搜档网
当前位置:搜档网 › 珩磨工艺原理

珩磨工艺原理

珩磨工艺原理
珩磨工艺原理

珩磨工艺原理 Prepared on 22 November 2020

珩磨工艺原理

一、珩磨工艺原理

珩磨是磨削加工的特殊形式,又是精加工中一种高效加工方法。这种工艺不仅能往除较大的加工余量(在50年代珩磨还是作为抛光用),而且是一种高精密零件尺寸、几何外形精度和表面粗糙度的有效加工方法。

(一)珩磨加工的特点:

1.加工精度高:

特别是一些中小型的光通孔,其圆柱度可达以内。一些壁厚不均匀的零件,如连杆,其圆度能达。对于大孔(孔径在200mm以内),圆度也可达,假如没有环槽或径向孔等,直线度在以内也是有可能的。珩磨比磨削加工精度高,磨削时支撑砂轮的轴承位于被珩孔之外,会产生偏差,特别是小孔加工,磨削比珩磨精度更差。珩磨一般只能改变被加工件的外形精度,要想改变零件的位置精度,需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度(面板安装在冲程臂上,调它与旋转主轴垂直,零件靠在面板上加工即可)。

表面为交叉网纹,有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而进步了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的均匀磨削压力小,这样工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。珩磨加工面几乎无嵌砂和挤压硬质层。磨削比珩磨切削压力大,磨具和工件是线接触,有较高的相对速度。因而会在局部区域产生高温,会导致零件表面结构的永久性破坏。

主要加工各种圆柱形孔:光通孔。轴向和径向有中断的孔,如有径向孔或槽的孔、键槽孔、花键孔。盲孔。多台阶孔等。另外,用专用珩磨头,还可加工圆锥孔,椭圆孔等,但由于珩磨头结构复杂,一般不用。用外圆珩磨工具可以珩磨圆柱体,但其往除的余量远远小于内圆珩磨的余量。几乎可以加工任何材料,特别是金刚石和立方氮化硼磨料的应用。同时也进步了珩磨加工的效率。

(二)珩磨加工原理:

1.珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开,使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。

2.大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理

珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数,因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹不会重复。此外,珩磨头每转一转,油石

与前一转的切削轨迹在轴向上有一段重叠长度,使前后磨削轨迹的衔接更平滑均匀。这样,在整个珩磨过程中,孔壁和油石面的每一点相互干涉的机会差未几相等。因此,随着珩磨的进行孔表面和油石表面不断产生干涉点,不断将这些干涉点磨往并产生新的更多的干涉点,又不断磨往,使孔和油石表面接触面积不断增加,相互干涉的程度和切削作用不断减弱,孔和油石的圆度和圆柱度也不断进步,最后完成孔表面的创制过程。为了得到更好的圆柱度,在可能的情况下,珩磨中经常使零件掉头,或改变珩磨头与工件轴向的相互位置。

需要说明的一点:

由于珩磨油石采用金刚石和立方氮化硼磨料,加工中油石磨损很小,即油石受工件修整量很小。因此,孔的精度在一定程度上取决于珩磨头上油石的原始精度。所以我们用金刚石和立方氮化硼油石时,珩磨前要很好地修整油石,以确保孔的精度。

(三)珩磨的切削过程:

定压进给中,进给机构以恒定的压力压向孔壁,分三个阶段。

第一个阶段是脱落切削阶段

这种定压珩磨,开始时由于孔壁粗糙,油石与孔壁接触面积很小,接触压力大,孔壁的凸出部分很快被磨往。而油石表面因接触压力大,加上切屑对油石粘结剂的磨耗,使磨粒与粘结剂的结合强度下降,因而有的磨粒在切削压力的作用下自行脱落,油石面即露出新磨粒,此即油石自锐。

第二阶段是破碎切削阶段

随着珩磨的进行,孔表面越来越光,与油石接触面积越来越大,单位面积的接触压力下降,切削效率降低。同时切下的切屑小而细,这些切屑对粘结剂的磨耗也很小。因此,油石磨粒脱落很少,此时磨削不是靠新磨粒,而是由磨粒尖端切削。因而磨粒尖端负荷很大,磨粒易破裂、崩碎而形成新的切削刃。

第三阶段为堵塞切削阶段

继续珩磨时油石和孔表面的接触面积越来越大,极细的切屑堆积于油石与孔壁之间不易排除,造成油石堵塞,变得很光滑。因此油石切削能力极低,相当于抛光。若继续珩磨,油石堵塞严重而产生粘结性堵塞时,油石完全失往切削能力并严重发热,孔的精度和表面粗糙度均会受到影响。此时应尽快结束珩磨。

定量进给珩磨时,进给机构以恒定的速度扩张进给,使磨粒强制性地切进工件。因此珩磨过程只存在脱落切削和破碎切削,不可能产生堵塞切削现象。由于当油石产生堵塞切削力下降时,进给量大于实际磨削量,此时珩磨压力增高,从而使磨粒脱落、破碎,切削作用增强。用此种方法珩磨时,为了进步孔精度和表面粗糙度,最后可用不进给珩磨一定时间。

开始时以定压进给珩磨,当油石进进堵塞切削阶段时,转换为定量进给珩磨,以进步效率。最后可用不进给珩磨,进步孔的精度和表面粗糙度。

二、珩磨机类型及选型原则

珩磨机分卧式和立式两种。其选用原则可参考以下几方面:

1.不同批量选不同形式的珩磨机,如多品种小批量,选用小功率、通用性大的机床;假如批量很大,则选用大功率的专用机床。

2.按工件孔径、孔长和外形尺寸选择机床的主要规格和参数。

3.根据孔的结构形式选机床往复机构的性能。如盲孔,要求往复行程机构换向重复精度高,超程小,应能适应手动或自动交替控制长、短冲程;又如短孔,孔精度要求又高,选用机械往复行程机构。

