搜档网
当前位置:搜档网 › 18题几何证明一教师版

18题几何证明一教师版

18题几何证明一教师版
18题几何证明一教师版

18题几何证明专练(矩形-正方形)

1、如图,矩形ABCD 中,AB=连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC E '',当射线BE '和射线BC '都与线段AD 相交时,设交点分别F,G ,若△BFD 为等腰三角形,则线段DG 长为 。

考点:旋转式全等,角平分线

思路:勾股定理计算边长,角平分线定理 解答:17

98

2、如图,AC 是矩形ABCD 的对角线,AB=2,BC=点E ,F 分别是线段AB ,AD 上的点,连接CE ,CF ,当

∠BCE=∠ACF ,且CE=CF 时,AE+AF= .

考点:全等三角形的判定与性质;解直角三角形.

思路:已经告诉一边一角,作垂线。特殊直角三角形。

解答:3

34

3、如图,正方形ABCD 的边长为6,点O 是对角线

AC 、BD 的交点,点E 在CD 上,且DE =2CE ,连

接BE 。过点C 作CFBE ,垂足为F ,连接OF ,

则OF 的长为 。

考点:等腰直角三角形,旋转模型,解直角三角形

思路:直角顶点处作垂线,证明全等。母子直角三角形

的射影定理和等积法。 解答:

5

56

18题图

H G

F E D C B A 变式:如图所示,以Rt△ABC 的斜边BC 为一边在△ABC 的

同侧作正方形BCEF ,设正方形的中心为O ,连接AO ,如果

AB=4,AO=26,那么AC=

考点:等腰直角三角形的旋转

思路:直角顶点处作垂线

解答:16

4、如图,

在边长为ABCD 中,E 是AB 边上

一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF

⊥EG 于点H ,交AD 于点F ,连接CE 、BH 。若BH =8,

则FG = 。

考点:等腰直角三角形,全等旋转模型。

思路:直角顶点处作垂线,作边长的垂线,找角度互余。 解答:25

5、如图,在正方形ABCD 中,AB=22,将∠BAD 绕着点A 顺时针旋转α(0<α<45),得到''AD B ∠,其中过点B 作与对角线BD 垂直

的直线交射线A B′于点E ,射线AD′与对角线BD 交于点

F ,连接CF ,并延长交AD 于点M ,当满足C D M A E B F S S ?=2四边形时,线段BE 的长度

为 。

考点:旋转,面积

思路:旋转式全等,向边长作垂线。 解答:424-

6、如图,在正方形ABCD 中,AB=22,将∠BAD 绕着点A 顺时针旋转α(0<α<

45),得到''AD B ∠,其中过点B 作与对角线BD 垂直的直线

交射线AB′于点E ,射线AD′与对角线BD 交于点F ,连接CF ,

并延长交AD 于点M ,作∠BCM 的角平分线交AB 于点N ,当满足

CD M

AEBF S S ?=2四边形时,线段BN 的长度

为 。

考点:旋转,面积,全等,角平分线

思路:旋转式全等,等积法求边长,角平分线+平行线=

等腰三角形。 解答:232-

7、如图,ABC ?中,4AB AC ==,BAC ∠=120°,以A 为一个顶点的等边三角

形ADE 绕点A 在BAC ∠内旋转,AD 、AE 所在的直线与BC 边分别交于点F 、

G ,若点B 关于直线AD 的对称点为'B ,当'FGB ?是以点G 为直角顶点的直角三角形时,BF 的长为_______

考点:角平分线,解特殊直角三

角形

思路:轴对称式全等,设边长为

x , 解答:434-

8、如图,正方形ABCD 中,E 为CD 的中点,AE BF ⊥于

点F ,M 为CF 上一点,将BMF ?绕点F 顺时针旋转得到

GNF ?,M 的对应点N 恰在边AB 上,B 的对应点G 恰在线段EA 延长线上,若2

5=

CM ,则DG 的长为 。

考点:旋转,中点,相似比 思路:全等——边角相等,倍长中线,设边求值。

解答:10

9、如图,在△ABC 中,?=∠90C ,?=∠60BAC ,2=AC ,

将△ABC 绕点A 顺时针旋转α(0°<α<180°),记旋转中的△ABC 为''C AB ?,在旋转过程中''C B 所在的直线与线段AB (不含B 点)交于点P ,与线段BC (不含B 点)交于点Q ,当BQ BP =时,PQ= 。

