搜档网
当前位置:搜档网 › 概率问题例题

概率问题例题

概率问题例题
概率问题例题

概率问题

例一:有6个房间安排4个旅游者住宿,每人可以随意进哪一间,而且一个房间也可以住几个人求下列事件的概率:

(1)事件A:指定的4个房间中各有1人;

(2)事件B:恰有4个房间中各有1人;

(3)事件C:指定的某个房间中有两人;

(4)事件D:第1号房间有1人,第2号房间有3人

(1)1/54(2)5/18(3)25/216 (4)1/324

解析:

4个人住进6个房间,所有可能的住房结果总数为:6*6*6*6(种)

(1)指定的4个房间每间1人共有6*5*5*4=3600种不同住法

(2)恰有4个房间每间1人共有种不同住法

(3)指定的某个房间两个人的不同的住法总数为:6*5*5(种),

(4)第一号房间1人,第二号房间3人的不同住法总数为:4(种),P(D)=4/1296=1/324

例二:假设订一份报纸,送报人可能在6间在早上7:30至7:30把报纸送到家里,父亲离开家去工作间在早上7:30--8:00

例三:一个圆周上任取3个点,求三点构成的三角形为锐角三角形的概率是多少。【解析】就是把圆割成三段弧,每段弧长<兀

因为三角形的三内角对应的就是弧的圆周角嘛

设每段弧长分别为x,y,z

有x+y+z=2兀

且0

0

0

三维的线性规划中,x+y+z=2兀是个面

就是以(0,0,2兀) (2兀,0,0) (0,2兀,0)为顶点的三角形状的一个面,其中0

所以小的面积除以大的面积就是概率,0.25

一、特殊元素和特殊位置优先策略

【例1】某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有

(A)36种(B)42种

(C)48种(D)54种

分析:甲、乙、丙有特殊要求,可以优先考虑。

解:分两类计算:若甲排在第一位,若甲排在第二位,所以按照要求该台晚会节目演出顺序的编排方案共有+ =42(种),故选B。

二、相邻元素捆绑策略

【例2】4个男同学、3个女同学站成一排,3个女同学必须排在一起,有多少种不同的排法?

分析:3个女同学可以看成一个整体,再与4个男同学排队。

解:先把3个女同学排好,,然后把女同学看成一个元素和男同学排队,。由分步计数原理,有不同排法。

三、不相邻问题插空策略

【例3】4个男同学、3个女同学站成一排,任何2个女同学彼此不相邻,有多少种不同的排法?

分析:女同学不相邻,可以插到男同学中间。

解:先将男生排好,再在这4个男生的中间及两头的5个空档中插入3个女生。由分步计数原理,有1440种不同排法。

四、定序问题缩倍、空位等策略

【例4】7人排队,其中甲、乙、丙3人顺序一定,共有多少种不同的排法?

分析:缩倍法:可以先将所有的元素排好,再除以这几个元素的全排列。空位法:设想有7个位置,先让其他的人坐好,再让甲、乙、丙坐。

解法一:(缩倍法)先将这7个人全排列,然后再除以甲、乙、丙3人的全排列。所以共有840种不同排法。

解法二:(空位法)设想有7个位置,先让其他的人坐好,再让甲、乙、丙坐余下的3个位置,有1种方法,所以共有840种不同排法。

五、先选后排策略

【例5】有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少种不同的装法?

分析:显然有2个小球装入了同一个盒内,所以需要选出2个小球看做一组。

解:第一步,从5个小球中选出2个组成一组,第二步,把这2个和另外3个看成4组放入盒内,所以共有种装法。

六、相同元素隔板策略

【例6】现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?

分析:因为名额没有差别,所以只要看这个学校分到几个名额即可。

解:10个元素之间有9个间隔,要求分成7份,相当于用6块挡板插在9个间隔中,共有84种不同方法。

七、正难则反策略

【例7】甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法有多少种?

分析:甲、乙分到同一个班的情况只有一种,可用间接法,总体淘汰。

解:四名学生中有两名学生分在一个班的种数是,顺序有种,而甲、乙被分在同一个班的有种,所以共有30种。

八、平均分组问题除法策略

【例8】6本不同的书,平均分成3份,每份2本,共有多少种方法?