4.根据孔加工余量、外形误差和孔精度要求,选定油石涨缩机构的扩张进给方式。

5.根据同一孔需要珩磨的次数、生产批量或生产节拍、工件外形尺寸及工件上加工的孔数,选定机床的主轴数或机床台数以及工作台的形式。如大批量的小型零件,可选用立式带旋转工作台的多轴机床;尺寸大或直线排列的多孔工件,可选用移动工作台或移动珩磨头的机床。小批量可选单轴。大批量可选多轴,对一个孔进行多次珩磨或几个孔同时进行珩磨。

6.根据孔的尺寸精度、孔径大小、结构形式,油石的耐磨程度,珩磨头的结构形式,生产批量,选定尺寸控制方式。

7.根据孔的表面粗糙度、尺寸精度和生产节拍的要求,选定切削液的净化方式和是否需要冷却切削液装置。

三、直接珩磨新工艺

珩齿是一种众所周知,系列化生产中常用的硬齿面精加工工艺。经过珩磨的齿轮可以改善其噪声和磨损特性。珩磨过的齿轮由于改变了轮齿的表面结构,因而能降低噪声和延长使用寿命。经珩磨的齿轮表面,形成类似于鱼骨刺的表面结构,有利于从齿根面端部到节圆直径表面上形成一层润滑油膜,有利于抑制噪声的产生。特殊过程运动会使珩磨工具在对应方向上与工件产生转动接触,从而天生这种表面结构。合成速度分量作用于齿面,天生一个轴向的切削速度分量,所以可使磨具的磨粒与整个齿面保持接触。与齿轮磨削相比,珩齿时的切削速度极慢,仅为。因此,作用于起切削作用的磨粒、结合剂特别是工件材料上的热量极低,因而在珩磨过程中不会发生金相组织的变化,不必担心会出现“烧伤”。即便将切削速度进步到10m/min(新一代机床所能达到的速度)、在加工过程中仍不会有产生热负荷的危险。在低速加工的夹紧时,会出现较大的力。这个力可能很大,表面的结构会发生压紧和残余压应力增大,而这种现象通常出现在热处理过程中。这种残余压应力增大对零件寿命有利,所以珩磨齿轮必然会进步其抗磨损性,因而珩磨齿轮的使用寿命要比用其它方法精加工的淬硬齿轮的寿命长。上述珩磨加工方法的优点可回结为:这是一种经济可行的加工方法。在考察一种工件加工工艺的经济可行性时,必须考虑到整个加工过程链。这对硬齿轮精加工来说尤其重要的,由于预精加工是极为重要的。为此,在大多数情况下需要一种良好的绿色加工方法,既要能有效进行硬齿面加工,又要热处理变形效果最小。这就要创造一种最理想的硬齿面精加工条件。除了对预加工方法实施改进之外,这种硬齿面加工方法不但切除量要大,而且要能有大的尺寸变化,这样才能可靠而廉价地切除材料。这就使人产生了一种能使珩磨的工艺上风与磨削的产量上风相结合的设想。这就导致了一种使设想变成现实的方法:直接珩磨,既工件经热处理后直接珩磨。在用直接珩磨法进行预加工时,不但获得很高的切除率,而且能经济地并以很高的重复精度达到了预期的质量要求。更快更经济地加工要求经常与进步加工重复性和质量并使机床操纵尽可能简便的要求如影随形。以前,在进行珩磨时需选用人造树脂结合氧化铝或硬质合金磨具,电镀CBN或金刚石磨具或者是复合模具对于过程控制,理论上存在双面接触、单面线接触和单面点接触几种可能性,以及有或没有工件与工件驱动同步。同时,还存在将这类策略组合在一起,促成一种优化的效果的可能。在选用磨具材料时,必须考虑采用能达到最长磨具寿命的材料。还要考虑到,易切削磨料导致修整磨具过早磨损的题目。

有一种过程控制方法能缩短珩磨时间,易于保证在整个齿面上保持理论上的线接触。因此避免了磨具与工件的点接触。尽管这可能有悖于产生较大残余压应力的要求,足够大的力依然会使之保持理论线接

触。连续改变接触条件会产生良好的动态特性,不会因摆动角度使机床部件产生严重颤振。珩磨过程中,单面线接触珩磨时这类动态特性会对机床产生严重影响。为最大限度地减小这种影响,要尽可能地采用双面线接触。系列化生产中,由此而引发的对珩磨过程中利用机床运动链实施齿面修形过程的各种限制,可予忽略。但在工装中必须建立轮廓修形。关于单面或双面接触,所涉及的或是磨具齿面,或是工件齿面。事实上,在加工过程中总有一个以上的齿在保持接触。这就表示珩齿过程是一种连续接触的转动过程。这是使齿轮低噪声运行的一项极为重要的决定性因素。

