喷嘴③和挡板②间距变大,排出放大器④内部的线轴⑤上方气压。受其影响线轴⑤向右边移动,推动挡住底座⑦的阀芯⑨,气压通过底座⑦输入到执行机构⑩。随着执行机构气室⑩内部压力增加,执行机构推杆⑥下降,通过反馈杆⑩把执行机构推杆@的位移变化传达到滑板⑩。这个位移变化又传达到量程④反馈杆,拉动量程弹簧16。当量程弹簧16和力矩马达①的力保持平衡时,挡板②回到原位,减小与喷嘴③间距。随着通过喷嘴③排出空气量的减小,线轴⑤上方气压增加。线轴⑤回到原位,阀芯⑧重新堵住底座⑦,停止气压输入到执行机构⑩。当执行机构⑩的运动停止时,定位器保持稳定状态。

电气阀门定位器工作原理

1.杠杆

2.活塞膜片

3.反馈弹簧

4.杠杆

5.凸轮

6.反馈轴

7.联结

8.传动轴

9.执行机构

10.先导阀滑阀芯

11.先导阀体

12.零点和范围联动机构

13.内部反馈弹簧

14.转换块

15.平衡线圈

16.永磁铁

17.平衡梁

18.喷嘴

19.节流孔

红----气源压力;橙----汽缸压力;黄----喷嘴压力;紫----固定部分;蓝----运动部分

气动放大器工作原理

从减压阀输入气源压力(Supply),信号接口端输入信号压力(Input Signal),那么如下图上方膜片(③)受到压力,使膜片组合件向下移动,同时阀芯(⑦)也会向下移动。这时输入压力通过阀芯底座通路流入到输出接口(Output)并输入到执行机构。当输出压力增加到和信号压力相同时,阀芯(⑦)重新上升,最总信号压力和输出压力保持相同。相反,输出压力大于信号压力,则膜片组合件向上移动,输出压力会通过阀芯上方空隙向排气环(④)排气。根据信号压力而变化的输出压力的灵敏度可以通过调节螺丝(①)进行调解,通过调节可以改善系统的稳定性。

关于尿素装置智能阀门定位器典型故障分析电子式智能调节阀调节阀定位器是新一代产品,其工作原理、结构特点较以往常规电气阀门定位器有很大不同,因而在使用中遇到了一些新问题。本文结合尿素装置智能阀门定位器的应用和典型故障,探讨了智能化(模拟信号叠加数字信号)阀门定位器在应用中应注意的几个问题。

1 工作原理

(1)智能阀门定位器是基于微处理器读取输入信号、位置传感器的位置信号和压力传感器输出压力信号,经运算处理产生驱动信号,使执行器动作。现选择滑杆型的DVC5000和旋转型的ND800智能阀门定位器加以详细说明,它们的工作原理分别见图1和图2。

图1 DVC5000智能阀门定位器工作原理示意图

图2 ND800智能阀门定位器工作原理示意图

(2)DVC5000数字式阀门定位器有1个独立的模块基座,可以很方便地在现场更换而不必拆除现场的导线或导管。该模块基座包括I/P转换器、印刷电路板(PWB)组件、气动中继器及指示表等子模块,可以通过更换子模块而重新组合。FIELDVUE系列数字式阀门控制器通过进入端子盒的一对双绞线接受输入信号和电能,信号同时输入到PWB组件子模块,在此被附加许多参数,如多段折线性化中的节点坐标、极限值和其它数值。然后PWB组件子模块送信号给I/P转换器子模块,将输入信号转变为气压信号。该气压信号送入气动中继器加以放大并作为输出信号送到执行机构,也可以被安置在PWB组件子模块上的压力敏感元件所感受,用于阀门执行机构的诊断信息。阀门和执行机构的阀杆位置当作输入信号引入PWB子模块,用作数字式阀门控制器的反馈信号,同时与输入信号值比较,若存在偏差,微处理器通过运算处理产生新的电流值来修正偏差,直至调节阀的阀位信号与输入信号一致,即偏差为零。

ND800智能阀门定位器则为微处理器(μC)通过改变前置级(PR)线圈的控制电流,前置级阀门降低滑阀(SV)终端的控制压力,阀柱向低压方向移动,打开到执行机构气缸顶部的气流,且打开来自活塞另一侧的气流,增加活塞上的差压使活塞移动。微处理器用控制计算一种新的控制电流,直至执行机构的新位置信号与输入信号一致为止。稳定状态下使滑阀(SV)就位,前置级(PR)阀门关闭。

2 性能

智能阀门定位器是基于微处理器的新一代产品,具有高精度的阀门位置信号传感器及输出压力传感器等,因而具有较高的控制精度(0.5%~1.0%),而常规电气阀门定位器精度仅为2%~5%;具有远距离组态、调试、诊断、数据管理等功能。

经过1年多的实际运行,智能阀门定位器与普通阀门定位器的性能、使用情况、性价比等方面的比较见表1。

表1 两种阀门定位器的比较

3 软件功能

智能阀门定位器具有丰富的软件功能,如自动调整零点和满量程。组态需要的阀门特性配上专用软件,具备高级动态诊断功能,可将阀门的机械性能指标和控制系统的指标结合起来,以判断阀门损坏情况(图3)。

注:变差间隙δ1,δ2太大———摩擦力大,填料紧。

变差间隙δ1,δ2太小———摩擦力小,填料松。

调节阀平均动态误差超过5%(δ1+δ2>5%),要维护。

调节阀动态线性度超过1%,要重新标定。

图3 阀门定位器高级动态诊断

4 智能阀门定位器与DCS连接的阻抗匹配问题

常规电气定位器一般输入阻抗为250Ω,而智能定位器的输入阻抗均大于250Ω,品牌和型号不同,阻抗不同,表达式也不同。阻抗越大,要求DCS带载能力越大,使系统运行受到影响。在本公司三聚氰胺装置的回路联动调校时,发现DCS的输出卡只能驱动NELES ND8221/S1定位器,调节阀仅动作28%的行程。具体解决办法是更换驱动较大的安全栅(内阻较小),降低了安全栅在调节回路的分压,相应增加了对智能定位器的输出功率。

