搜档网
当前位置:搜档网 › Nickel-cobalt coated reduced graphene oxide electrode for nonenzymatic glucose biosensing

Nickel-cobalt coated reduced graphene oxide electrode for nonenzymatic glucose biosensing

Nickel-cobalt coated reduced graphene oxide electrode for nonenzymatic glucose biosensing
Nickel-cobalt coated reduced graphene oxide electrode for nonenzymatic glucose biosensing

Electrochimica Acta 114 (2013) 484–493

Contents lists available at ScienceDirect

Electrochimica

Acta

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c t

a

Nickel-cobalt nanostructures coated reduced graphene oxide nanocomposite electrode for nonenzymatic glucose biosensing

Li Wang a ,Xingping Lu a ,Yinjian Ye a ,Lanlan Sun b ,Yonghai Song a ,?

a

Key Laboratory of Functional Small Organic Molecule,Ministry of Education,College of Chemistry and Chemical Engineering,Jiangxi Normal University,Nanchang 330022,People’s Republic of China b

State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,3888East Nan-Hu Road,Changchun 130033,People’s Republic of China

a r t i c l e

i n f o

Article history:

Received 24July 2013

Received in revised form 11October 2013Accepted 15October 2013

Available online 29 October 2013

Keywords:

Nickel-cobalt nanostructures Reduced graphene oxide Electrodeposition

Electrocatalytic oxidation Glucose

a b s t r a c t

Nickel-cobalt nanostructures (Ni-Co NSs)electrodeposited on reduced graphene oxide (RGO)-modi?ed glassy carbon electrode (GCE)was prepared and used for highly sensitive glucose detection.RGO nanosheets were ?rstly assembled onto GCE surface by ?–?interaction and then Ni-Co NSs were con-structed on RGO/GCE by dynamic potential scan.The electrochemical and electrocatalytic behaviors of the Ni-Co NSs/RGO/GCE toward glucose oxidation were evaluated by cyclic voltammograms,chronoam-perometry and amperometric method.The effects of some factors related to the fabrication of Ni-Co NSs/RGO/GCE,such as potential scan number and the molar ratio of Ni 2+/Co 2+in a solution,on the cat-alytic performance of the Ni-Co NSs/RGO/GCE were also explored.The results showed that the Ni-Co NSs/RGO/GCE exhibited the best catalytic activity at the potential scan number of 20and the Ni 2+/Co 2+molar ratio of 1:1.The glucose concentration in the range of 10?M to 2.65mM linearly depended on the catalytic current (r =0.9967,n =17).The sensitivity was 1773.61?A cm ?2mM ?1,and the detection limit was 3.79?M (S/N =3).This high catalytic activity,good sensitivity and stability of the Ni-Co NSs/RGO/GCE sensor opened up a new kind of hybrid materials in electrochemical detection of glucose.

? 2013 Elsevier Ltd. All rights reserved.

1.Introduction

Glucose is one of the indispensable substances for life activities,and it can be ingested directly in the metabolic process to provide energy so as to maintain the normal life activities.Glucose is exten-sively distributed in blood of being living [1],and the increase of glucose in blood could cause diabetes mellitus.The diabetes mel-litus has become one of the major health af?ictions worldwide [2].Therefore,quantitative determination of glucose concentration both in blood and in other sources such as foods and pharmaceut-icals is very important in biological and clinical analysis [3–5].By now,glucose biosensors based on electrochemical enzymatic reac-tion or nonenzymatic sensors have attracted most of attentions.Although there have been already tremendous bene?ts from the use of those enzymatic sensors,several disadvantages still remain,such as high cost of enzymes,poor reproducibility and insuf?cient long-term stability.On the contrary,the nonenzymatic glucose sen-sors which can overcome these problems have become one of the most appealing approaches for the determination of glucose.

?Corresponding author.Tel.:+8679188120862;fax:+8679188120862.

E-mail addresses:yhsonggroup@https://www.sodocs.net/doc/3511559822.html, ,yhsong@https://www.sodocs.net/doc/3511559822.html, (Y.Song).

Various low-cost metal or metal oxide nanostructures (NSs)materials,including CuO [6],Cu [7],Co 3O 4[8],NiO [9],etc.,are widely used in nonenzymatic glucose sensor.Among these mate-rials,nickel oxides or cobalt oxides NSs are particularly popular owing to their large speci?c surface areas,excellent conductivities and catalytic activities.Recently,Zhu et al.[10]have reported a sta-ble and sensitive nonenzymatic glucose sensor based on a NiO/RGO modi?ed glassy carbon electrode (GCE).Yuan et al.[11]reported a NiO/GO modi?ed GCE for nonenzymatic glucose sensing.Lee et al.[12]presented the fabrication of a nonenzymatic glucose sensor based on CoOOH nanosheets directly grown on cobalt substrate.Wang et al.[13]reported the application of a novel graphene-Co 3O 4hybrid needle-like electrode for nonenzymatic glucose detection with high sensitivity.Another alternative is bimetallic crystal nano-materials,which are also drawing much attention because of their better catalytic activities and anti-interference ability for glucose detection than their corresponding monometallic coun-terparts due to the coordination effect of two metallic materials.It was recently reported that Cu-Co alloy dendrite-based glucose and hydrogen peroxide sensors exhibited high sensitivity [14].The carbon electrode-supported bimetallic Au-Ag alloy nanopar-ticles (NPs)were found effective for glucose oxidation [15].Pt-Ni NP-graphene nanocomposites were used for highly sensitive glu-cose detection [16].Pt-Ni nanowire arrays were also proposed

0013-4686/$–see front matter ? 2013 Elsevier Ltd. All rights reserved.https://www.sodocs.net/doc/3511559822.html,/10.1016/j.electacta.2013.10.125

L.Wang et al./Electrochimica Acta114 (2013) 484–493485 for nonenzymatic glucose detection with good reproducibility and

high stability[17].The previous results indicate that the design

and preparation of modi?ed electrode with bimetallic crystal nano-

materials is important in achieving high activity and sensitivity

for glucose detection.Ni-Co alloys have been used as important

engineering materials not only due to their low-cost and high elec-

trocatalytic activity,but also due to that the doping of Ni in Co

crystal improves the mechanical[18],chemical[19],electrochem-

ical properties[20],and structural stability[21].The Ni-Co alloys

modi?ed electrode has been used for methanol oxidation[22]and

urea oxidation[23,24].

