搜档网
当前位置:搜档网 › 第3章 异质结构

第3章 异质结构

第3章 异质结构
第3章 异质结构

3.2能带的形成

()成,()p

(a)能带的形成,(b)金刚石结构中s态和台的重新组合

孤立原子的外层电子呈分立形式的能级。气体中各个原子的外层电子只受它本身的原子的作用,不

3.3.1半导体的E‐ 关系能带图

三种III‐V族半导体的能带结构:

GaAs的能带图

8

未形成异质结之前,它们有各自不同的费米能级F 1和F 2,彼此无关联。以真空中的能级为基准绘制出它们分立的能带图。它们形成异质结构时,它们的费米能级处处相同。以费米能能带结构的变化:1,出现了空间电荷区。,空间电荷区中能带发生弯曲。

,出现了导带和价带的不连续性和。

E ?E ?

四种3.4 几种异质结的能带图

3.4.1 异型异质结的能带图

异型异质结的能带图

14

3.4.2 异型突变异质结

p ‐GaAs ‐N ‐Al x Ga 1‐x As 突变结(a)能带图

(b)耗尽层中的电荷分布(c)电场分布(d)自建势垒

组成异质结后费米能级应该处处相同。为了维持各自原有的电子亲合势χ和功函数不变就会形成空间电荷Φ不变,就会形成空间电荷区,出现自建电场,相应的势垒高度为:

F

F F eV D ?=-=2116

3.4.3 缓变异质结

25

缓变p ‐GaAs ‐N ‐Al 0.3Ga 0.7As 异质结的能带图

25

p ‐GaAs ‐N ‐

Al 0.4Ga 0.6As 渐变异质结的带边尖峰变化图

有人提出用双曲正切函数来描述导带差的这种渐变:

tanh(10

x x E x E C -+?=?)]

([2)(l

C

3.4.4 同型突变异质结

27

3.4.5 双异质结

N Al 0.3Ga 0.7As ‐p ‐GaAs ‐P ‐Al 0.3Ga 0.7As 双异质结的能带图(a)零偏压,

(b)加1.43V 正偏压

28

度为:

J J J P

N N P -=→→)]

exp())[exp(exp(]

)

(exp[])(exp[1222111222kT

eV

kT eV kT eV A kT V V e E A kT V V e A a a D a D c a D ---=--?----=34

N-AlxGa1-xAs /p-GaAs 在不同偏置下的能带图

(a)零偏置电压

(b) 正向偏置电压+1V

(c) 反向偏置电压-1V

39

异质结发展现状和原理

异质结发展现状及原理 pn结是组成集成电路的主要细胞。50年代pn结晶体管的发明和其后的发展奠定了这一划时代的技术革命的基础。pn结是在一块半导体单晶中用掺杂的办法做成两个导电类型不同的部分。一般pn结的两边是用同一种材料做成的(例如锗、硅及砷化镓等),所以称之为“同质结”。如果把两种不同的半导体材料做成一块单晶,就称之为“异质结“。结两边的导电类型由掺杂来控制,掺杂类型相同的为“同型异质结”。掺杂类型不同的称为“异型异质结”。另外,异质结又可分为突变型异质结和缓变型异质结,当前人们研究较多的是突变型异质结。 1 异质结器件的发展过程 pn结是组成集成电路的主要细胞,50年代pn结晶体管的发明及其后的发展奠定了现代电子技术和信息革命的基础。 1947年12月,肖克莱、巴丁和布拉顿三人发明点接触晶体管。1956年三人因为发明晶体管对科学所做的杰出贡献,共同获得了科学技术界的最高荣誉——诺贝尔物理学奖。 1949年肖克莱提出pn结理论,以此研究pn结的物理性质和晶体管的放大作用,这就是著名的晶体管放大效应。由于技术条件的限制,当时未能制成pn结型晶体管,直到1950年才试制出第一个pn结型晶体管。这种晶体管成功地克服了点接触型晶体管不稳定、噪声大、信号放大倍数小的缺点。 1957年,克罗默指出有导电类型相反的两种半导体材料制成异质结,比同质结具有更高的注入效率。 1962年,Anderson提出了异质结的理论模型,他理想的假定两种半导体材料具有相同的晶体结构,晶格常数和热膨胀系数,基本说明了电流输运过程。

1968年美国的贝尔实验室和苏联的约飞研究所都宣布做成了双异质结激光器。 1968年美国的贝尔实验室和RCA公司以及苏联的约飞研究所都宣布做成了GaAs—AlxGal—。As双异质结激光器l;人5).他们选择了晶格失配很小的多元合金区溶体做异质结对. 在70年代里,异质结的生长工艺技术取得了十分巨大的进展.液相夕随(LPE)、气相外延(VPE)、金属有机化学气相沉积(MO—CVD)和分子束外延(MBE)等先进的材料生长方法相继出现,因而使异质结的生长日趋完善。分子束外延不仅能生长出很完整的异质结界面,而且对异质结的组分、掺杂、各层厚度都能在原子量级的范围内精确控制。 2 异质结的结构、原理、 异型异质结 两块导电类型不同相同的半导体材料组成异质结称为异型异质结,有pN和Pn 两种情况,在这里只分析pN异质结。两种材料没有接触时各自的能带如图所示。接触以后由于费米能级不同而产生电荷转移,直到将费米能级拉平。这样就形成了势垒,但由于能带在界面上断续,势垒上将出现一个尖峰.如图3.2m。我们称这一模型为Anderson模型。