5 智能阀门定位器的阀位检测

精确的阀位信号是控制系统的重要参数,也是构成高级动态诊断功能的重要参数,因此需要阀位检测的高精度测量和传送。各品牌、型号有不同的阀位检测装置,反馈传送信号不同,具体情况见表2。

表2 阀位检测及传送

6 智能特性

(1)改善控制:双向数字通讯将阀门当前情况的信息传送到控制室,可根据阀门工作信息对过程控制进行管理,确保及时控制。

(2)提高安全性:可以从现场接线盒、端子板或在控制室使用手操器、PC机或系统工作站选取信息,减少在危险环境下操作的机会。

(3)保护环境:可以把阀门泄漏检测仪或限位开关接到智能数字式阀门控制器的辅助端子,以免额外增加现场布线,若发生超限,该仪表将会报警。

(4)节省硬件开支:当FIELDVUE系列数字式阀门定位器用在集成系统时,由于FIELDVUE数字式阀门控制器替代调节器可以节省硬件和安装费用,使布线投资、端子和I/O需求投资节省50%。同时FIELDVUE 仪表采用两线制供电,不要求单独而价高的供电导线,并可替换现有的配装于阀门的模拟仪表,节省了单独铺设电源线和信号线的高额费用。

7 常见故障及现场处理

(1)控制信号变化而调节阀不动作(排除阀体因素)是智能定位器DVC5000运行过程中的常见故障。处理办法:重点检查阀位传位器是否运转自如,电气连续性等。

(2)阀位难以控制,小信号不动作,大信号时全开或全关,经多次调校仍不正常,更换新的定位器后仍不正常。最后发现ND800智能阀门定位器的反馈杆与定位器内部信号转换部分为非接触感应连接,反馈杆可以360°任意旋转,造成反馈杆与阀杆连接相差180°,经重新安装调校后工作正常。

(3)智能阀门定位器与HART275型手操器不能正常通讯。常见原因是有效电压是否大于12V,输出阻抗是否低于250Ω,导线电容是否太高,输入信号是否小于4mA等。

8 应用和维护

DVC5000智能阀门定位器于2000年1月安装于尿素装置,共20多台。使用手操器对其进行了组态和校验,其线性度可达99%,零点和量程及回差均可以控制在精度要求的范围之内,控制极其稳定且抗干扰的能力也特别强,完全满足工艺控制的要求。

FIELDVUE定位器维护量极少,基本上无需维护,其现场适应性特强。但为了保证长期、稳定地运行,仪表人员应做好以下几个方面的工作。

(1)保证其良好的工作环境,防止意外损坏,应定期检查定位器周围的工作环境。同时保证其工作气源的稳定和洁净,减少外界因素造成的仪表波动和故障。

(2)定期对调节阀进行检修和维护,确保阀门工作质量。同时对DCS调节控制回路参数进行优化,以确保与定位器互相工作的协调性和稳定性。

(3)仪表人员应每周检查阀门和定位器的泄漏和工作情况,及时消除隐患。每月使用手操器对定位器进行特性曲线检查,检查零点、量程、线性和回差等参数,并对其优化和调整,以保证工作质量。

电动阀门控制原理图

电动阀门控制原理图 对话世界能源巨头让中国每年省出13个核电站 “未来25年,全球能源需求增加的部分中将有近1/4来自于中国。而能效水平低于工业发达国家近20%状况,无疑使中国能源紧张的形势更加严峻。”“意法半导体营造了一个主动的可获益的大环境,数以百计的节能措施被建议并付诸实施,相关的节能投入每年平均为2500万美元。” 电子产品的发展给人类生活带来越来越多便利与美好体验的同时,一些弊端也随之而生,电子垃圾、环境污染、能源消耗速度过快等种种问题开始困扰人们。于是,全球对环保与节能的关注达到了前所未有的高度,如何应对环保指令、开发新的节能产品、充分利用能源逐渐成为一个越来越热门的话题。随着2008年奥运会的临近,中国政府也把环保节能提上日程。节约能源,越来越成为我们时刻关注的大事。为此,本报记者采访了意法半导体公司副总裁兼大中国区总裁柯明远,希望对该公司电子产品的能耗管理经验深入了解,并分析当今的能源管理市场及趋势。 >>>>

产品 名 称: 产品 型 号: D943H 产品 口 径: DN50~2000 产品 压 力: 1.0MPa~ 2.5MPa 产品 材 质: 铸钢、不锈钢等 产品概括:生产标准:国家标准GB、机械标准JB、化工标准HG、美标API、ANSI、德标DIN、日本JIS、JPI、英标BS 生产。阀体材质:铜、铸铁、铸钢、碳钢、

WCB、WC6、WC9、20#、 25#、锻钢、A105、F11、 F22、不锈钢、304、 304L、316、316L、铬 钼钢、低温钢、钛合 金钢等。工作压力 1.0Mpa-50.0Mpa。工 作温度:-196℃ -650℃。连接方式: 内螺纹、外螺纹、法 兰、焊接、对焊、承 插焊、卡套、卡箍。 驱动方式:手动、气 动、液动、电动。 产品详细信息 一、产品概述 工洲引进能够国外先进技术的基础上,采用精密的J 形弹性密封圈和三偏心多层次金属硬密封结构,被广泛用于介质温度≤425℃的治金、电力、石油化工、以及给排水和市政建设等工业管道上,作调节流量和载断流体使用。该阀采用三偏心结构,阀座与碟板密