Graphene,a single layer of carbon atoms in a closely packed

honeycomb two-dimensional lattice,is emerging as a new type

of functional supporting nanomaterials because of its excellent

physical and chemical properties[25–27].The unique properties of

graphene,e.g.remarkable surface area,excellent conductivity and

wide electrochemical window,have led it to be an ideal material in

the?eld of electrochemical sensors[28,29].

In this work,Ni-Co NSs constructed on RGO nanosheets mod-

i?ed GCE as nonenzymatic glucose sensor was proposed for the

?rst time.The parameters affecting the preparation process such

as the potential scan number and the molar ratio of Ni2+/Co2+

were optimized.The electrochemical and electrocatalytic behav-

iors of the Ni-Co NSs/RGO/GCE toward the oxidation of glucose

were evaluated by cyclic voltammograms,chronoamperometry

and amperometric method.The electron transfer rate constant,the

analytical parameters(such as linear range,detection limit and sen-

sitivity)and the kinetic parameters(such as the diffusion coef?cient

and the catalytic rate constant)of the Ni-Co NSs/RGO/GCE were

explored.

2.Experimental

2.1.Chemicals and reagents

Graphite powder,fructose,d-galactose,uric acid(UA)and l-

ascorbic acid(AA),CoCl2·6H2O and NiCl2·6H2O were purchased

from Sinopharm Group Chemical Reagent Co.,Ltd(Shanghai,

China).Glucose was obtained from the Tianjin Fuchen Chemical

Reagent Factory(Tianjin,China).Other reagents were purchased

from Shanghai Experimental Reagent Co.,Ltd(Shanghai,China).All

reagents were of analytical grade and used without further puri?-

cation.All solutions were prepared with ultra-pure water,puri?ed

by a Millipore-Q system(18.2M cm?1).

2.2.Synthesis of RGO

RGO was prepared by reduction of graphene oxide(GO)via

hydrazine.The GO was synthesized from graphite powder based on a modi?ed Hummers method[30].The preparation of RGO from GO is carried out as follows:at?rst,a stable dispersion of GO was achieved by ultrasonicating0.1mg GO in50mL H2O for 1h(1000W,20%amplitude).Then,0.1mL of hydrazine solution (50wt%)was added into the above supernatant.After being vigor-ously shaken or stirred for5min,the mixture was stirred for1h at 95?C.Finally,the stable black dispersion was centrifuged,?ltered, washed,and dried under vacuum at80?C to obtain RGO.

2.3.Preparation of Ni-Co NSs/RGO/GCE

The GCE of3.0mm in diameter was polished carefully with 1.0,0.3and0.05?m alumina powder on felt pads,and then ultrasonically cleaned in water.To obtain the RGO modi?ed GCE, 10?L0.01mg mL?1suspension of RGO was transferred onto a polished GCE surface,and then the solvent was evaporated in air.RGO nanosheets were assembled onto GCE surface through

?–?electronic interactions as previously reported[31].Next,the RGO/GCE was immersed in a mixed solution of0.1M KCl+0.005M NiCl2+0.005M CoCl2[23]and a cyclic scan in the potential range from?0.05V to?1.05V[22]was performed to electrochemically deposit Ni-Co NSs onto the RGO/GCE surface.In a control exper-iment,Ni-Co NSs/GCE without RGO was prepared by the similar procedure as described above.

2.4.Instrumentations

X-ray powder diffraction(XRD)data were collected on a D/Max2500V/PC X-ray powder diffractometer using Cu K?radi-ation( =0.154056nm,40kV,200mA).The scanning electron microscopy(SEM)image was taken using a XL30ESEM-FEG SEM at an accelerating voltage of20kV equipped with a Phoenix energy dispersive X-ray analyzer.The samples for SEM observation were prepared by electrodepositing on GCE,followed by drying at room temperature.The chemical compositions of the synthesized Ni-Co NSs were determined by energy dispersive X-ray(EDX)using a HITACHI S-3400N attached to the SEM.

All electrochemical measurements were performed on a CHI 430a electrochemical workstation(Shanghai,China)at the room temperature.A conventional three-electrode system was adopted including a bare or modi?ed GCE as working electrode,a saturated calomel electrode(SCE)as reference electrode and a platinum wire as auxiliary electrode.The cyclic voltammetric experiments were performed in a quiescent solution.The amperometric experiments were carried out under a continuous stirring.0.1M NaOH was cho-sen as the supporting electrolyte solution and purged with high purity nitrogen for15min prior to each measurement and then a nitrogen atmosphere was kept over the solution during measure-ments.

3.Results and discussion

3.1.Electrodeposition of Ni-Co NSs on RGO/GCE

Cyclic voltammograms(CVs)was utilized to deposit Ni-Co NSs on the RGO/GCE.Fig.1showed the CVs of the RGO/GCE scanned in potential range from?0.05V to?1.05V.There was a large cathodic peak at?0.85V which resulted from the reduction of Ni2+and Co2+ on the RGO/GCE surface to form Ni-Co NSs[22,32].Two anodic peaks at?0.49V and?0.17V were related to the oxidation of the produced Ni-Co NSs[23].With the increasing of the number of scan cycle,the current of cathodic peak gradually decreased,and the peak potential positively shifted as indicated by the black arrow in Fig.1.The current decrease of cathodic peak with increasing I

A

E vs SCE/V

Fig.1.CVs of RGO/GCE in0.1M KCl+0.005M NiCl2+0.005M CoCl2at50mV s?1.

486L.Wang et al./Electrochimica Acta114 (2013) 484–493

cycle number indicated that Ni2+and Co2+have been reduced and deposited on the surface of RGO/GCE slowly.

3.2.Characteristics of the as-prepared Ni-Co NSs/RGO/GCE

Fig.2A showed the SEM image of Ni-Co NSs/RGO/GCE obtained at the potential cycle number of20,which clearly indicated that the Ni-Co NSs formed uniform?ower-like NSs with average diameter of300nm on RGO/GCE.While only some bulks of Ni-Co NSs formed on the GCE surface without RGO(Fig.2B).The result indicated that the RGO played an important role in the formation of?ower-like Ni-Co NSs.The RGO provided a large surface area to direct the for-mation of uniform?ower-like Ni-Co NSs.EDX was used to study the composition of the Ni-Co NSs/RGO/GCE(Fig.2C).It revealed the peaks corresponding to Ni,Co,C,O,K and Cl,in which C-related peak in the EDX data comes from the RGO and GCE,the K-,Cl-,and O-related peaks come from the electrolyte.The ratio of the Ni/Co was calculated to be about1:1,which is in accordance with the ratio of Ni2+and Co2+used in the electrodepositing solution.