考点:旋转,等腰三角形,相似,特殊直角三角形

思路:30-75-75,45-67.5-67.5,特殊等腰三角形。勾股定理,相似比。作垂线。法二,也可以过点Q 作BC QM ⊥。 解答:8223462--+

10、如图,矩形ABCD 中,AB=3,AD=33,点E 在CB 的延长线上,且BE=3,连结AE ,G 是BA 延长线上一点,连结EG ,交CA 的延长线于M ,将△AEG 绕点A 逆时针旋转60°得到△AE′G′(点E 的对应点为E′,点G 的对应点为G′).若△EGG′的面

积为36,则CM 的长为

考点:特殊直角三角形,面积的加减

思路:等面积法

解答:7

11、如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足

AE=DF .连接CF 交BD 于G ,连接BE 交AG 于H .已知正方形ABCD 的边长为2cm ,则线段DH 的长度的最小值 .

考点:回字形全等,直角三角形斜边上的中线,三角形两边之和大于第三边。

思路:证明直角,勾股定理解边长 解答:15-

12、如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 边长为3 ,则AK=

考点:特殊直角三角形,轴对称全等

思路:作轴对称线,解出各边长,补充成特殊直角三角形 解答:332-

13、如图,∠AOB=30°,点M 、N 分别在边OA 、OB 上,且OM=1,ON=3,点P 、Q 分别在边OB 、OA 上,则MP+PQ+QN 的最小值是 .

考点:对称求最小值

思路:作对称点,勾股定理 解答:10

14、如图,正方形ABCD 的边长是16,点E 在边AB 上,AE=3,点F 是边BC 上不与点...B .,.C .重合..

的一个动点,把△EBF 沿EF 折叠,点B 落在B′处.若△CDB′恰为等腰三角形,则DB′的长为 。

考点:翻折变换(折叠问题),等腰三角

形的存在问题

思路:作垂线,勾股定理,存在的可能性要考虑全 解答:5416或

15、如图,正方形ABCD 的边长为4,延长CB 至点M ,使2

3=?A B M S ,过点B 作BN⊥AM,垂足为N ,O 是对角线AC ,BD 的交点,连接ON ,则ON 的长为 .

考点:母子直角三角形,相似三角形,四点共圆

思路:射影定理和等积法,求出所有边长找相似比,AMC AON ??∽ 解答:

5

56

16、如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2。将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是_________.

考点:旋转,直角三角形,等边三角形。

思路:60+等腰=等边三角形,三线合一 解答:31+

17、如图,在矩形ABCD 中,AB=6,AD=8,P 是AD 上不与A 、

D 重合的一动点,AC P

E ⊥,BD P

F ⊥,E ,F 分别为垂足,则PF PE +的值为 。

考点:直角三角形

思路:等积法求边长D O P AO P AO B S S S +=;特殊点法;作一个相同的矩形''C ADB ,平行线间的距离相等。 解答:

5

24

18、如图,矩形ABCD 中,F 是DC 上一点,BF⊥AC,

垂足为E , 2

1 AB AD ,△CEF 的面积为1S ,△AEB 的面积为2S ,则 2

1S S 的值等于 . 考点:相似比

思路:回字形相似,面积比等于相似比的平方。 解答:

16

1

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

立体几何练习题及答案

… 数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体-A 1B 1C 1D 1中,棱长为a ,M 、N 分别为 A 1 B 和上 的点,A 1M ==,则与平面1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形沿对角线折起,使平面⊥平面,E 是中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 ] 3.,,是从P 引出的三条射线,每两条的夹角都是60o,则直线 与平面所成的角的余弦值为( ) A .12 B 。 3 C 。 3 D 。 6 4.正方体—A 1B 1C 1D 1中,E 、F 分别是1与1的中点,则直线与D 1F 所成角的余弦值是 A .15 B 。13 C 。12 D 。 3 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面的中心,E 、 F 分别是1CC 、的中点,那么异面直线和1FD 所成的角的余弦值等于( ) A . 5 10 B .32 C . 5 5 D . 5 15

6.在正三棱柱1B 1C 1中,若2,A A 1=1,则点A 到平面A 1的距离为( ) A . 4 3 B . 2 3 C . 4 33 D .3 : 7.在正三棱柱1B 1C 1中,若1,则1与C 1B 所成的角的大小为 ( ) o B. 90o o D. 75o 8.设E ,F 是正方体1的棱和D 1C 1的中点,在正方体的12条面对 角线中,与截面A 1成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体-A 1B 1C 1D 1中,M 、N 分别为棱1和1的中点,则 〈CM ,1D N 〉的值为. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面的距离是 . 11.正四棱锥的所有棱长都相等,E 为中点,则直线与截面所成的角为 . 12.已知正三棱柱1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则 直线与平面B 1所成角的正弦值为 . : 13.已知边长为的正三角形中,E 、F 分别为和的中点,⊥面, 且2,设平面α过且与平行,则与平面α间的距离 A B | D C