智能阀门定位器中压电阀工作原理

智能阀门定位器中压电 阀工作原理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

0引言 阀门定位器是气动调节阀的配套产品,长期以来国产的阀门定位器是使用模拟信号和力平衡原理方法实现的。近年来,由于电子技术的发展,国外多家公司推出了智能阀门定位器,因为其控制精度高、可靠性好、抗振性好、调试方便、流量特性可在线修改、可远程通讯等优越性能,深受用户的青睐。我公司经过多年攻关,研制出HVP型智能阀门定位器,该产品由CPU模板、阀门电流反馈模板、HART通讯模板、报警模板、显示模板、精密位置传感器和I/P 转换单元组成。 I/P转换单元是阀门定位器重要的关键部件之一,其可控性、抗振动性、耗电量、耗气量指标都将直接影响整机性能,设计出优良的I/P转换单元是实 现阀门定位器智能化的重要步骤之一。 1I/P转换单元的类型 I/P转换单元主要作用是把电信号变换成气动信号,通过放大喷嘴的背压和流量控制,使其具有足够的功率去操作气动调节阀。I/P转换单元的种类可按空气消耗量分为:耗气式和不耗气式两种结构。其中由于不耗气式I/P转换

单元的耗气量小,气源压力易于稳定,压力放大倍数小,改善振荡现象,因此,不耗气式的I/P转换单元常常用于阀门定位器设计中。 I/P转换单元按结构形式可分为:线圈喷嘴挡板式、线圈滑阀式和压电阀式三种结构。由于线圈喷嘴挡板式I/P转换单元的结构简单、制造方便、成本低,因此,传统阀门定位器中的I/P转换单元绝大多数采用这种结构方式。线圈滑阀式主要在电磁阀中采用,压电阀式的I/P转换单元,最早出现是在二十世纪90年代西门子公司推出的SIPARTPS智能阀门定位器中,因其具有高抗振动性、高可靠性、低功耗、低耗气量和能够接受较高频率的控制信号等特点,非常适合智能阀门定位器对I/P转换单元的性能要求。 2压电阀工作原理和技术指标 (1)工作原理 压电阀实际是利用功能陶瓷片在电压作用下产生弯曲变形原理制成的一种两位式(或比例式)控制阀。控制压电阀动作只需提供足够的电压,电功耗几乎为零。其动作原理:压电阀的初始状态(不通电,如图1所示),功能陶瓷片作用在喷嘴口1上,这时,口2与喷嘴口3与先导腔连通,形成为一个整体。当压电阀接通电源时(如图2所示),功能陶瓷片变形向上翘,把喷嘴口 3压住,使得口2与喷嘴口1连通。

浅谈阀门定位器的工作原理和使用

浅谈阀门定位器的工作原理和使用 气动薄膜调节阀 调节阀从它的名称则可知晓一些信息,关键词调节二字它的调节范围0~100%之间任意调节。 细心的朋友应该发现,每台调节阀的脑袋下面都挂着一个装置,熟悉的肯定知道,这就是调节阀的心脏,阀门定位器,通过这个装置可调节进入脑袋(气动薄膜)内气量,可以精准的控制阀门的位置。 阀门定位器有智能式定位器和机械式定位器,今天讨论的是后者机械式定位器,与图片所示的定位器一样的。 机械式气动阀门定位器的工作原理 阀门定位器结构示意图

图中基本将机械式气动阀门定位器的部件一一说清楚,接下来就是看它如何工作的? 气源来自于空压站的压缩空气,在阀门定位器气源进口前段还有一个空气过滤减压阀,用于压缩空气的净化。从减压阀出口的气源从阀门定位器进入,至于多少气量进入阀门的膜头,根据控制器的输出信号决定。 控制器输出的电信号是4~20mA,气动信号是20Kpa~100Kpa,从电信号到气信号是通过电气转换器进行的。 当控制器输出的电信号转变为与之相对应的气信号时,然后将转换后的气信号作用在波纹管上。杠杆2则绕着支点运动,杠杆2下段向右运动靠近喷嘴。喷嘴的背压增加,经过气动放大器放大后(图中那个带小于符号的部件),将气源的一部分送入到气动薄膜的气室,阀杆带着阀芯向下自动逐渐将阀门开度变小。此时,与阀杆相连的反馈杆(图中摆杆)绕着支点向下移动,使轴的前端向下移动,与其连接的偏心凸轮做逆时针旋转,滚轮顺时针旋转向左移动,从而拉伸反馈弹簧。由于反馈弹簧拉伸杠杆2下段向左移动,此时就会与作用在波纹管上的信号压力达到力平衡,于是阀门就固定在某个位置不动作了。 通过上面的介绍,应该对机械式阀门定位器有一定的了解,有机会的时候再操作一边最好是能够动手拆卸一次,加深定位器每个零件的位置及每个零件的名。因此,机械式阀门的浅谈告一段落,接下来进行知识的扩展,让对调节阀有个更深层次的认知。

电动阀工作原理

1.电动阀即电磁阀,就是利用电磁线圈产生的磁场来拉动阀芯,从而改变阀体的通断,线圈断电,阀芯就依靠弹簧的压力退回。 电磁阀是用来控制流体的自动化基础元件,属于执行器;并不限于液压,气动。电磁阀用于控制液压流动方向,工厂的机械装置一般都由液压钢控制,所以就会用到电磁阀。 电磁阀的工作原理,电磁阀里有密闭的腔,在的不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油刚的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。这样通过控制电磁铁的电流就控制了机械运动。(中华泵阀网) 一:适用性 管路中的流体必须和选用的电磁阀系列型号中标定的介质一致。流体的温度必须小于选用电磁阀的标定温度。电磁阀允许液体粘度一般在20CST以下,大于20CST应注明。工作压差,管路最高压差在小于0.04MPa时应选用如ZS,2W,ZQDF,ZCM系列等直动式和分步直动式;最低工作压差大于0.04MPa时可选用先导式(压差式)电磁阀;最高工作压差应小于电磁阀的最大标定压力;一般电磁阀都是单向工作,因此要注意是否有反压差,如有安装止回阀。流体清洁度不高时应在电磁阀前安装过滤器,一般电磁阀对介质要求清洁度要好。