珩磨,研磨

珩磨工艺(Honing Process)是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在汽车零部件的制造中应用很广泛。珩磨加工原理珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开, 使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理。珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数, 因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹亦不会重复。此外,珩磨头每转一转,油石与前一转的切削轨迹在轴向上有一段重叠长度,使前后磨削轨迹的衔接更平滑均匀。这样,在整个珩磨过程中,孔壁和油石面的每一点相互干涉的机会差不多相等。因此,随着珩磨的进行孔表面和油石表面不断产生干涉点,不断将这些干涉点磨去并产生新的更多的干涉点,又不断磨去,使孔和油石表面接触面积不断增加,相互干涉的程度和切削作用不断减弱,孔和油石的圆度和圆柱度也不断提高,最后完成孔表面的创制过程。为了得到更好的圆柱度,在可能的情况下,珩磨中经常使零件掉头,或改变珩磨头与工件轴向的相互位置。需要说明的一点:由于珩磨油石采用金刚石和立方氮化硼等磨料,加工中油石磨损很小,即油石受工件修整量很小。因此,孔的精度在一定程度上取决于珩磨头上油石的原始精度。所以在用金刚石和立方氮化硼油石时,珩磨前要很好地修整油石,以确保孔的精度。珩磨的切削过程定压进给珩磨定压进给中进给机构以恒定的压力压向孔壁,共分三个阶段。第一个阶段是脱落切削阶段,这种定压珩磨,开始时由于孔壁粗糙,油石与孔壁接触面积很小,接触压力大,孔壁的凸出部分很快被磨去。而油石表面因接触压力大,加上切屑对油石粘结剂的磨耗,使磨粒与粘结剂的结合强度下降,因而有的磨粒在切削压力的作用下自行脱落,油石面即露出新磨粒,此即油石自锐。第二阶段是破碎切削阶段,随着珩磨的进行,孔表面越来越光,与油石接触面积越来越大,单位面积的接触压力下降,切削效率降低。同时切下的切屑小而细,这些切屑对粘结剂的磨耗也很小。因此,油石磨粒脱落很少,此时磨削不是靠新磨粒,而是由磨粒尖端切削。因而磨粒尖端负荷很大,磨粒易破裂、崩碎而形成新的切削刃。第三阶段为堵塞切削阶段,继续珩磨时油石和孔表面的接触面积越来越大,极细的切屑堆积于油石与孔壁之间不易排除,造成油石堵塞, 变得很光滑。因此油石切削能力极低, 相当于抛光。若继续珩磨,油石堵塞严重而产生粘结性堵塞时,油石完全失去切削能力并严重发热,孔的精度和表面粗糙度均会受到影响。此时应尽快结束珩磨。定量进给珩磨定量进给珩磨时,进给机构以恒定的速度扩张进给,使磨粒强制性地切入工件。因此珩磨过程只存在脱落切削和破碎切削,不可能产生堵塞切削现象。因为当油石产生堵塞切削力下降时,进给量大于实际磨削量,此时珩磨压力增高,从而使磨粒脱落、破碎,切削作用增强。用此种方法珩磨时,为了提高孔精度和表面粗糙度,最后可用不进给珩磨一定时间。定压--定量进给珩磨开始时以定压进给珩磨,当油石进入堵塞切削阶段时,转换为定量进给珩磨,以提高效率。最后可用不进给珩磨,提高孔的精度和表面粗糙度。珩磨加工特点加工精度高特别是一些中小型的通孔,其圆柱度可达0.001mm 以内。一些壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。对于大孔(孔径在200mm以上),圆度也可达0.005mm,如果没有环槽或径向孔等,直线度达到0.01mm/1m以内也是有可能的。珩磨比磨削加工精度高,因为磨削时支撑砂轮的轴承位于被珩孔之外,会产生偏差,特别是小孔加工,磨削精度更差。珩磨一般只能提高被加工件的形状精度,要想提高零件的位置精度,需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度(面板安装在冲程托架上,调整使它与旋转主轴垂直,零件靠在面板上加工即可)。表面质量好表面为交叉网纹,有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而提高了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,这样珩磨时,工件的发热

磨削加工原理

7.3.2珩磨 珩磨是磨削加工的 1 种特殊形式,属于光整加工。需要在磨削或精镗的基础上进行。珩磨加工范围比较广,特别是大批大量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套,连杆孔和液压缸筒等。 (1)珩磨原理 在一定压力下,珩磨头上的砂条(油石)与工件加工表面之间产生复杂的的相对运动,珩磨头上的磨粒起切削、刮擦和挤压作用,从加工表面上切下极薄的金属层。 (2)珩磨方法 珩磨所用的工具是由若干砂条 ( 油石 ) 组成的珩磨头,四周砂条能作径向张缩,并以一定的压力与孔表面接触,珩磨头上的砂条有 3 种运动 ( 如图 7.3 a ) ;即旋转运动、往复运动和加压力的径向运动。珩磨头与工件之间的旋转和往复运动,使砂条的磨粒在孔表面上的切削轨迹形成交叉而又不相重复的网纹。珩磨时磨条便从工件上切去极薄的一层材料,并在孔表面形成交叉而不重复的网纹切痕 ( 如图 7.3 b ), 这种交叉而不重复的网纹切痕有利于贮存润滑油,使零件表面之间易形成—层油膜,从而减少零件间的表面磨损。 (3)珩磨的特点 1)珩磨时砂条与工件孔壁的接触面积很大,磨粒的垂直负荷仅为磨削的 1/50~1/100 。此外,珩磨的切削速度较低,一般在 100m/min 以下,仅为普通磨削的 1/30~1/100 。在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却,所以工件发热少,不易烧伤,而且变形层很薄,从而可获得较高的表面质量。 2)珩磨可达较高的尺寸精度、形状精度和较低的粗糙度,珩磨能获得的孔的精度为 IT6~IT7 级,表面粗糙度 Ra 为 0.2~0.025 。由于在珩模时,表面的突出部分总是先与沙条接触而先被磨去,直至砂条与工件表面完全接触,因而珩磨能对前道工序遗留的几何形状误差进行一定程度的修正,孔的形状误差一般小于 0.005mm 。 3)珩磨头与机床主轴采用浮动联接,珩磨头工作时,由工件孔壁作导向,沿预加工孔的中心线作往复运动,故珩磨加工不能修正孔的相对位置误差,因此,珩磨前在孔精加工工序中必须安排预加工以保证其位置精度。一般镗孔后的珩磨余量为 0.05~0.08mm ,铰孔后的珩磨余量为 0.02~0.04mm ,磨孔后珩磨余量为0.01~0.02mm 。余量较大时可分粗、精两次珩磨。 4)珩磨孔的生产率高,机动时间短,珩磨 1 个孔仅需要 2~3min ,加工质量高,加工范围大,可加工铸铁件、淬火和不淬火的钢件以及青铜件等,但不宜