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

立体几何三视图教师版

考点24 三视图 考点一:棱长类 1.★(2014西城二模4)某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ,且4A (B A ,且4 A (C ) 2A ,且A (D A A 【答案】D 2.★(2015年北京丰台区高三一模理科)上图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是 (A) 4 (B) 5 (C) (D) 正(主)视图 侧(左)视图 俯视图

【答案】D 考点二:面积类 3.★(2013海淀二模4) 某空间几何体的三视图如右图所示,则该几何体的表面积为( ) A.180 B.240 C.276 D.300 【答案】B 4.★(2012西城一模4) 已知正六棱柱的底面边长和侧棱长相等,体积为33.其三视图中的俯视图如图所示,则其左视图的面积是( ) (A )23(B )2 23(C )28cm (D )2 4cm 【答案】A 6 6 6 5 俯视图

正视图 俯视图 5.★★★(2012朝阳二模8) 有一个棱长为1的正方体,按任意方向正投影, 其投影面积的最大值是( ) A. 1 B. 2 C. D. 【答案】D 6.★★(2010海淀期末理)11.一个几何体的三视图如下图所示,则该几何 体的表面积为__________________. 【答案】2412π+ 考点三:体积类 7.★★(2011丰台期末文)3.若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是 A . 32225+π B .32 25 π C .3225π D .128 25 π 【答案】C 正视图侧视图 俯视图

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC =,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ?面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

专题06 立体几何(解答题)(教师版)

专题06 立体几何(解答题) 1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°, E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2) 17 . 【解析】(1)连结1,B C ME . 因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且11 2 ME B C =. 又因为N 为1A D 的中点,所以11 2 ND A D = . 由题设知11=A B DC ∥,可得11=BC A D ∥,故= ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ?平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H . 由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以1C E 17 CH =.

从而点C 到平面1C DE 的距离为 17 . 【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解. 2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上, BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1; (2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18. 【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ?平面ABB 1A 1, 故11B C BE ⊥.

初中数学几何证明题小妙招

初中数学几何证明题小妙招几何证明题入门难,证明题难做,是很多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不但要标记,还要记在脑海中,做到不看题,就能够把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还能够得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在

图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。 五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。 以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。 (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举能够做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。使用逆向思维解题,能使学生从不同角度,不同方向思考问题,

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

三角函数与立体几何(二)教师版

1.如图,在ABC ?中,点D 在边BC 上, 4 CAD π ∠= , 72AC = , cos 10 ADB ∠=-. (1)求sin C ∠的值; (2)若ABD ?的面积为7,求AB 的长. 【答案】(1) sin C ∠= 4 5 ;(2) AB = 【解析】试题分析:(1)由同角三角函数基本关系式可求sin ADB ∠,由4 C ADB π ∠=∠- ,利用两角差 的正弦函数公式及特殊角的三角函数值即可求值得解;(2)先由正弦定理求AD 的值,再利用三角形面积公式求得BD ,与余弦定理即可得解AB 的长度. 试题解析:(1 )因为cos 10ADB ∠=- ,所以sin 10 ADB ∠=, 又因为4 CAD π ∠= ,所以4 C ADB π ∠=∠- , 所以sin sin 4C ADB π? ? ∠=∠- ?? ? sin cos cos sin 4 4 ADB ADB π π =∠-∠ 4 1021025 = +?=. (2)在ADC ?中,由正弦定理 sin sin AD AC C ADC =∠∠, 故( )74sin sin sin sin sin sin AC C AC C AC C AD ADC ADB ADB π? ?∠?∠?∠==== ∠-∠∠ = 又11sin 72210 ABD S AD AB ADB BD ?= ???∠=??=,解得5BD =. 在ADB ?中,由余弦定理得 2 2 2 2cos AB AD BD AD BD ADB =+-??∠ 8252537AB ?=+-??=?= ?? 2.在ABC ?中,内角A,B,C,所对应的边为,,a b c 且b c ≠,且 22sin sin cos cos C B B B C C -=

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

初中数学几何证明步骤规范性初步基础题(含答案)