注意流量孔径和接管口径;电磁阀一般只有开关两位控制;条件允许请安装旁路管,便于维修;有水锤现象时要定制电磁阀的开闭时间调节。注意环境温度对电磁阀的影响电源电流和消耗功率应根据输出容量选取,电源电压一般允许±10%左右,必须注意交流起动时VA值较高。 二、可靠性 电磁阀分为常闭和常开二种;一般选用常闭型,通电打开,断电关闭;但在开启时间很长关闭时很短时要选用常开型了。 寿命试验,工厂一般属于型式试验项目,确切地说我国还没有电磁阀的专业标准,因此选用电磁阀厂家时慎重。 动作时间很短频率较高时一般选取直动式,大口径选用快速系列。 三、安全性 一般电磁阀不防水,在条件不允许时请选用防水型,工厂可以定做。 电磁阀的最高标定公称压力一定要超过管路内的最高压力,否则使用寿命会缩短或产生其它意外情况。 有腐蚀性液体的应选用全不锈钢型,强腐蚀性流体宜选用塑料王(SLF)电磁阀。 爆炸性环境必须选用相应的防爆产品。 四、经济性

阀门定位器选型指南

阀门定位器选型指南 -------------------------------------------------------------------------------- 在众多的控制应用场合中,阀门定位器是调节阀最重要的附件之一。尤其是对于某个特定的应用场合,如果要选择一个最适用的(或者说最佳的)阀门定位器,那么就应注意考虑下列因素: 1)阀门定位器能否实现“分程(Split_ranging)”?实现“分程”是否容易、方便?具备“分程”功能就意味着阀门定位器只对输入信号的某个范围(如:4~12mA或0.02~0. 06MPaG)有响应。因此,如果能“分程”的话,就可以根据实际需要,只用一个输入信号实现先后控制两台或多台调节阀。 2)零点和量程的调校是否容易、方便?是不是不用打开盒盖就可以完成零点和量程的调校?但值得注意的是:有时候为了避免不正确的(或非法的)操作,这种随意就可进行调校的方式需要被禁止。 3)零点和量程的稳定性如何?如果零点和量程容易随着温度、振动、时间或输入压力的变化而产生漂移的话,那么阀门定位器就需要经常地被重新调校,以确保调节阀的行程动作准确无误。 4)阀门定位器的精度如何?在理想情况下,对应某一输入信号,调节阀的内件(Tri m Parts,包括阀芯、阀杆、阀座等)每次都应准确地定位在所要求的位置,而不管行程的方向或者调节阀的内件承受多大的负载。 5)阀门定位器对空气质量的要求如何?由于只有极少数供气装置能提供满足ISA 标准(有关仪表用空气质量的标准:ISA标准F7.3)所规定的空气,因此,对于气动(或电-气)阀门定位器,如果要经受得住现实环境的考验,就必须能承受一定数量的尘埃、水汽和油污。 6)零点和量程的标定两者是相互影响还是相互独立?如果相互影响,则零点和量程的调校就需要花费更多的时间,这是因为调校人员必须对这两个参数进行反复调整,以便逐步地达到准确的设定。 7)阀门定位器是否具备“旁路(Bypass)”,可允许输入信号直接作用于调节阀?这种“旁路”有时可简化或者省去执行机构装配设定(Actuator Settings)的校验,如:执行机构的“支座组件(Benchset)设定”和“弹簧座负载(Seat Load)设定”――这是因为在许多情况下,一些气动调节器的气动输出信号与执行机构的“支座组件设定”完全吻合匹配,用不着对其再进行设定(其实,在这种情况下,阀门定位器完全可以省去不用。当然,如果选用了,那么也可利用阀门定位器的“旁路”使气动调节器的气动输出信号直接作用于调节阀)。另外,具备“旁路”有时也可允许在线的对阀门定位器进行有限度的调校或维修维护(即利用阀门定位器的“旁路”使调节阀继续保持正常工作,无须强制调节阀离线)。 8)阀门定位器的作用是否快速?空气流量(Airflow)愈大(阀门定位器不断的比较输入信号和阀位,并根据它们之间的偏差,调节其本身的输出。如果阀门定位器对这种偏差响应快速,那么单位时间里空气的流动量就大),调节系统对设定点(Set

电动阀门智能控制器说明书

电动阀门智能控制器说明书

————————————————————————————————作者:————————————————————————————————日期: 2

--------------------------------------------------------------------------------------------------- 产品的不断升级可能导致部分数据的变化,如有改动,恕不另行通知。KZQ07系列电子伺服式电动阀门智能控制器 使用说明书 本定位器出厂之前已对其输入、 输出性能进行严格标定,接线后一般 KZQ07-1A KZQ07-2A

尊敬的用户,请在安装本控制器前请仔细检查以下内容: 1、检查执行器的内部位置限位切换开关,确保限位开关在区域内工作,有无异 常现象,能否达到开度的零位与满位,确认限位开关能正常工作。 2、接线前请检查执行器中电位器有无强电,用万用表分别测量电位器三接线端 子,确保该电位器与电机控制端子绝缘,电位器在执行器运转过程中的阻值变化正常,排除断点等异常现象。 3、定位器与执行器间连线要正确,仔细检查两者端子的对应关系,特别注意定 位器电源、输入信号与输出信号接线,切莫把电源接至弱点信号端,同时用仪表测量控制输入信号在定位器接受信号范围内。 4、如与执行器配套使用,在严寒、酷热、高温的环境下开箱时,仪表应于现场 存放3小时以上方可进行标定效验。 目录 一、概述-----------------------------------------------------------------------------2 二、主要技术指标-----------------------------------------------------------------2 三、定位器控制原理--------------------------------------------------------------4 四、定位器面板与接线-----------------------------------------------------------5 五、基本操作方法-----------------------------------------------------------------9 六、标定接线及操作方法--------------------------------------------------------9 七、错误代码列表-----------------------------------------------------------------11 八、附录-----------------------------------------------------------------------------12 如客户所购买指明配置的本公司Z型(机电一体)执行器,无需对执行器转角标定,接线无误即可正常使用。 一、概述: KZQ07系列电动阀门智能定位器是专门为电动执行器配套开发的数字控制系统,采用汽车工业专用的微处理器作为核心处理单元,是真正意 义上的智能数字采集控制系统。可直接安装在电动执行器的接线盒内或以 DIN导轨方式固定在外,无须专门的控制箱,体积小,安装方便。 KZQ07系列电动阀门智能定位器使用固态可控硅进行无触点控制电机,简单可靠,配合高分辨率位置传感器,不但控制精度高,控制准确, 且寿命长,可靠性高。另外控制系统无须保持电池,可在完全停电后再次 通电时,自动识别出执行器位置的变化。 KZQ07系列电动阀门智能定位器能直接接收工业仪表或计算机等输出的4~20mA DC信号(其它输入信号类型可在出厂前定制),与安装有位置 反馈传感器的电动执行器配套,对各种阀门或装置进行精确定位操作,能 3