The crystal structure of the as-prepared?ower-like Ni-Co NSs was characterized by XRD(Fig.2D).As can be seen in the pattern, one characteristic peak at40.9?corresponds to the(100)plane of the hexagonal closed packed(h.c.p.)Co crystal(JCPDS card No.89-4308)[33].Two characteristic diffraction peaks at44.4?and51.3?can be indexed to the(111)and(200)planes of face-centered-cubic(fcc)Ni-Co alloy,respectively(JCPDS card No.for fcc Co is 01-1259and for fcc Ni is04-0850)[33,34].The broad peak might be ascribed to the small Ni-Co NSs,as it was well-known that the wider was the XRD peak,the smaller was the nanostructures. Above results indicated the formation of Ni-Co NSs crystal with high purity.

It should be noted that the molar ratio of Ni2+/Co2+in above studies was1:1,which might also play an important role in the formation of the?ower-like Ni-Co NSs.To explore the effect of Ni2+/Co2+ratio on the morphology of Ni-Co NSs,different molar ratios(1:0,4:1,1:4and0:1)of Ni2+/Co2+were investigated. Fig.3A–D showed the SEM images of Ni-Co NSs formed on RGO/GCE surface with different Ni2+/Co2+ratios.At the Ni2+/Co2+ratio of1:0, the RGO sheets just became thick and rough and a few NSs with the average size of100nm were observed(Fig.3A).At the Ni2+/Co2+ ratio of4:1,the amount and the size(200–500nm)of the Ni-Co NSs obviously increased.At the Ni2+/Co2+ratio of1:4,a small amount of ?ower-like NSs formed(Fig.3C).At the Ni2+/Co2+ratio of0:1,only thick Co?lms were formed(Fig.3D).These results indicated that the Ni2+/Co2+ratio was one of the key factors affected formation of ?ower-like Ni-Co NSs,and the optimized Ni2+/Co2+ratio is1:1. 3.3.Electrochemical behavior of Ni-Co NSs/RGO/GCE

The electrochemical behaviors of Ni-Co NSs/RGO/GCE were investigated by CVs in0.1M NaOH solution(Fig.4A).As can be seen from curve c(scan rate:50mV s?1),a pair of redox peaks with anodic peak at0.27V and the corresponding cathodic peak at0.12V was found.However,the anodic peak of Ni in alkaline medium appeared at about0.5V[22–24,35,36],while that of Co appeared at less than0.3V[8,12].Therefore,the anodic peak at 0.27V was probably attributed to the complex oxidation transfor-mation of different species in alkaline medium(i.e.Ni(OH)2,NiOOH, Co(OH)2,CoOOH)[24,37].The cathodic peak at0.12V was related to the reduction of Ni and Co oxides formed in the positive cycles. In order to understand the direct electrochemical process of Ni-Co NSs,the CVs of Ni-Co NSs/RGO/GCE were recorded in0.1M NaOH solution at different scan rates(curve a-p).Obviously,the peak current was enhanced with the increasing of the scan rate. The peak current was directly proportional to potential scan rate at the rates of10–700mV s?1,indicating that the electron trans-fer reaction involved a surface-controlled process(Fig.4B).The electron-transfer coef?cient(?s)and electron-transfer rate con-stant(k s)could be determined based on Laviron’s theory[38]:

E pc=E o +

RT

?s nF

?

RT

?s nF ln

v(1) E pc=E o +

RT

(1??s)nF

+

RT

(1??s)nF

ln v(2) where n is the electron transfer number,v is the potential scan rate, R is the gas constant(R=8.314J mol?1K?1),T is the temperature in Kelvin(T=298K)and F is the Faraday constant(F=96493C mol?1). For peak I and peak II,the?1n was calculated to be0.65based on the plot of peak potential(E pc,E pa)versus the natural logarithm of the scan rate(ln v)(Fig.4C).According to the literature[39],if 0.3

Ni(0)+2OH?→Ni(OH)2+2e(3) Co(0)+2OH?→Co(OH)2+2e(4) Ni(OH)2+OH?→NiOOH+H2O+e(5) Co(OH)2+OH?→CoOOH+H2O+e(6) First,the metal Co(0)and Ni(0)was transformed into Co(OH)2 and Ni(OH)2in the alkaline conditions at the onset of the poten-tial scan.Then,the oxides were further oxidized into CoOOH and NiOOH as potential shifted to the positive direction(peak I).

When n E p<200mV,the k s could be estimated with the Lavi-ron’s equation[38]:

k s=

?nF

RT(7) At50mV s?1,the k s was calculated to be1.27s?1.The surface coverage of electro-active Ni-Co NSs( *,mol cm?2)could be esti-mated by Faraday’s law[44]:

Ip=

nFQ v

4RT

=

n2F2A ?v

4RT

(8) which can come to the expression as followed:

?=

Q

nFA(9) where Q is the charge consumed in the CVs,A is the effective surface area of the electrode and the other symbols have their usual mean-ing.The A can be calculated based on Randles–Sevcik equation[45]. The calculated values of A were0.047cm2for Ni-Co NSs/RGO/GCE and0.041cm2for Ni-Co NSs/GCE,respectively.Then the value of *was calculated to be about8.99×10?8mol cm?2and 4.58×10?8mol cm?2for Ni-Co NSs/RGO/GCE and Ni-Co NSs/GCE, respectively.This result further con?rmed that the RGO provided a large surface area to increase the quantity and reduce the dimen-sion of the obtained Ni-Co NSs.

3.4.Electrocatalytic oxidation of glucose on Ni-Co NSs/RGO/GCE

To explore the sensing activity of Ni-Co NSs/RGO/GCE,the CVs of different modi?ed electrodes in0.1M NaOH in the presence(curve b,d,g and h)and absence(curve a,c,e and f)of0.04M glucose were shown in Fig.5.There was no obvious oxidation peak at bare GCE(curve a,b)and RGO/GCE(curve c,d).In the presence of0.04M glucose,the oxidation peaks at about0.27V and0.50V obviously increased at the Ni-Co NSs/RGO/GCE(curve h)as compared with

L.Wang et al./Electrochimica Acta 114 (2013) 484–493

487

Fig.2.SEM images of RGO/GCE (A)and RGO/GCE scanned in 0.1M KCl +0.005M NiCl 2+0.005M CoCl 2at 50mV s ?1for 20CVs (B).(C)EDX analysis of the Ni-Co NSs/RGO/GCE.(D)XRD pattern of the Ni-Co NSs/RGO/GCE.