解:先分三步,则应是种方法,但是这里出现了重复。不妨记6本书为A、B、C、D、E、F,若第一

步取了AB ,第二步取了CD ,第三步取了EF ,这种情况仅是AB 、CD 、EF 的顺序不同,因此,只能作为一种分法。

例:(2010年高考天津卷理科第10题)如图1,用四种不同颜色给图中的A 、B 、C 、D 、E 、F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色。则不同的涂色方法共有________种.

试题分析:本题考查排列应用题中的涂色问题,考查分类、分步计数原理,考查学生的运算推理能力以及分类讨论的思想.

1.解题思路

解法一: 按选用颜色种数进行分类. 【解析】分三类:(1)B 、D 、E 、F 用四种颜色,则有A 必与F 颜色相同、C 与E 颜色相同,故24114

4=??A 种方法.

(2)B 、D 、E 、F 用三种颜色,则有:B 、E 同色或D 、F 同色必有其一,若B 、E 同色,则A 有异于B 和D 的两种颜色,C 只有一种,D 、F 同色同理,1223

4???A ;B 与D 同色,则A 、C 都有异于B 、E 两种选择,2234??A ,故12234???A +223

4??A =192种.

(3)B 、D 、E 、F 用二种颜色,只能B 、E 同色,D 、F 同色,A 、C 有异于B 、D 两种颜色,则有

2

42248

A ??=,所以共有不同的涂色方法有24+192+48=264种.

解法二:利用“捆绑法”, 分步着色.

【解析】第一类:用三种颜色涂色,A 、D 、E 颜色各不相同,若B 与E 同色,必有C 与A 、F 与D 同色,可将C 与A 看作一个整体,F 与D 看作一个整体;若B 、D 同色同理,故23

4?A 种.

第二类:四种颜色(都用)涂六个点,必有4个点的位置颜色不同,即这六个点中必有两组点同色,看作一个整体,而这两组必为:AF 、AC 、BE 、BD 、CE 、DF 中的两组,如下:(AF 、BE ),(AF 、BD ),(AF 、CE ),(AC 、BE ),(AC 、BD ),(AC 、DF ),(BE 、DF ),(BD 、CE ),(CE 、DF )共9种,944?A ,共有不同的涂色方法有234?A +94

4?A =264种. 解法三:着眼于“位置”:以四边形ABCD 为主分类、分步进行涂色.

【解析】第一类:仅用三种颜色涂色,先涂四边形ABCD 的4个顶点,有3

4A 种,必有AC 或BD 颜色相同,若AC 颜色相同,E 、F 颜色唯一确定。BD 同色同理,故23

4?A 种. 第二类:四种颜色全都用上,(1)先用两种颜色涂矩形ABCD 的4个顶点,必有AC 与BD 颜色相同,剩下两种颜色E 、F 排列,故有122

4??A 种;(2)先用三种颜色涂矩形ABCD 的4个顶点,第一步选三种颜色3

4A ,必有AC 或BD 颜色相同,E 有异于

图1

C

F

B

D

E

A

图2

F

E

D

C

B

A

A 、D 两种颜色,F 随之确定,故有1223

4???A 种;(3)4种颜色先全部涂在矩形上,E 有异于A 、D 两种颜色,F 有异于B 、C 两种颜色,224

4??A .共有不同的涂色方法23

4?A +

1224??A +1223

4???A +2244

??A =264种. 解法四:类比空间三棱柱ADE-BCF 如图2.

【解析】第一类:仅用三种颜色涂色,设上一层A, D, E 的颜色分别为a 、 b 、c 排列,下层仍然是颜色a 、b 、c 排列,有2种方法,故有3

4A ×2种.

第二类:四种颜色全都用上,设上一层A, D, E 的颜色分别为a 、b 、c 排列,下层包括第四种颜色d ,但不包括abc 中某一个颜色(例如a),对于d 与a 在同一侧棱上时,只有1种方法,对于d 与a 不在同一侧棱上的情形,有2种方法,(即d 可以涂在BCF 三点中的任意一个点,有三种方法,而d 涂在其中的一个点,另外两个点都对应着3中涂法)那么这种情形共有3×3 = 9种方法,故有3

4A ×9种.

故共有不同的涂色方法总数为3

4A ×11 = 264种方法.