异质结

异质结 百科名片 异质结,两种不同的半导体相接触所形成的界面区域。按照两种材料的导电类型不同,异质结可分为同型异质结(P-p结或N-n结)和异型异质(P-n 或p-N)结,多层异质结称为异质结构。通常形成异质结的条件是:两种半导体有相似的晶体结构、相近的原子间距和热膨胀系数。利用界面合金、外延生长、真空淀积等技术,都可以制造异质结。异质结常具有两种半导体各自的PN结都不能达到的优良的光电特性,使它适宜于制作超高速开关器件、太阳能电池以及半导体激光器等。 目录[隐藏] [编辑本段] 基本特性 所谓半导体异质结构,就是将不同材料的半导体薄膜,依先后 异质结 次序沉积在同一基座上。例如图2所描述的就是利用半导体异质结构所作成的雷射之基本架构。半导体异质结构的基本特性有以下几个方面。 (1) 量子效应:因中间层的能阶较低,电子很容易掉落下来被局限在中间层,而中间层可以只有几十埃(1埃=10-10米)的厚度,因此在如此小的空间内,电子的特性会受到量子效应的影响而改变。例如:能阶量子化、基态能量增加、能态密度改变等,其中能态密度与能阶位置,是决定电子特性很重要的因素。 (2) 迁移率(Mobility)变大:半导体的自由电子主要是由于外加杂质的贡献,因此在一般的半导体材料中,自由电子会受到杂质的碰撞而减低其行动能力。然而在异质结构中,可将杂质加在两边的夹层中,该杂质所贡献的电子会掉到中间层,因其有较低的能量(如图3所示)。因此在空间上,电子与杂质是分开的,所以电子的行动就不会因杂质的碰撞而受到限制,因此其迁移率就可以大大增加,这是高速组件的基本要素。 (3)奇异的二度空间特性:因为电子被局限在中间层内,其沿夹层的方向是不能自由运动的,因此该电子只剩下二个自由度的空间,半导体异质结构因而提供了一个非常好的物理系统可用于研究低维度的物理特性。低维度的电子特性相当不同于三维者,如电子束缚能的增加、电子与电洞复合率变大,量子霍尔效应,分数霍尔效应[1]等。科学家利用低维度的特性,已经已作出各式各样的组件,其中就包含有光纤通讯中的高速光电组件,而量子与分数霍尔效应分别获得诺贝尔物理奖。

异质结建模

异质结建模 最近,有许多朋友询问我如何进行异质结建模的问题,在下不才,学习了一点这方面的知识,对于异质结,我的理解就是与树木嫁接一样,只有截面差不多大的树木才能嫁接存活,在此总结了一些异质结建模步骤分享给大家。 一.MoS2 与ZnO 首先,导入ZnO(或者也可以根据晶胞参数进行建立),建立MoS2(P63 a=b=3.17 c=12.3 S1 0.333 0.667 0.8789 S2 0.333 0.667 0.6211 Mo 0.333 0.667 0.25)如图所示: 相应的参数信息: ZnO:

MoS2: 然后你会发现它们都是六方晶系,a,b的值又很相近,这个时候我们想到可以做关于001方向的异质结,那么接下来我们来建立异质结。这个时候有人会问做多大的异质结可以晶格匹配,那么我告诉你,1×1,2×2,3×3……都可以,不信我们来看看。 二.首先,分别做与ZnO 与MoS2 的001切面 点击Build,surfaces,Cleave Surface, 这里的top指的是切面的位置,调节这个可以使裸露在表面的原子不同,Thichness 指的是厚度,根据自己的需要改变值,自己可以试着玩下。 点击Crystals,建立真空层,真空层一般选用15埃。

MoS2删除一层 接下来建立异质结,一种是将框子摆正,选择一层复制,粘贴到另外一个框子里面,然 后调节位置,,具体细节很简单,大家可以试试。另外一种是通过软件建立选项建立,Build,Build Layers,建立异质结界面,

强调下选择下面这个,然后建立真空层(Build,15埃真空层,与前面操作一样。 这里的距离可以调节,一般的范德华力作用范围在3埃左右。右边是用同样的方法做的2×2的异质结,主要是最开始需要分别做2×2的晶胞,后面操作一样。 二.MoS2与石墨烯 导入石墨烯,建立MoS2。