珩磨

珩磨技术在高精度孔系加工中的应用 一、珩磨技术的引进 珩磨技术是随着汽车的诞生和发展应运而生的。发动机是汽车的心脏,发动机中的缸孔与活塞是最重要的摩擦副,其性能优劣和工作的状态直接影响到汽车产品的质量、品味、使用寿命和人类的生存环境,所以自汽车发明以来,一直在探讨缸孔工作表面精密制造技术。 珩磨是用镶嵌在珩磨头上的油石对工件表面施加一定压力,珩磨工具或工件同时作相对旋转和轴向直线往复运动,切除工件上极小余量的精加工方法。珩磨从汽车发动机(柴油机、汽油机)的应用,到摩托车、拖拉机缸体,广泛应用于飞机零部件、导弹、坦克、枪炮、船舶、工业缝纫机、空调压缩机、液压气动、制动器、油泵油嘴、轴承、工程机械、管乐器、光纤电缆的连接口等等。 二、珩磨的工作原理 珩磨条装在珩磨头上,由珩磨机主轴带动珩磨头作旋转和往复运动,并通过其中的胀缩机构使珩磨条伸出,向孔壁施压以作径向胀开运动,实施珩磨加工。珩磨加工时,珩磨头上圆周上的珩磨条与孔壁的重叠接触点相互干涉,一方面珩磨条将孔壁上的干涉点磨去,另一方面孔壁也相应地使珩磨条上面的磨粒尖角或整个磨粒破碎或脱落,珩磨条与孔壁在珩磨过程中相互修整。再由于珩磨头在珩磨过程中,既有旋转又有往复运动,使工件孔的加工表面形成交叉的螺旋线切削轨迹。由于每一次往复行程时间内珩磨头的转数为非整数,两次行程间又错开一定位置,这样复杂的运动使珩磨条的每一磨粒在孔壁上运动的轨迹不重复。在整个珩磨过程中,孔壁与珩磨条上的每一点相互干涉的机会差不多均等。这样在孔壁和珩磨条间的不断产生新的干涉点,又不断将这些干涉点磨去,使孔壁和珩磨条的接触面积不断增加,相互干涉的作用和切削作用不断减弱,孔与珩磨条面得圆度和圆柱度不断提高,孔壁的粗糙度降低,达到尺寸要求精度后,珩磨条缩回,珩磨头推出工件孔,完成孔的珩磨。 三、珩磨加工的应用 1、珩磨加工应用方式 在发动机加工中珩磨的加工分以下几种方式:(1)缸体内孔表面形成缸孔是气体压缩燃烧和膨涨的空间,并对活塞起导向作用,缸体内孔表面是

数控珩磨加工技术研究与应用

数控珩磨加工技术研究与应用 珩磨是磨削加工的一种特殊形式,是随着汽车的诞和生发展应运而生的,在现代汽车制造业和航空航天领域有着广泛的应用。 一、珩磨技术的发展与现状随着现代工业的发展,珩磨技术在航空航天及汽车发动机领域成为发动机气缸、气缸体孔、起落架简体以及工程机械中重要的液压缸等精密零件孔加工不可或缺的工艺技术。越来越多的各种长短孔、薄壁类孔、盲孔、不均匀壁厚类孔迫切需要珩磨机床对孔进行加工,以保证其表面粗糙度、圆度及尺寸精度要求。 在珩磨技术方面,目前在发动机气缸、工程机械液压系统及飞机起落架液压系统中普遍采用珩磨加工技术,但主要采用进口高精度数控立式珩磨机床,例如,美国善能公司最新推出的高精度数控立式珩磨机床SV?2410.由于采用了计算机控制系统,它比其他机械控制系统更改的保证珩磨加工效率和加工精度要求。 国产珩磨机床近年来有了很大的进步,出现了如宁夏大河机床等优秀的珩磨设备厂商,但无论在加工精度、制造水平还是在控制技术方面,与国外相比都有较大的差距,整体 珩磨工艺技术水平较低,对珩磨加工技术的研究仍然局限于

珩磨头的制作机沙条的选材上,对珩磨的工艺参数研究几乎 是空白,根本无法满足现代航空航天和汽车工业技术要求,目前国内市场上精密高效机床几乎全部为国外品牌垄断。 二、珩磨加工工艺珩磨是磨削加工的一种特殊形式,是能使加工表面达到高精度、高表面适质量、高寿命的高效加工方式。是一种快速高效的内孔精加工工艺,应用范围十分广泛。 珩磨的定义:是用镶嵌在珩磨头上的油石(也称珩磨条) 对精加工表面进行光整加工。珩磨与孔表面的接触面积较大,加工效率较高。加工时由涨开机构将油石沿径向涨开,使其压向工件孔壁,从而产生一定的接触面积,同时珩磨头做旋转和往复运动,而零件不动,从而实现珩磨。珩磨工艺具有以下特点。 (1)珩磨的表面质量好,珩磨后表面粗糙度可达 Ra0.8-0.2,甚至更低; (2)加工精度高,圆度、圆柱度可达0.5卩m;轴线直线度可达i p, m ; ( 3)交叉网纹有利于贮油润滑,实现平顶珩磨,可获得较好的相对运动摩擦,获得较理想的表面质量,同时改变了内孔的表面结构组织,形成了具有很好的润滑效果润滑油膜表面; (4)珩磨主要用于孔加工,是以原底孔中心为导向, 加工孔径范围为5-500mm ,深径比可达10,甚至更大; (5)珩磨与研磨相比,珩磨具有可减轻工人体力劳动、生产率高、易实现自动化等特点。