解法五:①用四种颜色涂ABCD 四个点,则E 有异于A 、D 两种颜色,F 有异于B 、C 两种颜色,即224

4??A .②用三种颜色涂ABCD 四个点,则必有AC 或BD 同色,当AC 同色时,E 、F 有三种涂色方法,如ABD 依次涂abd 三种颜色,则有E :b,F:d;E:b,F:c;E:c,F:d 三种涂法,故

3423A ??.③用两种颜色涂ABCD 四个点,则AC 和BD 同色,EF 有两种涂色方法,即22

42

A A ?. 故共有224

4??A +3423A ??+22

42

A A ?=264. 评注 本题属于以涂色为平台的排列组合应用题,考查分类、分步计数原理. 解法一抓住了这种题型的一个核心——颜色,从颜色入手进行突破;解法三抓住了这种题型的又一个核心——位置, 从位置入手进行突破,这两种求解招数是求解这类题目的典型的正面直接求解法. 解法二利用“捆绑法”,分步着色;解法四类比空间几何体,这两种求解招数是求解这道题目的创新解法,应具体题目具体分析. 解决问题的关键是依据题意, 找到一个确定的标准,合理对问题进行分类或分步,但必须注意分类讨论要全面, 要做到不重不漏. .

2. 历年考题

考题1 ( 2007年天津高考题) 如图3, 用6种不同的颜色给图中的4个格子涂色,每个格 子涂一种颜色, 要求相邻的两个格子颜色不同,且两端的格子的颜色也不同, 则不同的涂 色方法共有_______种. (用数字作答)

后两格种类:

1、第三格和前两格颜色均不同: 第三格有4种可能。

此时前三格已经使用了3种颜色,第四格必须在三种颜色中选择,又由于不能和第三格相同 因此此时第四格有2种可能。因此这种情况下,有8种可能 2、第三格和第一格颜色相同。 则第三格只有1种可能。

此时第四格只要和第三格颜色不同即可,所以有5种可能 因此在这种情况下,有5种可能 所以三、四格共有13种可能

因此四个格子颜色涂法有30×13=390(种)

考题2( 2003年全国高考题) 如图5,一个地区分为5个行政区域, 现给地图着色, 要求相邻区域不得使用同一颜色,现有4种颜色可供选择, 则不同的着色方法共有___种.(以数字作答)

【解析】用三种颜色,必须2-4同色、3-5同色

颜色4选3,再1、2-4、3-5作排列:4*3*2*1=24(种) 2.用四种颜色,必须2-4同色(或3-5同色)

2-4同色时,1、2-4、3、5作排列:4*3*2*1=24(种) 或3-5同色,1、2、3-5、4作排列:4*3*2*1=24(种) 24+24+24=72

考题3 (2003年江苏高考试题)某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽

种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有

.(以数字作答)

【解析】先确定1,2,3,4号区域的颜色.它们的方法数依次是4、3、2、2.其

中4号区域的两种颜色,一种是与2号相同,一种是与1,2,3区域都不同的第四种颜色. 由于它影响后面5、6号区域颜色的确定,按4号区域的两种颜色进行分类,成为两个类别.

设这4种颜色分别为红、黄、绿、蓝,又设1、2、3号区域分别已确定为红、黄、绿、,则4号区域可能为蓝,也可能为黄(如图).

图4

6

54

132

若4号区域为蓝,5、6号区域的颜色确定为黄-蓝、黄-绿或绿-蓝3种方法. 若4号区域的颜色为黄,5、6号区域的颜色确定为绿-蓝或蓝-绿2种方法. 所以不同的栽种方法共有4×3×2×(3+2)=120(种).

概率经典测试题及答案

概率经典测试题及答案 一、选择题 1.下列说法正确的是 () A.要调查现在人们在数学化时代的生活方式,宜采用普查方式 B.一组数据3,4,4,6,8,5的中位数是4 C.必然事件的概率是100%,随机事件的概率大于0而小于1 D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定 【答案】C 【解析】 【分析】 直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案. 【详解】 A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误; B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误; C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确; D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误; 故选:C. 【点睛】 此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键. 2.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是() A.2 3 B. 1 2 C. 1 3 D. 1 4 【答案】C 【解析】 【分析】 【详解】 用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团, 于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种, 所以,所求概率为31 93 ,故选C.