阀门定位器讲解

智能电气阀门定位器在实际中的应用 一、前言 电气阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。其在电气阀门定位器中的应用使智能定位器的性能和功能有了一个大的飞跃。 二、智能电气阀门定位器与传统定位器的对比 2.1 传统电气阀门定位器的工作原理 电气阀门定位器经过几十年的发展,各公司产品虽不尽相同,但基本原理大致相似,下面画简图进行说明。其基本结构见图1: 反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 2.2 智能电气阀门定位器工作原理 虽然智能电气阀门定位器与传统定位器从控制规律上基本相同,都是将输入信号与位置反馈进行比较后对输出压力信号进行调节。但在执行元件上智能定位器和传统定位器完全不同,也就是工作方式上二者完全不同。智能定位器以微处理器为核心,利用了新型的压电阀代替传统定位器中的喷嘴、挡板调压系统来实现对输出压力的调节。目前有很多厂家生产智能型电气阀门定位器,西门子公司的SIPATT PS2系列智能电气阀门定位器比较典型,具有一定代表性,下面以就以SIPART PS2系列定位器为例,对智能定位器的工作原理进行说明,其基本结构如图2所示: 其具体工作原理如下: 由阀杆位置传感器拾取阀门的实际开度信号,通过A/D转换变为数字编码信号,与定位器的输入(设定)信号的数字编码在CPU 中进行对比,计算二者偏差值。如偏差值超出定位精度,则CPU输出指令使相应的开/关压电阀动作,即:当设定信号大于阀位反馈时,升压压电阀V一l打开,

西门子阀门定位器操作技巧介绍材料

西门子阀门定位器操作手册 压电阀介绍: 1、引言 传统的气动阀中大量使用了电磁铁作为电-机械转换级,其把电控制信号转换为机械的位移,推动阀芯,实现气路的切换或气体压力、流量的比例控制。作为电-机械转换级的电磁铁有价格低廉,操作使用方便等优点;但其也有很多缺点:如功耗大、响应速度不够快、存在发热及有电磁干扰等。把压电材料的电-机械转换特性引入到气动阀中,作为气动阀的电-机械转换级,这是一项不同于传统气动阀的全新技术。采用了压电技术的气动阀在性能上有着传统气动阀无可比拟的优势。 2、压电效应简介 对于晶体构造中不存在对称中心的异极晶体,加在晶体上的张紧力、压应力或切应力,除了产生相应的变形外,还将在晶体中诱发出介电极化或电场。这一现象被称为正压电效应;反之,若在这种晶体上加上电场,从而使该晶体产生电极化,则晶体也将同时出现应变或应力,这就是逆压电效应。两者通称为压电效应。1880 年居里兄弟发现了电气石的压电效应,从此开始了压电学的历史。压电式气动换向阀即是利用压电逆效应而研制的。 3、压电技术在气动阀中的应用 1、微型直动式换向阀 利用压电材料在电场作用下的变形,来实现气动阀阀口的开启和关闭,这样就可以做成微型直动式换向阀。如下图所示的微型二位三通换向阀,1 口为进气口,2 口为输出气口,3、口为排气口,阀中间的弯曲部件为压电材料组成的压电片。当没有外加电场作用时,阀处于:图1 状态:进气口关闭,输出气口2 经排气口3 通大气。当在压电阀片上外加控制电场后,压电阀片产生变形上翘,上翘的压电阀片关闭了排气口3,同时进气口1 和输出气口2 连通。这样就完全实现了传统二位三通电磁换向阀的功能。 图1 图2 2、压电式电气比例调压阀 压电材料的变形量正比于施加在其上的电场强度,利用这一特点,可以开发出比例调压阀。如图3 所示,施加不同的控制电压到压电阀片上,压电阀片产生不同的弯曲变形量,这样就在进气口1 与输出气口2 之间及输出气口2 与排气口3 之间形成不同的气流阻力,从而在输出气口2 的得到不同的气体压力。由于压电阀片在变形过程中不受机械摩擦力,且压电阀片有响应快功耗低的特点,基于压电阀片的电气比例调压阀很多性能优于传统的比例调压阀。例如其没有死区,压力可以从零开始连续调节;其响应快,可满足高速系统的应用要求;其功耗低,对电源功率要求低。 图3

几种常见阀门定位器的调校方法

几种常见阀门定位器的调校方法 阀门定位器概述 (1) 电-气阀门定位器VP200(横河)的调校说明 (2) 智能阀门定位器 AVP系列(山武)调校说明 (3) 智能阀门定位器 SIEMENS(西门子)调校说明 (7) 智能阀门定位器DVC系列(费希尔)调试说明 (27)

一、阀门定位器概述: 阀门定位器:是调节阀的主要附件,通常与气动调节阀配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。一般可分为以下三种:气动阀门定位:此阀门定位器无电路部分,一般和电-气转换器配合使用,才能实现自动控制功能。比如Pignone(化肥装置尿素单元PV-1026)、PARCOL(化肥装置尿素单元PV-1026),由于其无法单独实现自动控制,气路繁琐,控制精度低等缺点,逐渐被淘汰。电-气阀门定位:由于其价格低廉,调校方便,输出稳定等特点,目前仍被广泛使用。比如VP200(合成氨装置甲醇洗单元和液氮洗单元)等。智能阀门定位:是目前使用最为广泛的阀门定位器,控制过程中利用智能阀门定位器可实现高品质调节,增加过程控制的精确性和稳定性。比如SIEMENS、DVC2000-6000系列、AVP100-300系列等。