珩磨加工参数设定参考资料

珩磨加工参数设定参考资料 一、珩磨机相关技术规格: 1.2MK228A/1 2.2MK225/1

3.加工参数 1) P1:对刀点。单位:mm 2)P2:工进量。单位:㎜。顶杆的移动量。最小设定值0.001㎜。 3)P3:工进速度。单位:㎜/min(毫米/每分钟)。此值可在0~2㎜/ min之间连续设定。 4)P4:刀具磨损补偿量。单位:㎜。根据刀具的磨损值设定此参数,并于P6和P7配合使用。 5)P6:补偿次数。单位:次。根据加工多少件补偿一次设定此值。设定为0,表示不补偿;设定为1.则每加工一件补偿一次;设定为2,表示第一件不补偿,第二件补偿;以此类推。6)P7:有无补偿。若设定为0,表示没有补偿;若设定其他值,则表示有补偿。 7)精珩时间:单位:S(秒)。精珩时间最长可设定为99秒。 二、珩磨前的准备工作: 1.工装调整: 1)选择适用的珩磨杆、瓦,将其装在主轴上面。 2)将定位盘装在工装上面。 3)根据产品的顶深调整珩磨深度。 2.产品分类要求:(采用分组珩磨的方法) 1)磨后成品尺寸要求¢D 0/+0.03的内孔分组要求: 珩磨前把镀后内孔尺寸进行分组,0.01㎜为一组,即¢D-0.01~0、0~+0.01、+0.01~+0.02三组,尺寸在-0.01~-0.02㎜的检出,单独设定珩磨参数加工。尺寸大于+0.02㎜的退电镀返镀。 2)磨后成品尺寸要求¢D 0/+0.025的内孔分组要求: 珩磨前把镀后内孔进行分组,即¢D-0.01~0、0~+0.015两组,尺寸在-0.01~-0.02㎜的检出,单独设定珩磨参数加工。尺寸大于+0.015㎜的退电镀返镀。 3)将内孔返镀产品与内孔第一次电镀产品区分,上述分组要求是针对内孔第一次电镀的产品。为避免内孔珩磨不光,返镀(内孔粗糙)的产品直径尺寸应控制在¢D -0.03/0,这类产品检出后单独设定珩磨参数加工。 三、加工参数的设定:(以缸径¢40为例) 1.对刀点的设定:(分组对刀) 1)珩磨杆、瓦装好后,将工作台落下,将缸体内孔套在珩磨瓦上,点动膨胀键。 2)在点动膨胀键的过程中,要边点动膨胀键,边用手旋转缸体,直至到缸体刚好转不动为止。此时,记录下X轴的位置即为对刀点。

珩磨工艺原理

珩磨工艺原理 Prepared on 22 November 2020

珩磨工艺原理 一、珩磨工艺原理 珩磨是磨削加工的特殊形式,又是精加工中一种高效加工方法。这种工艺不仅能往除较大的加工余量(在50年代珩磨还是作为抛光用),而且是一种高精密零件尺寸、几何外形精度和表面粗糙度的有效加工方法。 (一)珩磨加工的特点: 1.加工精度高: 特别是一些中小型的光通孔,其圆柱度可达以内。一些壁厚不均匀的零件,如连杆,其圆度能达。对于大孔(孔径在200mm以内),圆度也可达,假如没有环槽或径向孔等,直线度在以内也是有可能的。珩磨比磨削加工精度高,磨削时支撑砂轮的轴承位于被珩孔之外,会产生偏差,特别是小孔加工,磨削比珩磨精度更差。珩磨一般只能改变被加工件的外形精度,要想改变零件的位置精度,需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度(面板安装在冲程臂上,调它与旋转主轴垂直,零件靠在面板上加工即可)。 表面为交叉网纹,有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而进步了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的均匀磨削压力小,这样工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。珩磨加工面几乎无嵌砂和挤压硬质层。磨削比珩磨切削压力大,磨具和工件是线接触,有较高的相对速度。因而会在局部区域产生高温,会导致零件表面结构的永久性破坏。 主要加工各种圆柱形孔:光通孔。轴向和径向有中断的孔,如有径向孔或槽的孔、键槽孔、花键孔。盲孔。多台阶孔等。另外,用专用珩磨头,还可加工圆锥孔,椭圆孔等,但由于珩磨头结构复杂,一般不用。用外圆珩磨工具可以珩磨圆柱体,但其往除的余量远远小于内圆珩磨的余量。几乎可以加工任何材料,特别是金刚石和立方氮化硼磨料的应用。同时也进步了珩磨加工的效率。 (二)珩磨加工原理: 1.珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开,使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。 2.大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理 珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数,因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹不会重复。此外,珩磨头每转一转,油石

珩磨加工问题

发动机缸孔珩磨几何形状的控制 作者:王成伟文章来源:长城汽车股份有限公司技术中心,河北省汽车工程技术研究中心 缸孔珩磨几何形状加工不良和缸盖装配后的气缸孔变形是影响活塞漏气量大和发动机烧机油的重要因素.本文通过常规缺陷预防,增加在线形状修正珩磨和增加模拟压板珩磨工艺等控制方式,使其缸孔几何形状品质有了很好的提升和改善. 缸孔珩磨几何形状加工不良和缸盖装配后的气缸孔变形是影响活塞漏气量大和发动机烧机油的重要因素。本文通过常规缺陷预防、增加在线形状修正珩磨和增加模拟压板珩磨工艺等控制方式,使其缸孔几何形状品质有了很好的提升和改善。 气缸体是联接发动机的曲柄连杆机构、配气机构以及供油、润滑和冷却等机构的核心基础部件。而缸孔是气缸体的关键部位,尤其缸孔珩磨后的加工质量水平直接影响到发动机整机的经济性和动力性,也是决定排放性能能否达标的关键之一。气缸孔珩磨几何形状加工不良和缸盖装配后的气缸孔变形是影响活塞漏气量大、发动机烧机油的重要因素,也是进一步提高发动机产品品质的难点。 缸孔珩磨几何形状过程控制 珩磨作为气缸孔加工中的最后一道关键工序,是提高缸孔尺寸精度、几何形状精度和表面粗糙度的一种必要的磨削工艺。珩磨是利用工件不动,通过涨开机构将珩磨头上的油石径向涨开,压向孔壁,采用液压或伺服驱动装置使珩磨头旋转和往复运动来修正缸孔,来提高精度。

在日常生产过程中,缸孔的几何形状精度超差是缸孔生产中的常见缺陷之一,是影响生产线产品质量控制、生产效率的重要原因之一。通常的解决方式为:现场工程师根据工件的测量报告,分析几何形状的异常现象,继而对珩磨设备进行相应的检查和人工调整,尤其是加工参数的调整,完全依靠人工调试积累的经验或反复的测量、调整尝试,直到满足产品图样要求为止。同时我们也知道,缸孔的形状测量一般采用精密测量间的圆柱度仪进行检测,检测的时间比较长,一般为2~3h(包括清洗、恒温和测量时间),严重影响生产效率。为了最大限度地预防和减少生产线的停线时间,及时保证和恢复生产,我们对新旧设备都采取了相应的解决方法。 1.旧珩磨设备应对控制方法——缺陷矩阵表 现有生产线的珩磨设备因使用年限较久,软件系统版本比较低,很难通过软件升级实现在线缸孔几何形状自动修正功能。通过吸取珩磨厂家的经验和我司自身珩磨过程缺陷调整的案例经验,按照收集、整理以及归纳的方式,总结了一套关于珩磨设备缺陷应对的缺陷矩阵表,如表1所示。 2.新购设备应对控制方法——在线自动修正珩磨 我们知道,在缸孔珩磨工艺过程中,容易产生缸孔圆柱度缺陷的主要有三种类型共5种形式,如图1所示。 影响珩磨几何形状的参数主要有3个:孔的长度、砂条的长度和砂条的伸出长度(砂条在珩磨时伸出孔外的长度)。孔的长度由产品设计确定,砂条的长度根据珩磨厂商的经验,一般在通孔加工中应为孔长的2/3。受工件本身的特性及刀具设计的限制,该长度一旦确定则在后面的生产中也需要保持固定不变。