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

概率论试题(含解析)

1、事件A B 、独立,且()0.8,()0.4P A B P A ?==,则P(AB) 2、设()f x 是连续型随机变量X 的概率密度函数 ()f x 非负。 3、随机变量),(~2σμN X ,则概率{1}P X μ≤+随着σ的变大而 (A )变小; (B )变大; (C )不变; (D )无法确定其变化趋势。 答:( A ) 6、某人投篮,每次命中的概率为2 3 ,现独立投篮3次,则至少命中3次的概率为. 7、已知连续型随机变量X 的概率密度函数为(1)2,1()0, x Ae x f x --??≥=???其它,则常数A = . 8、二维随机变量(,)X Y 的分布函数为(12)(13),0,0 (,)0,x y x y F x y --?-->>=?? 其它,则概率 P(Y>2)= . 9、已知随机变量X Y 、的方差分别为2,1DX DY ==,且协方差(,)0.6Cov X Y =,则D(X+Y)= 设,A B 为随机事件,且()0,(|)1P B P A B >=,说明什么? 某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第5次射击恰好第2次命中目标的概率为( )C 14P 2(1-p )3 三、解答题(本大题共6小题,每小题10分,共60分)。 一、已知男人中有8%是肝病患者,女人中有0.35%是肝病患者。今从男女人数相等的人群中随机地挑选一人,恰好是肝病患者,问此人是男性的概率是多少? 四、 11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品的概率分别为0.8, 0.1, 0.1. 顾客购买时,售货员随意取一箱,而顾客随意查看四只,若无残品,则买下,否则,退回。现售货员随意取一箱玻璃杯,求顾客买下的概率。(结果保留3个有效数字) 解:设B 表示售货员随意取一箱玻璃杯,顾客买下;i A 表示取到的一箱中含有i 个残品, 0,1,2i =,则所求概率为 2 ()(|)()...............................................................................(5') 1918171618171615 0.810.10.1...........................(9')2019181720191817 0.9i i i P B P B A P A ==??????=?+? +???????≈∑43...................................................................................................(10')

统计概率经典例题(含(答案)和解析)

统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a和b所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统 计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小 型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的 2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜 色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下 颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题: (1)求实验总次数,并补全条形统计图; (2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度? (3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%. 类别科普类教辅类文艺类其他册数(本)128 80 m 48 (1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数; (2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本? 5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。 (1)从中随机抽出一张牌,牌面数字是偶数的概率是;(3分) (2)从中随机抽出两张牌,两张牌面数字的和是5的概率是;(3分)(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的

简单事件的概率

2.1简单事件的概率 教学目标: 1、在具体情境中进一步了解概率的意义. 2、进一步运用列举法(包括列表、画树状图)计算简单事件的概率教学重点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学难点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学过程 一、回顾和思考: 在数学中,我们把事件发生的可能性的大小称为事件发生的概率. 问:运用公式P(A)=m n 求简单事件发生的概率,在确定各种可能结果发生的可能性 相同的基础上,关键是求什么? 关键是求事件所有可能的结果总数n和其中事件A发生的可能的结果m(m≤n) 二、热身训练: 北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”.现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子. (1)小玲从盒子中任取一张,取到印有“欢欢”图案的卡片的概率是多少? (2)小玲从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名字.用列表或画树状图列出小玲取到的卡片的所有情况,并求出小玲两次都取到印“欢欢”图案的卡片的概率. 三、新课教学: 1、例3.学校组织春游,安排给九年级3辆车,小明与小慧都可以从这3辆车中任选一辆搭乘.问小明与小慧同车的概率有多大? 问:你能用树状图表示本题中事件发生的不同结果吗?用列表法也试试吧 解:记这三辆车分别为甲、乙、丙,小明与小慧乘车的所有可能的结果列表如下: (各种结果发生的可能性相同) ∴P=3 9 = 1 3 . 答:小明与小慧同车的概率是1 3 . 2、书本34页课内练习2 3、例4.如图,转盘的白色扇形和红色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在红色区域的概率. 问:1、转盘自由转动1次,指针落在白色区域、红色区域的可能性相同吗? 2、如何才能使转盘自由转动1次,指针落在各个扇形区域内的可能性都相同?