Fig.3.SEM images of RGO/GCE scanned in 0.1M KCl +NiCl 2+CoCl 2(c NiCl 2+c CoCl 2=00.1M)at 50mV s ?1for 20cycles with different Ni 2+/Co 2+ratio:(A)1:0,(B)1:4,(C)4:1and (D)0:1.

488L.Wang et al./Electrochimica Acta 114 (2013) 484–493

0.7

0.60.50.40.30.20.10.0-0.1-0.2

0200400600800I A

E vs SCE/V

E v s S C E /V

ln /v s

-1

I A

Fig.4.(A)CVs of Ni-Co NSs/RGO/GCE in 0.1M NaOH at different scan rate:(a)10,(b)30,(c)50,(d)70,(e)100,(f)120,(g)150,(h)200,(i)250,(j)300,(k)350,(l)400,(m)450,(n)500,(o)600and (p)700mV s ?1.(B)Plot of peak current versus the potential scan rate.(C)Plot of peak potential versus the natural logarithm of scan rate (ln v ).

that in absence of glucose (curve f).While the oxidation peaks at 0.27V and 0.50V were much smaller at Ni-Co NSs/GCE (curve e,g)than that at the Ni-Co NSs/RGO/GCE (curve f,h).These results implied that the catalytic current mainly resulted from active Ni-Co NSs oxide toward the catalytic oxidation of glucose,and the RGO played a crucial role in the sensor’s performance.RGO provided a large surface area to increase the quantity and reduce the dimen-sion of the active Ni-Co NSs oxide.The large surface-to-volume ratio of the formed Ni-Co NSs oxide led to a large total surface area to pro-mote the oxidation of glucose.The glucose was oxidized by active Ni-Co NSs oxide with cyclic mediation redox process [35,36,43].The NiOOH can be used as heterogeneous catalysts and showed good chemical stability and electrocatalytic activity [40–43].At higher potential,CoOOH was further oxidized into CoO 2[40–43].

CoOOH +OH ?→CoO 2+H 2O +e

(10)

Then the NiOOH and CoO 2can catalyze glucose oxidation to form glucolactone.The possible redox mechanism can be assumed as followed [8,13,35,36,43]:

NiOOH +glucose →Ni(OH)2+glucolactone

(11)2CoO 2+glucose →2CoOOH +glucolactone

(12)

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-100

0100

200

300h

g

f e

c,d a,b

I A

E vs S CE/ V

Fig.5.CVs of different electrodes in 0.1M NaOH in the absence (a,c,e,f)and pres-ence (b,d,g,h)of 0.04M glucose at 50mV s ?1:(a,b)bare GCE,(c,d)RGO/GCE,(e,g)

Ni-Co NSs/GCE and (f,h)Ni-Co NSs/RGO/GCE.

The performance of Ni-Co NSs/RGO/GCE obtained at different potential cycle number (2,10,20and 35)was investigated by CVs in 0.1M NaOH in the presence of 0.04M glucose (Fig.6),since the amount and morphology of Ni-Co NSs on the modi?ed electrode depended on the potential cycle number.When the potential cycle number was 2(curve a),the glucose oxidation current was low,which was due to the relatively small number of Ni-Co NSs formed on the surface of RGO/GCE.After 10cycles (curve b),the glucose oxidation peak current became larger because the amount of Ni-Co NSs electrodeposited on the surface of RGO/GCE increased and the catalytic performance was better.The glucose oxidation peak current reached a largest value at the potential cycle number of 20(curve c).The result con?rmed that the regular ?ower-like Ni-Co NSs provided the largest surface area to promote the oxidation of glucose.When the potential cycle number further increased to

35(curve d),the oxidation peak current decreased,even the shape of peak changed.It was because that the ?ower-like Ni-Co NSs dis-appeared and only thick ?lms formed,which were not good for the electron transfer during the glucose oxidation process.These results showed that the ?ower-like Ni-Co NSs/RGO/GCE obtained at the potential cycle number of 20exhibited the best catalytic performance of glucose oxidation.

The effects of Ni 2+/Co 2+ratio on the catalytic performance of Ni-Co NSs/RGO/GCE were also investigated.Fig.7A showed the CVs of

I A

E vs SCE/V

Fig.6.CVs of Ni-Co NSs/RGO/GCE obtained at the potential cycle number of 2(curve a),10(curve b),20(curve c)and 35(curve d)in 0.1M NaOH in the presence of 0.04M glucose at 50mV s ?1.

L.Wang et al./Electrochimica Acta 114 (2013) 484–493

489

the Ni NSs/RGO/GCE in 0.1M NaOH solution in the absence (curve a)and presence (curve b)of 0.04M glucose.In the presence of 0.04M glucose,an obvious oxidation peak appeared at about 0.54V (curve a)as compared with that in absence of glucose (curve b).Fig.7B–D showed the CVs of Ni-Co NSs/RGO/GCE obtained at different Ni 2+/Co 2+ratio for the oxidation of glucose.The glucose oxida-tion started at 0.43V (Fig.7B)at the Ni-Co NSs/RGO/GCE obtained at Ni 2+/Co 2+ratio of 1:4,showing a negative shift of 0.11V as compared with the Ni NSs/RGO/GCE.An additional negative-shift of 0.17V was observed at the Ni-Co NSs/RGO/GCE obtained at Ni 2+/Co 2+ratio of 1:1(Fig.7C).The onset potentials of glucose oxi-dation were decreased gradually with increasing of Co 2+content in the electrodepositing solution.It can be explained by the following reasons.The doping of Co atoms could prevent from the formation of less electrochemical active ?-phase Ni(OH)2in the subsequent transformation from Ni-Co NSs to hydroxide and the formation of Co 3+could also increase the hydroxide conductivity and reduce the

redox peaks potentials of Ni(OH)2[24,46,47].Moreover,Co facili-tates the Ni to reach a higher oxidation state during the oxidation process and promotes the electron transfer of glucose oxidation [48,49].In addition,the incorporation of Co resulted in the forma-tion of ?ower-like Ni-Co NSs.The ?ower-like Ni-Co NSs resulted in the large electrode surface area to facilitate the glucose oxidation.However,the onset potential of glucose oxidation showed a little change as the content of Co further increased (Fig.7D and E).It may be because that the Co 3+species are inactive for glucose oxidation (Fig.7E)and the increase of Co might decrease the exposed Ni active sites and inhibit the glucose oxidation [23].Fig.7F showed the changes of the onset potential (E oxidation )and the catalytic current (I cat ,obtained at the same potential of 0.3V)for glucose oxidation at Ni-Co NSs/RGO/GCE versus the Co 2+contents.As the Co 2+con-tent increased to 50%,the E oxidation of glucose oxidation decreased gradually.After that,the E oxidation showed a little change.The I cat was increased to 117?A at the Ni 2+/Co 2+molar ratio of 1:1.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-800