珩磨工艺原理简介及盲孔珩磨技巧

珩磨工艺原理简介及盲孔加工技巧 上海善能机械有限公司熊元一郭建忠侯军丽李贵贤 Abstract: Honing process has been widely used both at home and abroad. In order to increase the awareness of honing process, the paper mainly explains what the honing process is and what benefits the honing process will bring to us. In particular, the paper also introduces the honing techniques of blind holes, which will greatly help those who have been encountered with the problems in honing blind holes. 一、珩磨工艺简介 珩磨工艺是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法。 珩磨是一种以被加工面作为导向定位面,在一定进给压力下,通过工具(油石)和零件的相对运动去除余量,其切削轨迹为交叉网纹的高效、精密加工工艺。 1.珩磨加工特点:

1.1加工精度高:特别是一些中小型的通孔,其圆柱度可达0.001mm 以 内。一些壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。对于大孔(孔径在200mm以上),圆度也可达0.005mm, 如果没有环槽或径向孔等,直线度达到0.01mm/1m 以内也是有可能的。珩磨比磨削加工精度高, 磨削时支撑砂轮的轴承位于被珩孔之外, 会产生偏差, 特别是小孔加工, 磨削比珩磨精度更差。珩磨一般只能提高被加工件的形状精度, 要想提高零件的位置精度, 需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度(面板安装在冲程托架上, 调整使它与旋转主轴垂直, 零件靠在面板上加工即可)。 1.2表面质量好:表面为交叉网纹,有利于润滑油的存储及油膜的保持。 有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而提高了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,这样珩磨时,工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。珩磨加工面几乎无嵌砂和挤压硬质层。磨削比珩磨切削压力大, 磨具和工件是线接触, 有较高的相对速度。因而会在局部区域产生高温, 会导致零件表面结构的永久性破坏。 1.3加工范围广:主要加工各种圆柱形孔:通孔,轴向和径向有间断的孔,

珩磨机加工参数

黑龙江红星集团服份有限公司孙美玲赵宏德 摘要:气缸体缸孔珩磨加工质量严重影响着发动机的性能指标,其参数选择致关重要。本文在简述珩磨加工原理及珩磨油石的修整方法后,着重叙述了珩磨工艺参数的选择与调整。珩磨工艺参数包括:切削速度、切削交叉角、珩磨油石工作压力、工作行程等参数。 关键词:珩磨,珩磨油石,扩张,修整,油石,光整加工 1 、引言 在珩磨加工中,珩磨工艺参数的选择对加工孔的精度、表面粗糙度、加工效率以及珩磨油石的使用寿命等都有很大的影响。 2 、珩磨工作原理 珩磨加工是采用三块平板互研的原理加工出精密的表面。在磨削中,把珩磨油石切削面和被加工零件表面看做平板互相修整的过程。 3 、珩磨油石的修整 由于珩磨油石、油石座及磨头体等的制造误差,装配后珩磨头的珩磨油石不可能形成一个归整间断的圆柱面,保证珩磨油石与被加工面都接触良好。虽然在珩磨过程中,珩磨油石可以和工件相互修整,但工件留磨量都较小,所以在最初珩磨过程中就不可能得到充分的修整。尤其是超硬磨料的珩磨油石,由于其本身耐磨,就更不能得到充分的修整。因而在加工中就不可能得到理想的加工表面,精度也无法保证。因此在使用新珩磨油石时,在加工之前必须对珩磨油石进行修理(也称为归圆)。 普通珩磨油石的修整,是直接把珩磨油石装在所使用的磨头上,拿到外圆磨床上归圆,这是最理想的。但由于有些磨头本身的结构等其他方面原因,需采用专用夹具在外圆磨床上用砂轮修整其外径。如珩磨工件的精度要求较低,珩磨头为浮动联结,也可以利用废活或加工余量大的工件孔,在所使用的珩磨机床上直接校正归圆。 超硬珩磨油石的修整,可在外圆磨床上用炭化硅砂轮进行修整。砂轮转速为18-25m/s,磨头转速为1-3m /min,进刀深度一般磨修用0.02—0.04mm/行程,精修为0.01mm/行程。同时需要大量冷却液浇入。