异质结

1.太阳能电池在光学设计优化中主要采取的措施。 A.在电池表面镀上减反射膜; B.增加电池厚度以提高吸收; C.表面制绒; D.通过表面制绒与光陷阱的结合来增加电池中的光径长度; 2.名词解释: 弗伦克尔缺陷:弗伦克尔缺陷是指原子离开其平衡位置而进入附近的间隙位置,在原来的位置上留下空位所形成的缺陷。其特点是填隙原子与空位总是成对出现。 光生伏特效应 反型异质结光谱响应的窗口效应:对于反型异质结,光从宽带隙材料表面入射并且垂直结平面。高能量的光子被宽带隙材料吸收,低能量的光子穿过宽带材料并且在界面附近被窄带材料吸收。 自发辐射:在高能级E2的电子是不稳定的,即使没有外界的作用,也会自动地跃迁到低能级E1上与空穴复合,释放的能量转换为光子辐射出去 受激辐射:在高能级E2的电子,受到入射光的作用,被迫跃迁到低能级E1上与穴复合,释放的能量产生光辐射 反向饱和电流:在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关 相干光:频率、相位、偏振态和传播方向与入射光相同 非相千光:其频率和方向分布在一定范围内,相位和偏振态是混乱的 2.PN异质结可能存在的几种主要的电流输运机构。 A.扩散(发射)模型; B.简单隧道模型; C.界面复合模型; D.隧道复合模型; E.界面—隧道复合模型; 4.电子跃迁的基本方式。 A.带间跃迁 B.经由杂质或缺陷的跃迁 C.热载流子的带间跃迁 5.突变反型异质结的扩散模型要满足的四个条件。 A.突变耗尽条件:电势集中在空间电荷区,注入的少数载流子在空间电荷区之外是纯扩散运动; B.波尔兹曼边界条件:载流子分布在空间电荷区之外满足波尔兹曼统计分布; C.小注入条件:注入的少数载流子浓度比平衡多数载流子浓度小得多; D.忽略载流子在空间电荷区的产生和复合。 6、半导体激光器的工作原理 向半导体PN 结注入电流,实现离子数反转分布,产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡。 半导体发光二极管的工作原理 给发光二极管加上正向电压后,从P区到N 区的空穴和N区注入到P区的电子,在PN结附近数微米分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。 太阳能电池的工作原理:

异质结

1异质结的理想能带结构 先不考虑界面态的影响来讨论异质结的理想能带图。 (1)异质结的形成 当两种不同导电类型的不同半导体材料构成异质结时,由于半导体的能带结构包括费米能级以及载流予浓度的不同,在不同半导体之间会发生载流子的扩散、转移,直到费米能级拉平,这样就形成了势垒。此时的异质结处于热平衡状态,如图1.2所示(n型的禁带宽度比p型的大)。与此同时,在两种半导体材料交界面的两边形成了空间电荷区(即势垒区或耗尽区)。n型半导体一边为正空间电荷区,p型半导体一边为负空间电荷区,由于不考虑界面态,所以在势垒区中正空间电荷数等于负空间电荷数。正、负空间电荷问产生电场,也称为内建电场,方向n—p,使结区的能带发生弯曲。 由于组成异质结的两种半导体材料的介电常数不同,各自禁带宽度不同,因而内建电场在交界面是不连续的,导带和价带在界面处不连续,界面两边的导带出现明显的“尖峰”和“尖谷”,价带出现断续,如图1.2所示。这是异质结与同质结明显不同之处。 (2)不同导电类型和禁带宽度构成的异质结 由两种半导体材料(导电类型和禁带宽度不同)构成的异质结,其能带结构有四种不同的类型(图1.3)。 在异质结器件中我们首先关心的是少子的运动。因为在这种“p窄n宽”的异质结中图l.3(a),导带底在交界面处的突变△Ee对P区中的电子向n区的运动起势垒的作用,所以对电子的输运影响较大。而价带虽然也有一个断续,但它对n区中的空穴向p区运动没有明显的影响,~般情况下可以不加考虑。 反之,对于“p宽n窄”的异质结[图1.3(d)],情况正好相反,界面两边的价带出现明显的“尖峰”和“尖谷”,

所以对空穴的输运影响较大。导带出现断续,但它对p区的电子向n区运动也没有明显的影响。同型异质结也同样存在“尖峰”和“尖谷”[图1.3(b)、(c)]。异质结内尖峰的存在阻止了电子的输运,这就是所谓的“载流予的限制作用”。 (3)各自掺杂浓度来决定尖峰在势垒区中的位置 尖峰的位置处于势垒上的什么位置将由两边材料的相对掺杂浓度来决定。可能出现几种情况(图1.4示):(a)当宽带掺杂比窄带少得多时,势垒主要落在宽带区,尖峰靠近势垒的项部;(b)两边掺杂差不多时,势垒尖峰在平衡时并不露出P区的导带底,但在有正向外加电压时有可能影晌载流子的输运;(c)窄带掺杂比宽带少得多时势垒主要降在窄带区,尖峰靠近势垒的根部。

相关主题