-4000400

800

1200

b

a

I A

E vs SCE/V

A

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-600

-400

-2000200400

6008001000B

b

a

I A

E vs SCE/V

-0.10. 00. 1 0.2 0.30. 4 0.5 0.6 0.7

-50

50100150

200250D

b

a

I A

E vs SCE/V

E o x i d a t i o n v s S C E /V

Cobalt ion(molar ratio%)

I c a t A

0.7

0.60.50.40.30.20.10.0-0.1-100

0100

200300C

b

a

I A

E vs SCE/V

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1-50

050100150

200250D

b

a

I E vs SCE/V

Fig.7.CVs of different electrodes in 0.1M NaOH in the absence (a)and presence (b)of 0.04M glucose at 50mV s ?1:(A)Ni NSs/RGO/GCE,(B)Ni-Co NSs/RGO/GCE (c NiCl 2/c CoCl 2=1:4),(C)Ni-Co NSs/RGO/GCE (c NiCl 2/c CoCl 2=1:1),(D)Ni-Co NSs/RGO/GCE (c NiCl 2/c CoCl 2=4:1)and (E)Co NSs/RGO/GCE.(F)Onset potential and catalytic current for glucose oxidation on Ni-Co NSs/RGO/GCE versus the Co 2+contents in the deposition solution.

L.Wang et al./Electrochimica Acta 114 (2013) 484–493

491

I A

E vs SCE/

V

10020

030

40050

0246

8100.1V

0.25V 0.5V 0.6V 0.4V

0.3V

I A

A

I A

I A

concentrat ion/m mol L

-1

Fig.9.(A)Electrocatalytic oxidation of 10?M glucose on Ni-Co NSs/RGO/GCE at different applied potentials.(B)Typical amperometric response of Ni-Co NSs/RGO/GCE (a)

and Ni-Co NSs/GCE (b)to successive injection of glucose into the stirred NaOH.(C)The plots of steady-state current versus glucose concentration.(D)The effects of some electroactive substance on glucose detection.Applied potential:0.5V.

Table 2

Determination of glucose in blood serum samples.

Blood serum samples (mM)

Diluted

samples (mM)

Added (mM)

Determined by colorimetric enzymatic method (mM)

Determined by our

nonenzymatic sensor (mM)

Recovery (%)

RSD (%,n =5)

9.6

0.570.50 1.06 1.0598.13 3.750.570.70 1.29 1.31103.15 3.640.57 1.20 1.79 1.7297.18 2.931.050.50 1.58 1.62104.52 3.271.05 1.00 2.09 2.13103.90 3.871.05

1.50

2.52

2.49

97.65

4.21

3.6.Selectivity,stability and repeatability of Ni-Co NSs/RGO/GCE

The interference was also investigated.Fig.9D showed the cur-rent responses of the sensor to different chemicals.For Fe 3+,Fe 2+,SO 42?,BrO 3?,IO 3?,NO 2?,NO 3?and Cl ?in a 10-fold concentration,no obvious interference to glucose detection was observed.While only for SO 32?in 10-fold concentration,there was a signi?cant interference for the glucose detection.The interference of organic compounds,including fructose,d -galactose,UA and AA have also been investigated.Amperometric response of the sensor to con-secutive injection 0.1mM of glucose,fructose,d -galactose,UA and AA showed that the addition of UA hardly provided notable inter-ference for glucose sensing,and 0.1mM fructose,d -galactose and AA only marked a poor increase of currents (<10%).These results implied the good selectivity of Ni-Co NSs/RGO/GCE.

The determination of glucose in blood serum samples was also performed on the Ni-Co NSs/RGO/GCE.In brief,the blood samples obtained from the hospitalized patients were ?rst diluted with 1M NaOH (the ?nal solution was adjusted to pH 13),at which the Ni-Co NSs/RGO/GCE was used to monitor the glucose content.The standard colorimetric enzymatic procedure was used as a refer-ence for checking the sensor accuracy.The results obtained from

the glucose sensor agree well with those obtained by the standard colorimetric enzymatic method.The relative standard deviations (RSD)listed in Table 2indicate most of the results are accurate and credible.Thus,it could be concluded that the developed sensor performs very well in the detection of glucose in serum samples.The stability and repeatability of the resulted sensor were also investigated.After the sensor was stored in the inverted beaker at room temperature for 45days,the current response to 0.04M glucose decreased by 3.8%.To evaluate the repeatability of the same sample,the same sensor was used to detect 0.04M glucose for 10times and a RSD of 4.3%was obtained.To test the electrode-to-electrode repeatability,six sensors were prepared under the same condition.The responses of the six sensors toward 0.04M glucose were measured with a RSD of 5.6%.The good repeatability of the results indicated the reliability of the sensor results.

4.Conclusions

Flower-like Ni-Co NSs have been electrodeposited on the RGO/GCE by CVs.It was found that RGO could promote the for-mation of a large number of ?ower-like Ni-Co NSs on the surface of GCE.The Ni-Co NSs/RGO/GCE showed good catalytic activity

492L.Wang et al./Electrochimica Acta114 (2013) 484–493

toward oxidation of glucose in0.1M NaOH.The detection limit, linear range,sensitivity and some kinetic parameters for oxi-dation of the glucose were obtained using amperometry and chronoamperometry techniques.Furthermore,the sensor showed high selectivity,stability and sensitivity.It provided a simple method to develop electrochemical sensor with high sensitivity and stability.

Acknowledgements

This work was?nancially supported by National Natural Science Foundation of China(21065005,21165010and21101146),Young Scientist Foundation of Jiangxi Province(20112BCB23006and 20122BCB23011),Foundation of Jiangxi Educational Committee (GJJ13243and GJJ13244),the State Key Laboratory of Electroan-alytical Chemistry(SKLEAC201310),the Open Project Program of Key Laboratory of Functional Small organic molecule,Ministry of Education,Jiangxi Normal University(No.KLFS-KF-201214;KLFS-KF-201218).