珩磨加工的特点

珩磨加工的5个技术特点 大足同进 1)加工精度高 珩磨可达较高的尺寸精度、形状精度和较低的粗糙度,珩磨能获得的孔的精度为 IT6~IT7 级,表面粗糙度 Ra 为 0.2~0.025um。孔的圆度和圆柱度误差可控制在3~5um的范围之内。由于在珩磨时,表面的突出部分总是先与砂条接触而先被磨去,直至砂条与工件表面完全接触,因而珩磨能对前道工序遗留的几何形状误差进行一定程度的修正,孔的形状误差一般小于 0.005mm。一般中小型的通孔,圆柱度可达 0.001mm 以内。壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。大孔(孔径>200mm),圆度也可达 0.005mm。如没有环槽或径向孔等,直线度达到0.01mm/1m以内也是有可能的。珩磨比磨削加工精度高,因为磨削时支撑砂轮的轴承位于被珩孔之外,会产生偏差,特别是小孔加工,磨削精度更差。珩磨一般只能提高被加工件的形状精度,要想提高零件的位置精度,需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度(面板安装在冲程托架上,调整使它与旋转主轴垂直,零件靠在面板上加工即可)。 2)表面质量好 表面为交叉网纹,有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而提高了产品的使用寿命。珩磨速度低,一般在 100m/min 以下,仅为普通磨削的 1/3~1/100 ,且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,磨粒的垂直负荷仅为磨削的 1/50~1/100,这样珩磨时,工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。珩磨加工面几乎无嵌砂和挤压硬质层。在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却,所以工件发热少,不易烧伤,而且变形层很薄,从而可获得较高的表面质量。一般通过珩磨能获得较高的表面质量,表面粗糙度Ra为0.2~0.025um,表层金属的变质缺陷层深度极微(2.5~25um)。 3)加工范围广 主要加工各种圆柱形孔:通孔、轴向和径向有间断的孔,如有径向孔或槽的孔、键槽孔、花键孔、盲孔、多台阶孔等。另外,用专用珩磨头,还可加工圆锥孔、椭圆孔等,但由于珩磨头结构复杂,一般不用。用外圆珩磨工具可以珩磨圆柱体,但其去除的余量远远小于内圆珩磨的余量。珩磨几乎可以加工任何材料,特别是金刚石和立方氮化硼磨料的应用,进一步拓展了珩磨的运用领域,同时也大大提高了珩磨加工的效率。 珩磨孔的生产率高,机动时间短,珩磨 1 个孔仅需要 2~3min ,加工质量高,加工范围大,可加工铸铁件、淬火和不淬火的钢件以及青铜件等,加工的孔径为15~500mm ,孔的深径比可达 10 以上的深孔。但珩磨不适用于加工塑性较大的有色金属工件上的孔。 4)切削余量少 珩磨加工是所有加工方法中去除余量最少的一种加工方法。在珩磨加工中,珩磨头与机床主轴采用浮动联接,珩磨头工作时,由工件孔壁作导向,沿预加工孔的中心线作往复运动,故珩磨加工不能修正孔的相对位置误差,因此,珩磨前在孔精加工工序中必须安排预加工以保证其位置精度。 珩磨工具是以工件作为导向来切除工件多余的余量而达到工件所需的精度。珩磨时,珩磨工具先珩工件中需去余量最大的地方,然后逐渐珩至需去除余量最少的地方。一般:镗孔后的珩磨余量为0.05~0.08mm,铰孔后的珩磨余量为0.02~0.04mm,磨孔后珩磨余量为0.01~0.02mm 。余量较大时可分粗、精两次珩磨。 5)纠孔能力强

珩磨工艺原理

珩磨工艺原理 一、珩磨工艺原理 珩磨是磨削加工的特殊形式,又是精加工中一种高效加工方法。这种工艺不仅能往除较大的加工余量(在50年代珩磨还是作为抛光用),而且是一种高精密零件尺寸、几何外形精度和表面粗糙度的有效加工方法。 (一)珩磨加工的特点: 1.加工精度高: 特别是一些中小型的光通孔,其圆柱度可达0.001mm 以内。一些壁厚不均匀的零件,如连杆,其圆度能达0.002mm。对于大孔(孔径在200mm以内),圆度也可达0.005mm,假如没有环槽或径向孔等,直线度在0.01mm 以内也是有可能的。珩磨比磨削加工精度高,磨削时支撑砂轮的轴承位于被珩孔之外,会产生偏差,特别是小孔加工,磨削比珩磨精度更差。珩磨一般只能改变被加工件的外形精度,要想改变零件的位置精度,需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度(面板安装在冲程臂上,调它与旋转主轴垂直,零件靠在面板上加工即可)。 2. 表面质量好: 表面为交叉网纹,有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而进步了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的均匀磨削压力小,这样工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。珩磨加工面几乎无嵌砂和挤压硬质层。磨削比珩磨切削压力大,磨具和工件是线接触,有较高的相对速度。因而会在局部区域产生高温,会导致零件表面结构的永久性破坏。 3. 加工范围广: 主要加工各种圆柱形孔:光通孔。轴向和径向有中断的孔,如有径向孔或槽的孔、键槽孔、花键孔。盲孔。多台阶孔等。另外,用专用珩磨头,还可加工圆锥孔,椭圆孔等,但由于珩磨头结构复杂,一般不用。用外圆珩磨工具可以珩磨圆柱体,但其往除的余量远远小于内圆珩磨的余量。几乎可以加工任何材料,特别是金刚石和立方氮化硼磨料的应用。同时也进步了珩磨加工的效率。 (二)珩磨加工原理: 1. 珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开,使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动; 或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。 2. 大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理 珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数,因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹不会重复。此外,珩磨头每转一转,油石

珩磨简介

珩磨简介 珩磨工艺(Honing Process)是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法,属于光整加工,需要在磨削或精镗的基础上进行。这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法。珩磨加工范围比较广,特别是在大批量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套,连杆孔和液压缸筒等。 珩磨加工原理 珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(分旋转式和推进式两种)将油石沿径向涨开, 使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。 在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理。 珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数,因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹亦不会重复。此外,珩磨头每转一转,油石与前一转的切削轨迹在轴向上有一段重叠度,使前后磨削轨迹的衔接更平滑均匀。在整个珩磨过程中,孔壁和油石面的每一点相互干涉的机会差不多相等。因此,随着珩磨的进行孔表面和油石表面不断产生干涉点,不断将这些干涉点磨去并产生新的更多的干涉点,又不断磨去,使孔和油石表面接触面积不断增加,相互干涉的程度和切削作用不断减弱,孔和油石的圆度和圆柱度也不断提高,最后完成孔表面的创制过程。为了得到更好的圆柱度,在可能的情况下,珩磨中经常使零件掉头,或改变珩磨头与工件轴向的相互位置。 需要说明的一点:由于珩磨油石采用金刚石和立方氮化硼等磨料,加工中油石磨损很小,即油石受工件修整量很小。因此,孔的精度在一定程度上取决于珩磨头上油石的原始精度。所以在用金刚石和立方氮化硼油石时,珩磨前要很好地修整油石,以确保孔的精度。 (1)珩磨方法 珩磨所用的工具是由若干砂条 ( 油石 ) 组成的珩磨头,四周砂条能作径向张缩,并以一定的压力与孔表面接触,珩磨头上的砂条有 3 种运动 ( 如图 7.3 a ) ;即旋转运动、往复运动和加压力的径向运动。珩磨头与工件之间的旋转和往复运动,使砂条的磨粒在孔表面上的切削轨迹形成交叉而又不相重复的网纹。珩磨时磨条便从工件上切去极薄的一层材料,并在孔表面形成交叉而不重复的网纹切痕 ( 如图 7.3 b ), 这种交叉而不重复的网纹切痕有利于贮存润滑油,使零件表面之间易形成—层油膜,从而减少零件间的表面磨损。为使砂