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率经典例题及解析、近年高考题50道带答案【精选】

【经典例题】 【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0× 27 125+1×54125+2×36125+3×8125=6 5 ,选B. 【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C 【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意? ????0≤x≤4, 0≤y≤4,满足条件的关系式 为-2≤x-y≤2.

高中概率知识点、高考考点、易错点归纳

概率知识要点 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例 ()= A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ??或A B)。 不可能事件记作?。 (2)相等。若B A A B ??且,则称事件A 与事件B 相等,记作A=B 。 (3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。 (4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。 (5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ? ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1P A ≤≤.(2)必然事件的概率为1.()1P E =.(3)不可能事件的概率为0. ()0P F =. (4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。 (5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B = . 古典概型 1、基本事件: 基本事件的特点:(1)任何两个事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本时间的和。 2、古典概型:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。 3、公式:()= A P A 包含的基本事件的个数 基本事件的总数

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

概率经典例题与解析、近年高考题50道带答案

【经典例题】 【例1】(2012)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2 即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 1 2 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为 扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选 A . 【例2】(2013)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0× 27 125+1×54125+2×36125+3×8125=6 5 ,选B. 【例3】(2012)节日前夕,小在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的 4秒任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C 【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意? ??0≤x ≤4, 0≤y ≤4,满足条件的关系 式为-2≤x -y ≤2. 根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,

初中《简单事件的概率》知识点

概率的简单应用 一、可能性 1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件. 2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件. 3、确定事件:必然事件和不可能事件都是确定的。 4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。 5、一般来说,不确定事件发生的可能性是有大小的。 常见考法:判断哪些事件是必然事件,哪些是不可能事件 例1:下列说法错误.. 的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为 16 B .不可能事件发生机会为0 C .买一张彩票会中奖是可能事件 D .一件事发生机会为0.1%,这件事就有可能发生 二、简单事件的概率 1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0

人教版高中数学【必修三】[知识点整理及重点题型梳理]_随机事件的概率_提高

人教版高中数学必修三 知识点梳理 重点题型(常考知识点)巩固练习 随机事件的概率 【学习目标】 1.了解必然事件,不可能事件,随机事件的概念; 2.正确理解事件A 出现的频率的意义; 3.正确理解概率的概念和意义,明确事件A 发生的频率f n (A)与事件A 发生的概率P(A)的区别与联系. 【要点梳理】 要点一、随机事件的概念 在一定的条件下所出现的某种结果叫做事件. (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; 确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件,简称确定事件. (3)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件. 要点诠释: 1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究; 2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性. 要点二、随机事件的频率与概率 1.频率与频数 在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n 为事件A 出现的频率。 2.概率 事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率 n m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P(A). 由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0. 要点诠释: (1)概率从数量上反映了随机事件发生的可能性的大小. 求事件A 的概率的前提是:大量重复的试验,试验的次数越多,获得的数据越多,这时用 A n n 来表示()P A 越精确。 (2)任一事件A 的概率范围为0()1P A ≤≤,可用来验证简单的概率运算错误,即若运算结果概率不在[01],范围内,则运算结果一定是错误的.

概率论考试题以及解析汇总

——第1页—— 系名____________班级____________姓名____________学号____________ 密封线内不答题 试题一 一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( ) A.91 99 100 98 .02.0C B. i i i i C -=∑100100 9 100 98.02.0 C. i i i i C -=∑100100 10 100 98 .02.0 D.i i i i C -=∑- 1009 100 98.02.01 4、设)3,2,1(39)(=-=i i X E i ,则)()3 1 253(321=++ X X X E A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 2 3 21X X X X X c +++? 服从t 分布。( ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14( N ,则其概率密度为( ) A. 6 )14(2 61-- x e π B. 3 2)14(2 61-- x e π C. 6 )14(2 321 -- x e π D. 2 3)14(2 61-- x e π 7、 321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ 的无偏估计( ) A. 3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X + + D. 3216 1 3131X X X ++ 8 、设离散型随机变量X 的分布列为 X 1 2 3 P C 1/4 1/8 则常数C 为( ) (A )0 (B )3/8 (C )5/8 (D )-3/8 9 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X 近似的服从( ) (A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01 下,( )