References

[1]Y.C.Zhang,L.Su,D.Manuzzi,H.V.E.de los Monteros,W.Z.Jia,D.Q.Huo,C.J.

Huo,Y.Lei,Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,Biosens.Bioelectron.31(2012)426.

[2]J.Yang,L.C.Jiang,W.D.Zhang,S.Gunasekaran,A highly sensitive non-enzymatic

glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO)nanoparticles onto multi-walled carbon nanotube arrays,Talanta82 (2010)25.

[3]O.Yehezkeli,R.Tel-Vered,S.Raichlin,I.Willner,Nano-engineered?avin-

dependent glucose dehydrogenase/gold nanoparticle-modi?ed electrodes for glucose sensing and biofuel cell applications,ACS Nano5(2011)2385.

[4]O.Yehezkeli,S.Raichlin,R.Tel-Vered,E.Kesselman,D.Danino,I.Willner,

Biocatalytic implant of Pt nanoclusters into glucose oxidase:a method to elec-trically wire the enzyme and to transform it from an oxidase to a hydrogenase, J.Phys.Chem.Lett.1(2010)2816.

[5]M.Zheng,Y.Cui,X.Y.Li,S.Q.Liu,Z.Y.Tang,Photoelectrochemical sensing of

glucose based on quantum dot and enzyme nanocomposites,J.Electroanal.

Chem.656(2011)167.

[6]C.Batchelor-McAuley,Y.Du,G.G.Wildgoose,https://www.sodocs.net/doc/3511559822.html,pton,The use of cop-

per(II)oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide,Sens.Actuators B:Chem.135(2009) 230.

[7]J.Luo,S.S.Jiang,H.Y.Zhang,J.Q.Jiang,X.Y.Liu,A novel non-enzymatic glucose

sensor based on Cu nanoparticle modi?ed graphene sheets electrode,Anal.

Chim.Acta709(2012)47.

[8]Y.Ding,Y.Wang,L.Su,M.Bellagamba,H.Zhang,Y.Lei,Electrospun Co3O4

nano?bers for sensitive and selective glucose detection,Biosens.Bioelectron.

26(2010)542.

[9]Y.Ding,Y.Wang,L.C.Zhang,H.Zhang,Y.Lei,Preparation,characterization and

application of novel conductive NiO-CdO nano?bers with dislocation feature, J.Mater.Chem.22(2012)980.

[10]X.H.Zhu,Q.F.Jiao,C.Y.Zhang,X.X.Zuo,X.Xiao,Y.Liang,J.M.Nan,Amperometric

nonenzymatic determination of glucose based on a glassy carbon electrode modi?ed with nickel(II)oxides and graphene,Microchim.Acta180(2013)477.

[11]B.Q.Yuan,C.Y.Xu,D.H.Deng,Y.Xing,L.Liu,H.Pang,D.J.Zhang,Graphene

oxide/nickel oxide modi?ed glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor,Electrochim.Acta88(2013)708.

[12]K.K.Lee,P.Y.Loh,C.H.Sow,W.S.Chin,CoOOH nanosheets on cobalt substrate

as a non-enzymatic glucose sensor,https://www.sodocs.net/doc/3511559822.html,mun.20(2012)128. [13]X.W.Wang,X.C.Dong,Y.Q.Wen,C.M.Li,Q.H.Xiong,P.Chen,A graphene-cobalt

oxide based needle electrode for non-enzymatic glucose detection in micro-droplets,https://www.sodocs.net/doc/3511559822.html,mun.48(2012)6490.

[14]H.B.Noh,K.S.Lee,P.Chandra,M.S.Won,Y.B.Shim,Application of a Cu-Co

alloy dendrite on glucose and hydrogen peroxide sensors,Electrochim.Acta61 (2012)36.

[15]M.Tominaga,T.Shimazoe,M.Nagashima,I.Taniguchi,Composition-activity

relationships of carbon electrode-supported bimetallic gold-silver nanoparti-cles in electrocatalytic oxidation of glucose,J.Electroanal.Chem.615(2008)

51.

[16]H.C.Gao,F.Xiao,C.B.Ching,H.W.Duan,One-step electrochemical synthesis of

PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection,ACS Appl.Mater.Interfaces3(2011)3049.

[17]S.S.Mahshid,S.Mahshid,A.Dolati,M.Ghorbani,L.X.Yang,S.L.Luo,Q.Y.Cai,

Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation,Electrochim.Acta58(2011)551.

[18]D.H.Fritts,The mechanics of electrochemically coprecipitated cobalt hydroxide

in nickel hydroxide electrodes,J.Electrochem.Soc.129(1982)118.[19]A.K.Sood,Studies on the effect of cobalt addition on the nickel hydroxide

electrode,J.Appl.Electrochem.16(1986)274.

[20]D.F.Pickett,J.T.Maloy,Microelectrode studies of electrochemically coprecipi-

tated cobalt hydroxide in nickel hydroxide electrodes,J.Electrochem.Soc.125 (1978)1026.

[21]C.Faure,C.Delmas,P.Willmann,Electrochemical behavior of?-cobalted nickel

hydroxide electrodes,J.Power Sources36(1991)497.

[22]M.Asgari,M.G.Maragheh,R.Davarkhah,E.Lohrasbi,A.N.Golikand,Electro-

catalytic oxidation of methanol on the Nickel-cobalt modi?ed glassy carbon electrode in alkaline medium,Electrochim.Acta59(2012)284.

[23]W.Yan,D.Wang,G.G.Botte,Nickel and cobalt bimetallic hydroxide catalysts

for urea electro-oxidation,Electrochim.Acta61(2012)25.

[24]M.Vidotti,M.R.Silva,R.P.Salvador,S.I.Córdoba de Torresi,L.H.Dall’Antonia,

Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes,Electrochim.Acta53(2008)4030.

[25]A.K.Geim,K.S.Novoselov,The rise of graphene,Nat.Mater.446(2007)183.

[26]Y.Matsumoto,M.Koinuma,S.Y.Kim,Y.Watanabe,T.Taniguchi,K.Hatakeyama,

H.Tateishi,S.Ida,Simple photoreduction of graphene oxide nanosheet under

mild conditions,ACS Appl.Mater.Interfaces2(2010)3461.