初中数学几何证明步骤规范性初步基础题 一、单选题(共4道,每道25分) 1.如图,已知线段AB=18cm,C是线段AB的中点,则AC的长是多少? 解:如图, ∵() ∴() 又∵() ∴() 即AC的长为9cm. ①;②C是线段AB的中点;③AB=18;④⑤; ⑥;⑦;⑧;⑨以上空缺处填写正确的顺序是() A.②⑤③④ B.②⑤①⑧ C.③②①④ D.②④⑥⑨ 答案:A 试题难度:三颗星知识点:中点(一个中点) 2.如图,已知线段AB=14cm,点O是线段AB上任意一点,C、D分别是线段OA、OB的中点,求CD的长. 解:∵C、D分别是线段OA、OB的中点 ∴() ∴ 又∵AB=14 ∴() 即CD的长为7cm. ①C是线段AB的中点;②AB=14;③;④; ⑤;⑥;⑦以上空缺处填写正确的

顺序是() A.③⑥ B.④⑥ C.⑤⑥ D.③⑦ 答案:A 试题难度:三颗星知识点:中点(两个中点) 3.如图,已知∠AOB=78°,OC平分∠AOB,求∠AOC的度数. 解:∵() ∴() 又∵() ∴() ①OC平分∠AOB;②∠AOB=2∠AOC;③∠COB=∠AOC;④∠AOC=∠AOB; ⑤∠AOB=78°;⑥;⑧以上空缺处填写正确的顺序是() A.①④⑤⑥ B.①②⑤⑧ C.①②⑤⑥ D.①③⑤⑥ 答案:A 试题难度:三颗星知识点:角平分线(一个角平分线) 4.已知OC平分∠AOB,OD平分∠AOC,且∠COD=27°,求∠AOB的度数. 解:∵OD平分∠AOC ∴() ∵∠COD=27° ∴()

又∵OC平分∠AOB ∴() ∵∠AOC=54° ∴() ①;②∠AOC=2∠COD;③∠COD=∠AOD;④∠COD=∠AOC; ⑤∠AOB=2∠AOC;⑥∠AOC=∠BOC;⑦∠AOC=∠AOB;⑧∠AOD=27°; ⑨以上空缺处填写正确的顺序是() A.②①⑤⑨ B.③⑧⑥⑨ C.④①⑦⑨ D.②⑤⑥⑨ 答案:A 试题难度:三颗星知识点:角平分线(两个角平分线)

立体几何证明题专题(教师版)分析

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是__________ . 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现 两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. ABC —A B C D'中,直线BB丄AB, BB丄CB但AB与CB不平行,???⑥错. AB // CD BB n AB= B,但BB与CD不相交,.??⑦错?如图(2)所示,AB= CD BC= AD四边形ABCD不是平行四边形,故⑧也错. I、m外的任意一点,贝U ( A.过点P有且仅有条直线与I、m都平行 B.过点P有且仅有条直线与I、m都垂直 C.过点P有且仅有条直线与I、m都相交 D.过点P有且仅有条直线与I、m都异面 答案 B 解析对于选项A,若过点P有直线n与I , m都平行,则I // m这与I , m异面矛盾. 对于选项B,过点P与I、m都垂直的直线,即过P且与I、m的公垂线段平行的那一条直线. 对于选项C,过点P与I、m都相交的直线有一条或零条. 对于选项D,过点P与I、m都异面的直线可能有无数条.

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA丄矩形ABCD所在平面,M、N分别为AB、PC的中点; ⑴求证: 2Q.证明江1〉取FD的中点AE,NE t 丁Nft PC 的中点.A NEX^CD . 又四边形ABCU为矩形且M星BA中点' MN :* 寺CD垒MA , £ :■ NEXMA.KP四边形MAEN是平行四也形, 昇 MN〃AE* 由于AEU罕面PAD,MN(Z^ffi PAD? A MN"平廊PAD, (2>V FA 丄平ABCD,ZPDA-45\ 代APAD是等 B?三肃形?桩AE」PH 由题意,CD丄AD,CD丄叭 :.CD丄平面PAD. 从而AE_LCD, 代AE丄平面PCD,故VIN丄平而PCH . Ml、If :< 1)「1 {' 的方程为(x —a)* + (y 一h J —pf (2a+ b?0* ... IQ* V ■ ■ ■ V ■] ... 12* ……r ABC PA PC ABC 90 PEF PBC EF Q E F AC BC EF // AB....2 分又EF 平面PAB,AB 平面PAB, EF //平面PAB. ? (5) (2)Q PA PC,E为AC的中点, PE AC (6) P ABC E,F AC, BC EF // PAB PAC 又Q平面PAC 平面ABC PE 面ABC ................. 8 分 PE BC ............... 9 分 又因为F为BC的中点, Q ABC 900, BC EF .................... 10 分BC 面PEF ............... 11 分 又Q BC 面PBC 面PBC 面PEF ............... 12分 3.如图,在直三棱柱ABC-ABQ中,AC=BC点D是AB的中点