九年级上 简单事件的概率

VIP 学科优化教(学)案 教学部主管: 时间: 年 月 1.二次函数2 3y x bx =++的对称轴是2x =,则b =_______。 2.已知抛物线y=-2(x+3)2+5,如果y 随x 的增大而减小,那么x 的取值范围是_______. 3.一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量x 的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。 4.抛物线22(2)6y x =--的顶点为C ,已知直线3y kx =-+过点C ,则这条直线与两坐标轴所围成的三角形面积为 。 5. 二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= 。 6.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是 . ㈠承上启下 知识回顾

【课本相关知识点】 1、在一定条件下一定发生的事件叫作必然事件;在一定条件下一定不会发生的事件叫作不可能事件;在一定条件下可能发生,也可能不发生的事件叫作不确定事件或随机事件。 2、为了确定简单事件发生的各种可能的结果,通常用列表、画树状图法。当实验包含两步时,用列表法与画树状图法求发生的结果数均比较方便;但当实验存在三步或三步以上时,用画树状图的方法求事件发生的结果数较为方便。 题型一、识别事件类型 例1、下列事件是必然事件的是( ) A. 水加热到100℃就要沸腾 B. 如果两个角相等,那么它们是对顶角 C.两个无理数相加,一定是无理数 D. 如果 ,那么a=0,b=0 练习.(2013?武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球 题型二、用列表、画树状图法确定简单事件发生的各种可能的结果 例2、(2011?成都)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B 1、B 2、B 3表示)中抽取一个,再在三个上机题(题签分别用代码J 1、J 2、J 3表示)中抽取一个进行考试。小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.用树状图或列表法表示出所有可能的结果 练习.(2013?江西)甲、乙、丙三人聚会,每人带了一个从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件。将“甲、乙、丙3人抽到的都不是自己带来的礼物”记为事件A ,请列出事件A 的所有可能的结果。 题型三、比较事件发生的可能性的大小 例3、在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4。随机地摸出一张纸牌然后放回,再随机摸取出一张纸牌。甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。这是个公平的游戏吗?请说明理由。 练习1.(2011江苏淮安)有牌面上的数都是2,3,4的两组牌,从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面上的数之和为多少的可能性最大。 ㈡紧扣考点 专题讲解

高考概率知识点及例题(供参考)

概率知识要点 3.1.随机事件的概率 3.1.1 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例()=A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 3.1.2 概率的意义 1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。 2、游戏的公平性:抽签的公平性。 3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。 ——极大似然法、小概率事件 4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨

的机会是70%”。 5、试验与发现:孟德尔的豌豆试验。 6、遗传机理中的统计规律。 3.1.3 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作( 或A B)。 ?? B A 不可能事件记作?。 (2)相等。若B A A B 且,则称事件A与事件B相等,记作A=B。 ?? (3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。 (4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。 (5)事件A与事件B互斥:A B为不可能事件,即= A B?,即事件A与事件B在任何一次试验中并不会同时发生。 (6)事件A与事件B互为对立事件:A B为不可能事件,A B为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1 ≤≤. P A (2)必然事件的概率为1.()1 P E=. (3)不可能事件的概率为0. ()0 P F=. (4)事件A与事件B互斥时,P(A B)=P(A)+P(B)——概率的加法公式。(5)若事件B与事件A互为对立事件,,则A B为必然事件,()1 P A B=. 3.2 古典概型

概率论试题(含解析)