[27]L.Liu,S.Ryu,M.R.Tomasik,E.Stolyarova,N.Jung,M.S.Hybertsen,M.L.Steiger-

wald,L.E.Brus,G.W.Flynn,Graphene oxidation:thickness-dependent etching and strong chemical doping,Nano Lett.8(2008)1965.

[28]S.Bong,Y.R.Kim,I.Kim,S.Woo,S.Uhm,J.Lee,H.Kim,Graphene supported

electrocatalysts for methanol oxidation,https://www.sodocs.net/doc/3511559822.html,mun.12(2010) 129.

[29]X.W.Liu,J.J.Mao,P.D.Liu,X.W.Wei,Fabrication of metal-graphene hybrid

materials by electroless deposition,Carbon49(2011)477.

[30]W.S.Hummers Jr.,R.E.Offeman,Preparation of graphitic oxide,J.Am.Chem.

Soc.180(1958)1339.

[31]P.Wu,Q.Shao,Y.J.Hu,J.Jin,Y.J.Yin,H.Zhang,C.X.Cai,Direct electrochemistry

of glucose oxidase assembled on graphene and application to glucose detection, Electrochim.Acta55(2010)8606.

[32]Y.H.Song,Z.F.He,H.Z.Zhu,H.Q.Hou,L.Wang,Electrochemical and electrocat-

alytic properties of cobalt nanoparticles deposited on graphene modi?ed glassy carbon electrode:application to some amino acids detection,Electrochim.Acta 58(2011)757.

[33]Y.D.Li,L.Q.Li,H.W.Liao,H.R.Wang,Preparation of pure nickel,cobalt,Nickel-

cobalt and nickel-copper alloys by hydrothermal reduction,J.Mater.Chem.9 (1999)2675.

[34]M.H.Rashid,M.Raula,T.K.Mandal,Polymer assisted synthesis of chain-like

cobalt-nickel alloy nanostructures:magnetically recoverable and reusable cat-alysts with high activities,J.Mater.Chem.21(2011)4904.

[35]A.Safavi,N.Maleki,E.Farjami,Fabrication of a glucose sensor based on a novel

nanocomposite electrode,Biosens.Bioelectron.24(2009)1655.

[36]L.-M.Lu,L.Zhang,F.-L.Qu,H.-X.Lu,X.-B.Zhang,Z.-S.Wu,S.-Y.Huan,Q.-A.

Wang,G.-L.Shen,R.-Q.Yu,A nano-Ni based ultrasensitive nonenzymatic elec-trochemical sensor for glucose:enhancing sensitivity through a nanowire array strategy,Biosens.Bioelectron.25(2009)218–223.

[37]R.R.Salunkhe,K.Jang,S.Lee,H.Ahn,Aligned Nickel-cobalt hydroxide nanorod

arrays for electrochemical pseudocapacitor applications,RSC Adv.2(2012) 3190.

[38]https://www.sodocs.net/doc/3511559822.html,viron,General expression of the linear potential sweep voltammogram

in the case of diffusionless electrochemical systems,J.Electroanal.Chem.101 (1979)19.

[39]H.Y.Ma,N.F.Hu,J.F.Rusling,Electroactive myoglobin?lms grown layer-by-

layer with poly(styrenesulfonate)on pyrolytic graphite electrodes,Langmuir 16(2000)4969.

[40]Y.-Y.Liang,S.-J.Bao,H.-L.Li,Nanocrystalline nickel cobalt hydrox-

ides/ultrastable Y zeolite composite for electrochemical capacitors,J.Solid State Electrochem.11(2007)571.

[41]Z.-A.Hu,Y.-L.Xie,Y.-X.Wang,H.-Y.Wu,Y.-Y.Yang,Z.-Y.Zhang,Synthesis

and electrochemical characterization of mesoporous Co x Ni1?x layered double hydroxides as electrode materials for supercapacitors,Electrochim.Acta54 (2009)2737.

[42]V.Gupta,S.Gupta,N.Miura,Electrochemically synthesized large area net-

work of Co x Ni y Al z layered triple hydroxides nanosheets:a high performance supercapacitor,J.Power Sources189(2009)1292.

[43]S.S.Mahshid,S.Mahshid,A.Dolati,M.Ghorbani,L.X.Yang,S.L.Luo,Q.Y.Cai,

Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection,J.Alloys Compd.554(2013)169.

[44]J.Xu,F.J.Shang,J.H.T.Luong,K.M.Razeeb,J.D.Glennon,Direct electrochemistry

of horseradish peroxidase immobilized on a monolayer modi?ed nanowire array electrode,Biosens.Bioelectron.25(2010)1313.

[45]H.F.Cui,J.S.Ye,W.D.Zhang,C.M.Li,J.H.T.Luong,F.S.Sheu,Selective and

sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites,Anal.

Chim.Acta594(2007)175.

[46]K.Provazi,M.J.Giz,L.H.Dall’Antonia,S.I.Córdoba de Torresi,The effect of Cd,

Co,and Zn as additives on nickel hydroxide opto-electrochemical behavior,J.

Power Sources102(2001)224.

[47]S.I.Córdoba de Torresi,K.Provazi,M.Malta,R.M.Torresi,Effect of additives in

the stabilization of the?phase of Ni(OH)2electrodes,J.Electrochem.Soc.148 A(2001)1179.

[48]R.D.Armstrong,E.A.Charles,Some effects of cobalt hydroxide upon the electro-

chemical behavior of nickel hydroxide electrodes,J.Power Sources25(1989)

89.

L.Wang et al./Electrochimica Acta114 (2013) 484–493493

[49]R.D.Armstrong,G.W.D.Briggs,E.A.Charles,Some effects of the addition of

cobalt to the nickel hydroxide electrode,J.Appl.Electrochem.18(1988) 215.

[50]A.J.Bard,L.R.Faulkner,Electrochemical Methods:Fundamentals and Applica-

tions,John Wiley&Sons,Inc.,New York,2001,pp.156(Ch.4).[51]A.J.Bard,L.R.Faulkner,Electrochemical Methods:Fundamentals and Applica-

tions,John Wiley&Sons,Inc.,New York,2001,pp.471(Ch.12).

[52]Q.F.Yi,W.Huang,W.Q.Yu,L.Li,X.P.Liu,Hydrothermal synthesis of

titanium-supported nickel nano?akes for electrochemical oxidation of glucose, Electroanalysis20(2008)2016.