高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

第7章立体几何 全国卷五年考情图解高考命题规律把握 1.考查形式 高考在本章一般命制2道小题、1 道解答题,分值约占22分. 2.考查内容 (1)小题主要考查三视图、几何体 体积与表面积计算,此类问题属于 中档题目;对于球与棱柱、棱锥的 切接问题,知识点较整合,难度稍 大. (2)解答题一般位于第18题或第19 题的位置,常设计两问:第(1)问 重点考查线面位置关系的证明;第 (2)问重点考查空间角,尤其是二 面角、线面角的计算.属于中档题 目. 空间几何体的结构及其表面积、体积 [考试要求] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. 4.了解球、棱柱、棱锥、台体的表面积和体积的计算公式.

1.多面体的结构特征 名称棱柱棱锥棱台 图形 底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点 侧面形状平行四边形三角形梯形 (1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形. (2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体. 3.旋转体的结构特征 名称圆柱圆锥圆台球 图形 母线互相平行且相 等,垂直 于底面 长度相等且相交 于一点 延长线交于一点 轴截面全等的矩形全等的等腰三角 形 全等的等腰梯形圆 侧面展开图矩形扇形扇环 旋转图形矩形直角三角形直角梯形半圆三视图画法规则:长对正、高平齐、宽相等 直观图斜二测画法: (1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为45°(或

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

几何证明中的几种技巧

几何证明中的几种技巧 一.角平分线--轴对称 1.已知在ΔABC 中,E为BC的中点,AD平分BAC ∠,BD AD ⊥于D.AB=9,AC=13.求DE的长. 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD=DF.又BE=EC,即DE为ΔBCF 的中位 线.∴11 ()222DE FC AC AB = =-=. 2.已知在ΔABC 中,108A ∠=o ,AB=AC,BD平分ABC ∠.求证:BC=AB+CD. B B 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=o , 108A BED ∠=∠=o ,36C ABC ∠=∠=o . ∴72DEC EDC ∠=∠=o ,∴CD=CE,∴BC=AB+CD. 3.已知在ΔABC 中,100A ∠=o ,AB=AC,BD平分ABC ∠.求证:BC=BD+AD. B B 分析:在BC上分别截取BE=BA,BF=BD.易证ΔABD ≌ΔEBD .∴AD=ED, 100A BED ∠=∠=o .由已知可得:40C ∠=o ,20DBF ∠=o .由∵BF=BD, ∴80BFD ∠=o .由三角形外角性质可得:40CDF C ∠==∠o .∴CF=DF. ∵100BED ∠=o ,∴80BFD DEF ∠=∠=o ,∴ED=FD=CF,∴AD=CF,

∴BC=BD+AD. 4.已知在ΔABC 中,AC BC ⊥,CE AB ⊥,AF平分CAB ∠,过F作FD∥BC ,交AB于D.求 证:AC=AD. C B C B 分析:延长DF交AC于G.∵FD∥BC,BC⊥AC,∴FG⊥AC. 易证ΔAGF ≌ΔAEF .∴EF=FG.则易证ΔGFC ≌ΔEFD .∴GC=ED. ∴AC=AD. 5.如图(1)所示,BD和CE分别是ABC V 的外角平分线,过点A作AF⊥BD于F,AG⊥CE于G,延长AF及AG与BC相交,连接FG. (1)求证: 1 ()2FG AB BC CA = ++ (2)若(a)BD与CE分别是ABC V 的内角平分线(如图(2)); (b)BD是ΔABC 的内角平分线,CE是ΔABC 的外角平分线(如图(3)). 则在图(2)与图(3)两种情况下,线段FG与ΔABC 的三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. 图(1) 图(2) 图(3) 分析:图(1)中易证ΔABF ≌ΔIBF 及ΔACG ≌ΔHCG .∴有AB=BI,AC=CH及AD=ID,AG =GH.∴GF为ΔAIH 的中位线.∴ 1 ()2FG AB BC CA = ++. 同理可得图(2)中 1()2FG AB CA BC = +-;图(3)中1 ()2FG BC CA AB =+- 6.如图,ΔABC 中,E是BC边上的中点,DE⊥BC于E,交BAC ∠的平分线AD于D,过D作DM⊥AB于M,作DN⊥AC于N.求证:BM=CN.