一、单项选择题(本大题共5小题,每小题3分,共15分)。 1、事件独立,且,则等于 (A )0; (B )1/3; (C)2/3; (D)2/5、 ? ? 答:( B ) 2、设就是连续型随机变量得概率密度函数,则下列选项正确得就是 (A )连续; (B ); (C)得值域为[0,1]; (D)。 答:( D ) 3、随机变量,则概率随着得变大而 (A)变小; (B )变大; (C)不变; (D)无法确定其变化趋势. ? ?? ? 答:( A ) 4、已知连续型随机变量相互独立,且具有相同得概率密度函数,设随机变量,则得概 率密度函数为 (A ); (B ); (C ); (D )、 答:( D ) 5、设就是来自正态总体得容量为得简单样本,则统计量服从得分布就是 (A) (B ) (C) (D) 答:( C ) 二、填空题(本大题共5小题,每小题3分,共15分)。 6、某人投篮,每次命中得概率为,现独立投篮3次,则至少命中1次得概率为、 7、已知连续型随机变量得概率密度函数为,则常数=、 8、二维随机变量得分布函数为,则概率=、 9、已知随机变量得方差分别为,且协方差,则=1、8、 10、某车间生产滚珠,从长期实践中知道,滚珠直径(单位:c m)服从正态分布,从某 天生产得产品中随机抽取9个产品,测其直径,得样本均值=1、12,则得置信度为0、95得置信区间为、 (已知,,,) 三、解答题(本大题共6小题,每小题10分,共60分)。 11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品得概率分别为0、8, 0、1, 0、1、顾客购买时,售货员随意取一箱,而顾客随意查瞧四只,若无残品,则买下,否则,退回。现售货员随意取一箱玻璃杯,求顾客买下得概率.(结果保留3个有效数字) 解:设表示售货员随意取一箱玻璃杯,顾客买下;表示取到得一箱中含有个残品,,则所 求概率为 2 0()(|)()...............................................................................(5') 19181716181716150.810.10.1...........................(9')2019181720191817 0.9i i i P B P B A P A ==??????=?+? +???????≈∑43...................................................................................................(10') 12、已知连续型随机变量得概率密度函数为 , (1)求概率;(2)求、

简单事件的概率练习题

、选择题 1.下列事件是必然事件的是( A. 随机抛掷一枚均匀的硬币,落地后正面一定朝上 B. 打开电视体育频道,正在播放 NBA 求赛 拿出一支笔芯,则拿出黑色笔芯的概率是( A.- 3 3.同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的 B. 从一个装有2个白球和1个红球的袋子中任取一球, C. 抛一枚硬币,出现正面的概率 D. 任意写一个整数,它能被2整除的概率 6. 一个均匀的立方体六个面上分别标有数 1,2,3, 这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等 1 于朝下一面上的数的-的概率是() 2 B.- 3 C.射击运动员射击一次,命中十环 D. 若a 是实数,则|a 0 2.盒子里有3支红色笔芯,2支黑色笔芯, 每支笔芯除颜色外均相同?从中任意 面的点数中,一个点数能被另一个点数整除的概率是 A. — B. 3 C. 口 18 4 18 4. 在一张边长为4cm 的正方形纸上做扎针随机试验, 形阴影区域,贝U 针头扎在阴影区域内的概率为 () 1 1 A. B. - C. D. - 16 4 16 4 5. 甲、乙两名同学在一次用频率去估计概率的试验中 23 36 纸上有一个半径为1cm 的圆 D. 统计了某一结果出现的频率,绘出的统计图如图所示, 则符合这一结果的试验可能是( A.掷一枚正六面体的骰子,出现1点的概率 取到红球的概率 D.- 3 C.- 2 4,5,6?右图是 4

7. 甲、乙、丙、丁四名运动员参加 4X 100米接力赛,甲必须为第一接力棒或第 四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有( ) A . 3 种 B . 4 种 C . 6 种 D . 12 种 8. 一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( 15 9. 在6件产品中,有2件次品,任取两件都是次品的概率是() A 、1 B 丄 C 、丄 D 、丄 5 6 行 15 10. 在拼图游戏中,从图中的四张纸片中,任取两张纸片,能拼成“小房子” (如 图所示)的概率等于( ) A. 1 B . L C . 1 D . 2 2 3 3 二、填空题 11. 一个瓷罐中装有1枚白色围棋棋子,1枚黑色棋子,现从罐中有返回地摸棋 子两次,摸到两个白子的概率为 ____________ ,先摸到白子,再摸到黑子的概率 为 . 12. 如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若 指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止) ,两个指 针所指区域的数字和为偶数的概率是 —— 13. 小明与小亮在一起做游戏时需要确定作游戏的先后顺序, 他们约定用“锤子、 剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是 — 14. 晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概 率为 _______ . 15. 在一副去掉大、小王的扑克牌中任取一张,则 P (抽到黑桃K )等于 _______ P (抽到9)等于 . 16. 单项选择题是数学试题的重要组成部分,当你遇到不会做的题目时,如果你 随便选一个答案(假设每个题目有4个选项),那么你答对的概率为 ______________ A. B. C. D. 15

相关主题