二、电-气阀门定位器VP200(横河)的调校步骤: 1、检查气路、电路是否满足定位器工作要求; 2、给定12mA信号,将反馈杆调整至水平位置, 并紧固; 3、给定8mA信号,通过零位调节螺母将零位调节至对应值; 4、给定16mA信号,通过量程调节螺母将量程调节至对应值; 5、给定4mA信号,检查阀门全关位置,必要时进行微调; 6、给定20mA信号,检查阀门全开位置;必要时进行微调; 7、给定4mA(或20mA)、8mA(或16mA)、12mA、4mA(或 20mA)、16mA(或8mA)、20mA(或4mA)进行刻度验证,必要时进行微调。 说明:1、通过量程调节螺母可以改变定位器的作用方式。 2、取用8mA和12mA信号,分别调整零位和量程,是因为8mA和12mA均有上下刻度值,可以明显反应零位和量程的位置,而4mA向下下没有刻度(和20mA向上也没有刻度值),不宜采用4mA和20mA来调节零位和量程。 3、定位器调校时,必须保证阀门能够完全关闭,有时候虽然给定4mA(或20mA)信号,阀门仍然有开度。 4、气动阀门定位器和电-气阀门均属机械式阀门定位器,因此调校方法类似,不再详细介绍。

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构(很详细的介绍) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

阀门定位器的工作原理与结构 阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器(图1) 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。控

制电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。驱动电路用于PWM电流滤波后的功率放大。喷嘴挡板、喷嘴以及相应组件构成了I/P 转换器,实现电气转换。调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。 智能阀门定位器结构图(图2)

阀门定位器

气动调节阀阀门定位器 一、阀门定位器原理 阀门定位器是调节阀的主要附件,与气动调节阀配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电/气阀门定位器和智能阀门定位器。 二、定位器的基本功能: 1、比例动作和定位作用 比例动作:根据输入的信号,使阀门的阀位与输入信号相对应。 定位作用:当输入信号固定时,阀位不受工艺条件的变化而变化。 2、功率放大 针对气动输入信号而言,定位器可将输入的气信号;通过定位器中的气动功率放大器进行放大,使微小的信号就可以控制阀门动作。 3、提高阀门的控制精度

由于定位器是根据输入信号与阀门位置的偏差对输出信号进行调整的,一旦输入信号与阀门位置有偏差,定位器将自动调整输出信号以改变阀位,直到阀位与输入信号相对应为止,这样大大提高了阀门的控制精度。 4、克服摩擦力 由于定位器本身的定位闭环控制,当摩擦力变化时(指阀杆的填料、执行器的密封等部分的摩擦力);定位器可以根据由摩擦力造成的位置偏差,自动增加或减少输出到执行器的压力,以克服摩擦力对阀门开度造成的影响。 5、改变作用方式 通过定位器我们可以改变阀门的作用方式。 根据阀门的作用方式我们可设定定位器的正、反作用。 6、信号转换 我们可以通过定位器实现电/气转换 三、阀门调校: 1、一般调校法 1、零位调整,给定电流信号4mA,通过顺时针或反时针旋动调零 螺钉,使输出压力为0.2×100KPa左右或调节阀行程有微小

位移。 2、量程调节给定信号8、12、16、20mA,使阀杆行程应25%、 50%、75%、100%.若量程偏大或偏小,调整螺母,直至量程符合要求. 3、重复步骤1. 2,使量程零点达到规定值。 2、特殊调校法 通过调整反馈杠杆的有效长度及改变调零弹簧的弹性系数也可以调校阀门定位器。具体如下: 1、调整反馈杠杆法 1、给定信号4mA,通过调零螺钉,调节零点,使零点达到规 定值。 2、给定信号20mA,记录调节阀分别在25%、5o%、75%、100% 时的行程,调量程,直至达到规定值。 3、重复上述步骤1、2,若零点、量程无法校准,调整阀杆上的 销钉来改变反馈杆的有效长度。 4、重复上述步骤1、2、3,直到零点,量程达到规定值。 3、改变调零弹簧的弹性系数法 当弹簧工作在非线性区域时,定位器零点提高了,行程满度值也增加,当满度值大于额定行程时,就需要调量程机构,使调节阀的行程减小,这样阀门定位器的零位值也减小。

定位器原理

一、前言 电气阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。其在电气阀门定位器中的应用使智能定位器的性能和功能有了一个大的飞跃。 二、智能电气阀门定位器与传统定位器的对比 2.1 传统电气阀门定位器的工作原理 电气阀门定位器经过几十年的发展,各公司产品虽不尽相同,但基本原理大致相似,下面画简图进行说明。其基本结构见图1: 反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。 在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 2.2 智能电气阀门定位器工作原理 虽然智能电气阀门定位器与传统定位器从控制规律上基本相同,都是将输入信号与位置反馈进行比较后对输出压力信号进行调节。但在执行元件上智能定位器和传统定位器完全不同,也就是工作方式上二者完全不同。智能定位器以微处理器为核心,利用了新型的压电阀代替传统定位器中的喷嘴、挡板调压系统来实现对输出压力的调节。 目前有很多厂家生产智能型电气阀门定位器,西门子公司的SIPA TT PS2系列智能电气阀门定位器比较典型,具有一定代表性,下面以就以SIPART PS2系列定位器为例,对智能定位器的工作原理进行说明,其基本结构如图2所示:

气动阀门定位器工作原理..