一种新型的珩磨技术——刷珩磨

一种新型的珩磨技术——刷珩磨 本世纪初JosephSunnen首先预示了现代珩磨工艺将成为一种表面精加工技术。随着珩磨技术的发展,珩磨已成为一种材料切除工艺,用来修整不合适的孔。但是在低速下使用油石珩磨内孔不能有效地切除材料。珩磨油石作为一种表面精加工工具实际上对金属表面都会产生损伤,而刷珩磨可以在不引起表面损伤的情况下提高表面精度。 一、早期的珩磨 早期的珩磨只是为了解决汽车工业中汽缸孔的加工问题。早期的镗孔工具及加工机床加工出的汽缸壁表面存在搓板现象。汽缸壁表面与活塞环之间的密封性不好,活塞环得不到合适的润滑,这样会很快地磨损引擎的第一组环。 最后在很短的时间内就必须更换活塞环。粗镗出来的汽缸壁会使活塞裙磨损严重,因此需要修整加工。活塞环中的金属杂质也会引起损伤。随着活塞在缸孔内的往复运动,活塞环磨除了汽缸壁上不规则的的细微凸出点。 这些切除下来的金属微粒污染了润滑系统,堵塞了过滤器,并引起汽缸壁垂直方向的划伤。杂质也会划伤活塞裙。划伤的第二个原因是不良的润滑。由于细微的凸出点在它们被磨平之前,其中较高的凸出点把涂在汽缸壁上的 润滑膜刺破了(如图1)。当活塞在整个行程中碰到这些凸出点时就出现了金属与金属之间的接触,活塞环的速度达到最低点。 活塞环的使用寿命短,活塞裙的划伤及缸孔的磨损都是由于活塞在粗糙的缸孔内往复运行所造成的,也是不可避免的,从而导致发动机耗油多,效率低。即便如此,早期的小汽车也不得不使用这种发动机。 图1 汽缸壁表面的凸出点刺破了润滑油膜,导致活塞环通过该点时出现金属与金属间的接触在Sunnen的珩磨工艺之前,汽车制造商加工汽缸壁表面所使用的唯一的方法就是Winton汽车公司的加工方法。它适合于小孔的加工。为了除去内孔表面凹凸不平之处,采用使钢球从小孔中通过的方法,而钢球的直径比汽缸孔的直径大0.05mm到0.076mm。当钢球从孔中通过时从而挤平缸孔的内表面。 这种工艺今天我们称之为滚珠法,并且除了缸孔加工外这种工艺现在仍然在使用着。但是在早期的汽车制造业中滚珠法不适用,因为早期的缸孔直径前后不一样大,挤压时会产生过多的接触压力,有时压力太大使缸孔壁出现裂纹。另外被钢球挤碎的细物会被压入缸孔内表面,使缸壁受损。 当Sunnen提出了另一个更有效的加工方法时,汽车制造工业完全接受了它。Sunnen的新珩磨工艺就是将油石组装到珩磨头上进行珩磨。珩磨头在缸孔内旋转,同时用手来控制珩磨头的往复运动。

绗磨工艺介绍

珩磨工艺及其在汽车零部件制造中的应用 发布时间:01-12阅读:1758 珩磨工艺(Honing Process)是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在汽车零部件的制造中应用很广泛。 珩磨加工原理 珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开, 使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。 在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理。 时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数, 因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹亦不会重复。此外,珩磨头每转一转,油石与前一转的切削轨迹在轴向上有一段重叠长度,使前后磨削轨迹的衔接更平滑均匀。这样,在整个珩磨过程中,孔壁和油石面的每一点相互干涉的机会差不多相等。因此,随着珩磨的进行孔表面和油石表面不断产生干涉点,不断将这些干涉点磨去并产生新的更多的干涉点,又不断磨去,使孔和油石表面接触面积不断增加,相互干涉的程度和切削作用不断减弱,孔和油石的圆度和圆柱度也不断提高,最后完成孔表面的创制过程。为了得到更好的圆柱度,在可能的情况下,珩磨中经常使零件掉头,或改变珩磨头与工件轴向的相互位置。 需要说明的一点:由于珩磨油石采用金刚石和立方氮化硼等磨料,加工中油石磨损很小,即油石受工件 修整量很小。因此,孔的精度在一定程度上取决于珩磨头上油石的原始精度。所以在用金刚石和立方氮化硼油石时,珩磨前要很好地修整油石,以确保孔的精度。 珩磨的切削过程 定压进给珩磨 定压进给中进给机构以恒定的压力压向孔壁,共分三个阶段。 第一个阶段是脱落切削阶段,这种定压珩磨,开始时由于孔壁粗糙,油石与孔壁接触面积很小,接触压力大,孔壁的凸出部分很快被磨去。而油石表面因接触压力大,加上切屑对油石粘结剂的磨耗,使磨粒与粘结剂的结合强度下降,因而有的磨粒在切削压力的作用下自行脱落,油石面即露出新磨粒,此即油石自锐。 第二阶段是破碎切削阶段,随着珩磨的进行,孔表面越来越光,与油石接触面积越来越大,单位面积的接触压力下降,切削效率降低。同时切下的切屑小而细,这些切屑对粘结剂的磨耗也很小。因此,油石磨粒脱落很少,此时磨削不是靠新磨粒,而是由磨粒尖端切削。因而磨粒尖端负荷很大,磨粒易破裂、崩碎而形成新的切削刃。

相关主题