9.6立体几何大题1(教师版)

A B C D 1 A 1 C 1B E 科 目 数学 年级 高三 备课人 高三数学组 第 课时 9.2立体几何大题1 1、(2013新课标)如图,直棱柱111ABC A B C -中,,D E 分别是1,AB BB 的 中点,12 2 AA AC CB AB === . (Ⅰ)证明:1//BC 平面1A CD ; (Ⅱ)求二面角1D A C E --的正弦值. 【答案】 2、(2013湖南)如图5,在直棱柱 1111//ABCD A BC D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=, 13AD AA ==. (I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值. 【答案】 解(Ⅰ) AC BB ABCD BD ABCD BB D C B A ABCD ⊥??⊥∴-111111,面且面是直棱柱 D B AC BDB D B BDB AC B BB BD BD AC 11 111,,⊥∴?⊥∴=?⊥,面。面且又 . (证毕)

(Ⅱ) 。 的夹角与平面的夹角即直线与平面直线θ111111,////ACD AD ACD C B AD BC C B ∴ 轴正半轴。 为轴正半轴,为点,量解题。设原点在建立直角坐标系,用向X AD Y AB A ()BD AC y BD y AC y C y B D D A ⊥-== ),0,,3(),0,,1()0,,1(),0,,0(),3,0,3(),0,0,3(,00,01,则,设 ). 3,0,3(),0,3,1(.30,003012==∴=?>=+-?=?AD AC y y y BD AC ) ,,(),,(的一个法向量平面则的法向量为设平面303,313-.0 ,111==??????=?=?AD n ACD AD n AC n n ACD 721 3 733|,cos |sin 003,313-1=?= ><=?==∴AD n AD n ACD θ),,(),,(的一个法向量平面 7 21 11夹角的正弦值为 与平面所以ACD BD . 3、(2013 北京)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5. (Ⅰ)求证:AA 1⊥平面ABC ; (Ⅱ)求二面角A 1-BC 1-B 1的余弦值; (Ⅲ)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求 1 BD BC 的值. 【答案】解: (I)因为AA 1C 1C 为正方形,所以AA 1 ⊥AC. 因为平面ABC⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC. (II)由(I)知AA 1 ⊥AC,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB⊥AC. 如图,以A 为原点建立空间直角坐标系A-xyz ,则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),

浅谈初中数学证明题解题技巧与步骤

浅谈初中数学证明题解题技巧与步骤 北师大版初中数学教材中《证明》占三章节,教材这样安排的目地是想:通过对《证明》的学习,让学生通过对图形的性质及相互关系进行大量的探索,在探索的同时,使学生经历推理的过程,进行了简单的推理训练,从而具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。但生活很丰满,现实很骨干,许多学生在实际解决证明题的过程中,却因为种种原因而感到无从下手!那如何求解证明题呢?如何让学生不再畏惧证明题呢?通过对教材中《证明》的教学,根据学生的认知水平,本人认为可以从以下六个方面来解决: [例题] 证明:等腰三角形两底角的平分线相等 1.弄清题意 此为“文字型”数学证明题,既没有图形,也无直观的已知与求证。如何弄清题意呢?根据命题的定义可知,命题由条件与结论两部分组成,因此区分命题的条件与结论至关重要,是解题成败的关键。命题可以改写成“如果………..,那么……….”的形式,其中“如果………..”就是命题的条件,“那么…….”就是命题的结论,据此对题目进行改写:如果在等腰三角形中分别作两底角的平

分线,那么这两条平分线长度相等。于是题目的意思就很清晰了,就是在等腰三角形中作两底角平分线,然后根据已知的条件去求证这两条平分线相等。这样题目要求我们做什么就一目了然了! 2.根据题意,画出图形。 图形对解决证明题,能起到直观形象的提示,所以画图因尽量与题意相符合。并且把题中已知的条件,能标在图形上的尽量标在图形上。 3.根据题意与图形,用数学的语言与符号写出已知和求证。 众所周知,命题的条件---已知,命题的结论---求证,但要特别注意的是,已知、求证必须用数学的语言和符号来表示。 已知:如图(1),在△ABC中,AB=AC, BD、CE分别是△ABC的角平分线。 求证:BD=CE 4.分析已知、求证与图形,探索证明的思路。 对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

相关主题