气动阀门定位器工作原理

气动阀门定位器是按力平衡原理设计工作的,其工作原理方框见上图所示,它是按力平衡原理设计和工作的。 如图上图所示当通入波纹管的信号压力增加时,使杠杆2绕支点转动,档板靠近喷嘴,喷嘴背压经放大器放大后,送入薄膜执行机构气室,使阀杆向下移动,并带动反馈杆(摆杆)绕支点转动,连接在同一轴上的反馈凸轮(偏心凸轮)也跟着作逆时针方向转动,通过滚轮使杠杆1绕支点转动,并将反馈弹簧拉伸、弹簧对杠杆2的拉力与信号压力作用在波纹管上的力达到力矩平衡时仪表达到平衡状态。此时,一定的信号压力就与一定的阀门位置相对应。 以上作用方式为正作用,若要改变作用方式,只要将凸轮翻转,A向变成B向等,即可。 所谓正作用定位器,就是信号压力增加,输出压力亦增加;所谓反作用定位器,就是信号压力增加,输出压力则减少。 一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。 ZPD-2000系列电气阀门定位器 ZPD-2000系列电气阀门定位器是根据国际先进的同类型产品,集多年成功的专业制造经验和先进的应用技术,经过消化吸收和针对(老产品)ZPD-2000 型系列电气阀门定位器加以综合改进的产品,并积极贯彻ISO9001质量保证体系,具有一定的先进性,符合国际标准要求的一种新型定位器。 一、产品的功能用途和适应范围: 1、产品的功能用途: ZPD-2000系列电气阀门定位器是各种气动执行器的主要配套仪表。它与气动调节阀配套使用,构成闭环控制回路。用以提高调节阀的控制精度。克服填料函与阀杆的磨擦力,克服介质压差对调节阀阀芯不平衡力。提高阀门动作速度,可实现分程控制

阀门定位器常见问题的6个原因分析

阀门定位器常见问题的6个原因分析 在调节阀的附属装置中,最主要、最实用的是阀门定位器。阀门定位器是调节阀的关键附件之一。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,智能技术、电子技术的广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 现场使用阀门定位器的种类非常繁多,有气动阀门定位器、电气阀门定位器、有配薄膜执行机构的阀门定位器、有配活塞执行机构的阀门定位器、有力平衡式阀门定位器、有位移平衡式阀门定位器,阀门定位器的广泛使用,在生产过程中,难免会出现各种故障,为保质、保量、安全地生产,就必须及时排除定位器可能产生地一切故障。要排除阀门定位器地的故障,必须正确判断阀门定位器的那一个环节、那一个元件发生的故障。通常有如下两种故障分析法:一是根据阀门定位器的传递函数,对阀门定位器进行逐个环节,逐个元件的分析,这种对现场检修不太适用,但对于疑难问题的分析,却非常有效;二是根据检修者对故障的现象进行综合分析和判断,此种方法最适于现场检修。下面将阀门定位器可能产生的常见故障的起因分析如下: 1.阀门定位器有信号输入,但无输出压力信号 (1)电/气定位器,衔铁与线圈架之间有异物。 (2)恒节流孔堵塞。 (3)喷嘴挡板配合不良或喷嘴挡板损坏。 (4)放大器中膜片(金属膜片或者橡胶膜片)损坏。 (5)气路连接有误(包括放大器)。 (6)电/气定位器输入信号线正负极接反。 (7)定位器的输入接线盒内的二极管开路或接线不良。 (8)气源压力的大小不合要求。

电动阀门控制原理图

电动阀门控制原理图 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电动阀门控制原理图对话世界能源巨头让中国每年省出13个核电站 “未来25年,全球能源需求增加的部分中将有近1/4来自于中国。而能效水平低于工业发达国家近20%状况,无疑使中国能源紧张的形势更加严峻。” “意法半导体营造了一个主动的可获益的大环境,数以百计的节能措施被建议并付诸实施,相关的节能投入每年平均为2500万美元。” 电子产品的发展给人类生活带来越来越多便利与美好体验的同时,一些弊端也随之而生,电子垃圾、环境污染、能源消耗速度过快等种种问题开始困扰人们。于是,全球对环保与节能的关注达到了前所未有的高度,如何应对环保指令、开发新的节能产品、充分利用能源逐渐成为一个越来越热门的话题。随着2008年奥运会的临近,中国政府也把环保节能提上日程。节约能源,越来越成为我们时刻关注的大事。为此,本报记者采访了意法半导体公司副总裁兼大中国区总裁柯明远,希望对该公司电子产品的能耗管理经验深入了解,并分析当今的能源管理市场及趋势。 >>>> 产品名 称: 产品型 号: D943H 产品口 径: DN50~2000 产品压 力: ~ 产品材 质: 铸钢、不锈钢等 产品概括:生产标准:国家标准GB、机械标准JB、化工标准HG、美标API、ANSI、德标DIN、日本JIS、JPI、英标BS生产。阀体材质:铜、铸铁、铸钢、碳钢、WCB、WC6、WC9、20#、25#、锻钢、A105、F11、F22、

不锈钢、304、304L、316、316L、铬钼 钢、低温钢、钛合金钢等。工作压力。工 作温度:-196℃-650℃。连接方式:内螺 纹、外螺纹、法兰、焊接、对焊、承插 焊、卡套、卡箍。驱动方式:手动、气 动、液动、电动。 产品详细信息 一、产品概述 工洲引进能够国外先进技术的基础上,采用精密的J形弹性密封圈和三偏心多层次金属硬密封结构,被广泛用于介质温度≤425℃的治金、电力、石油化工、以及给排水和市政建设等工业管道上,作调节流量和载断流体使用。该阀采用三偏心结构,阀座与碟板密封面均采用不同硬度和不锈钢制作,具有良好的耐腐蚀性,使用寿命长,本阀军邮双向密封功能,产品符合国家GB/T13927-92阀门压力试验标准。 二、特点 1、本阀采用三偏心密封结构,阀座与蝶板几乎无磨损,具有越观越紧的密封功能。 2、密封圈选用不锈钢制作,具有金属硬密封和弹性密封的双重优点,无论在低温和高温的情况下,均具有优良的密封性能,具有耐腐蚀,使用寿命长等特点。 3、碟板密封面采用堆焊钴基硬质合金,密封面耐磨损,使用寿命长. 4、大规格蝶板采用绗架结构,强度高,过流面积大,流阻小。 5、本阀具有双向密封功能,安装时不受介质流向的限制,也不受空间位置的影响,可在任何方向安装。 6、驱动装置可以多工位(旋转90°或180°)安装,便于用户使用。 三、主要技术参数 公称通经DN(mm)50~2000 公称药理PN(MPa) 密封试验(MPa) 强度试验(MPa) 适用温度碳钢:-29℃~425℃不锈钢:-40℃~650℃ 适用介质水、空气、天然气、油品及弱腐蚀性流体 泄漏率符合GB/T13927-92标准 驱动方式蜗轮传动、电动、气动、液动 四、主要零部件材料 零件名称材料 阀体WCB、合金钢、不锈钢、QT450-10 蝶板WCB、合金钢、不锈钢、QT450-10 阀轴2Cr13不锈钢、合金钢 密封圈不锈钢圈 填料柔性石墨 五、采用标准 制造标准JB/T8527-97

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构 阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器(图1) 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。控制

电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。驱动电路用于PWM电流滤波后的功率放大。喷嘴挡板、喷嘴以及相应组件构成了I/P转换器,实现电气转换。调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。 智能阀门定位器结构图(图2)

几种阀门定位器工作原理的介绍

几种阀门定位器工作原理介绍: 气动阀门定位器(一) 气动阀门定位器是按力平衡原理设计工作的,其工作原理方框见上图所示,它是按力平衡原理设计和工作的。如图所示当通入波纹管的信号压力增加时,使杠杆2绕支点转动,档板靠近喷嘴,喷嘴背压经放大器放大后,送入薄膜执行机构气室,使阀杆向下移动,并带动反馈杆(摆杆)绕支点转动,连接在同一轴上的反馈凸轮(偏心凸轮)也跟着作逆时针方向转动,通过滚轮使杠杆1绕支点转动,并将反馈弹簧拉伸、弹簧对杠杆2的拉力与信号压力作用在波纹管上的力达到力矩平衡时仪表达到平衡状态。此时,一定的信号压力就与

一定的阀门位置相对应。以上作用方式为正作用,若要改变作用方式,只要将凸轮翻转,A向变成B向等,即可。所谓正作用定位器,就是信号压力增加,输出压力亦增加;所谓反作用定位器,就是信号压力增加,输出压力则减少。一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。 气动阀门定位器(二) 气动阀门定位器是一种将电气信号转换成压力信号的转换装置,以压缩空气或氮气为工作气源来控制工业炉调节阀的开度大小。普遍用于工业炉温度自动控制系统中对气动阀门执行机构的连续控制。 气动阀门定位器是按力平衡原理工作的,实现由输入的4~20mA电流信号控制气动阀门由0~100%的开启度。其工作原理如下图。

当需要增加阀门开启度,计算机控制系统的输出电流信号就会上升,力矩马达①产生电磁场,挡板②受电磁场力远离喷嘴③。喷嘴③和挡板②间距变大,排出放大器④内部的线轴⑤上方气压。受其影响线轴⑤向右边移动,推动挡住底座⑦的阀芯⑨,气压通过底座⑦输入到执行机构⑩。随着执行机构气室⑩内部压力增加,执行机构推杆⑥下降,通过反馈杆⑩把执行机构推杆@的位移变化传达到滑板⑩。这个位移变化又传达到量程④反馈杆,拉动量程弹簧16。当量程弹簧16和力矩马达①的力保持平衡时,挡板②回到原位,减小与喷嘴③间距。随着通过喷嘴③排出空气量的减小,线轴⑤上方气压增加。线轴⑤回到原位,阀芯⑧重新堵住底座⑦,停止气压输入到执行机构⑩。当执行机构⑩的运动停止时,定位器保持稳定状态。 电气阀门定位器工作原理 1.杠杆 2.活塞膜片 3.反馈弹簧 4.杠杆 5.凸轮 6.反馈轴 7.联结 8.传动轴 9.执行机构 10.先导阀滑阀芯 11.先导阀体 12.零点和范围联动机构 13.内部反馈弹簧 14.转换块

阀门定位器原理与调节

阀门定位器原理与调节第一章气动阀门定位器 气动阀门定位器的原理图如下:(气关阀正作用) 气动阀门定位器实物图如下:

气动阀门定位器是按力平衡原理设计工作的,其工作原理方框见上图所示,它是按力平衡原理设计和工作的。 如图上图所示当通入波纹管的信号压力增加时,使杠杆2绕支点转动,档板靠近喷嘴,喷嘴背压经放大器放大后,送入薄膜执行机构气室,使阀杆向下移动,并带动反馈杆(摆杆)绕支点转动,连接在同一轴上的反馈凸轮(偏心凸轮)也跟着作逆时针方向转动,通过滚轮使杠杆1绕支点转动,并将反馈弹簧拉伸、弹簧对杠杆2的拉力与信号压力作用在波纹管上的力达到力矩平衡时仪表达到平衡状态。此时,一定的信号压力就与一定的阀门位置相对应。 以上作用方式为正作用,若要改变作用方式,只要将凸轮翻转,A向变成B向等,即可。 所谓正作用定位器,就是信号压力增加,输出压力亦增加;所谓反作用定位器,就是信号压力增加,输出压力则减少。要改变正反作用,Fisher的阀只需要把里面的调节盘拨到另一侧即可。 一台正作用执行机构只要装上反作用定位器,就能实现反作用执行机构的动作;相反,一台反作用执行机构只要装上反作用定位器,就能实现正作用执行机构的动作。 至于气开阀,由于是在膜盒下面通气,需要将如图中的凸轮反转。

第二章电气阀门定位器 由于现在DCS在现场使用越来越多,很多控制器都是使用了中控系统的控制器,所以中控到现场的都是4-20mA的电信号,到现场又需要阀动作的比较快。 虽然阀门定位器由最初的气/气阀门定位器、电/气阀门定位器发展到现在的数字阀门定位 器、区域总线阀门定位器,但它们的基本原理和主要功能都没有大的改变。 定位器中基本自控元件介绍--电/气转换器原理 随着仪表技术的发展,气动仪表领域已逐步被电动仪表和计算机控制所占领,现在只有在一些特 殊的场合还在使用气动仪表,作为仪表中的阀门附件“定位器”也由原来的气动阀门(P/P)定

相关主题