铜版纸生产过程中常见纸病及解决办法

铜版纸生产过程中常见纸病及解决办法 铜版纸也称涂布美术印刷纸,主要用于单色或彩色印刷的画册、画报、书刊封面、插页、美术图片及商品商标等。近几年来也广泛用于制作纸手袋、不于胶面纸、底纸等。由于其工艺复杂、加工工序多,因此产生的纸病也远远多于其他类纸张,对于其他纸种微不足道的纸病,在铜版纸生产上可能就是致命的问题,直接影响产品的使用性能、以及企业的经济效益。因此预防纸病的产生,对发生纸病及时有效解决就显得尤为重要。 现将笔者从事铜版纸技术工作十多年来关于生产中发生的纸病及解决方法整理出来,不足之处请批评指正。本文着重从操作方面人手,有些纸病可能是生产工艺技术条件、涂料配方、原材料质量变化等引起,则不在本文讨论之列。 本公司是以商品木浆为原料,一台无表面施胶、含机内预涂布的2280mm纸机、一台双涂布头的刮刀涂布机、两台超级压光机。 l 预涂原纸纸病及解决方法 1.1 原纸横幅差 横幅差直接影响到后工序的加工、卷筒纸的平整性等,因此将横幅差也列在纸病之列。 解决方法: (1)每次计划停机时校准堰板口的开口横幅一致性。 (2)定期清洗流浆箱。 (3)注意车速与流浆箱的液位(浆网速),浆速不宜过快。 (4)微调各流浆箱对应区域的开度及两边回流 浆管的开度,流浆箱平衡压力玻璃管内浆液位调节相对静止。 1.2 匀度差 纸张的匀度为纸张定量的分布状况,即微小面积上质量或紧度的变化。纸张匀度不好一般认为有三大影响因素: 1)浆料自身的絮聚;2)纸机操作不当;3)成形脱水不均匀。¨ 解决方法: (1)控制上网浆浓度不宜过大。 (2)控制水线不能过短。 (3)调整好浆网速(流浆箱液位与网速) (4)水印辊清洁,且平稳压向网面,不可产生偏压。 1.3 原纸破边、破洞 解决方法: (1)进压榨时纸页跳动幅度大,调整速度差(张力) (2)检查烘缸有无漏水情况。 (3)检查于网是否有破损。 (4)及时清理烘缸纸毛。 (5)原纸有裂缝。检查、调小伏辊进压榨部的湿纸页张力。 (6)卷取二臂压力超大,且产生偏压时,卷成大轴时产生裂边。 1.4 脏料点 解决方法: (1)用刀片刮掉一压上辊(石辊)两边所粘料。 (2)各压榨上辊喷水不能关闭,让清水及时带走粘料。 (3)加强清洗毛布,尤其是毛布两边,有停机的机会就洗毛布保持毛布清洁。 (4)保持于网的清洁。计划停机时必须清洗于网。

无光和亚光涂布纸及其发展趋势_王玉珑

作者简介:王玉珑先生, 在读博士研究生;研究方向:涂布加工纸与特种纸。 收稿日期:2004-11-17 ó无光和亚光涂布纸ó 无光和亚光涂布纸及其发展趋势 王玉珑1 曹振雷2 (11天津科技大学,天津,300222;21中国制浆造纸研究院,北京,100020) 摘 要:无光和亚光涂布纸在较低的纸页光泽度下,可以获得较高的印刷光泽度和印刷质量,且光照时不炫光,易于阅读。文中就无光和亚光涂布纸的消光原理、涂层结构、生产方法及其在国内外的发展状况进行了综述。 关键词:无光涂布纸;亚光涂布纸;纸页光泽度;印刷光泽度 中图分类号:TS76212 文献标识码:A 文章编号:0254-508X(2005)09-0053-04 随着经济的发展,颜料涂布纸的应用越来越广 泛。其中铜版纸以其优良的印刷适性、运行性和精 美的外观特性受到市场欢迎,其纸页光泽度(75b )可 达80%,而印刷光泽度(75b )可以高达95%,有的甚至超过100%[1]。纸页印刷时,油墨传递性好,印刷品色彩鲜艳饱满,画面立体感强。然而铜版纸过高的纸页光泽度在光照射时会产生强烈的炫光作用,常会导致人们的阅读质量下降,使人容易感到疲劳,因此,印刷出版物往往倾向于采用低光泽度的纸张。而很多低光泽度纸张(如非涂布纸等)虽然不存在炫光作用,但其粗糙的纸张表面也给印刷质量带来严重影响,如墨层粉化、墨膜无光泽,印刷品色彩黯淡、立体感差等。 近来,无光和亚光涂布纸[2]以其在较低的纸页光泽度下,可以获得较高的印刷光泽度和优良的印刷质量,且光照时不炫光,越来越受到人们的青睐。本文就无光和亚光涂布纸的消光原理、涂层结构、生产方法及其在国内外的发展状况进行了综述。1 无光和亚光涂布纸定义 目前,对无光和亚光涂布纸还没有严格的定义,在欧洲和北美主要是根据光泽度(75b )划分的(见表1)。同时衡量无光和亚光涂布纸最重要的标准就是要有较高的光泽度差(delta gloss 或snap),即要有较高的印刷光泽度与纸页光泽度的差值。无光和亚光涂布纸的光泽度差一般都在20~30个单位之间,甚至可以达到45个单位。 表1 以光泽度(75b )分类涂布纸 涂布纸分类 光泽度/%无光纸(matte paper)1~20亚光纸(dull paper) 20~40中等光泽纸(mid -gloss paper)40~55高光泽纸(enamel paper) >55 2 无光和亚光涂布纸的消光原理 211 纸张表面的光学现象 无光和亚光涂布纸反映在印刷质量的重要指标是 纸页光泽度和印刷光泽度[3-5] ,两者差值越大,就越 适合人们阅读,低的纸页光泽度不会带来强烈的炫光作用。 如何从理论上得到无光和亚光涂布纸,首先要了解光线在纸张表面发生的光学现象[6],图1为光照在 纸张表面发生的光学现象示意图。当一平行光束照射 图1 光照在纸张表面发生的光学现象

涂布纸介绍和造纸工艺总结

涂布纸(coated paper)是在原纸上涂上一层涂料(coating color),使纸张具有良好的光学性质及印刷性能等。其主要用途有:印刷杂志、书籍等出版用纸和商标、包装、商品目录等印刷用纸,两者的比例约为1:3。涂布纸大至可分为:铜版纸、涂布纸、轻量涂布纸,除此之外还有烙光涂布纸等特殊涂布纸原纸(Base paper) 涂布纸的制造,简单的说是指在原纸之上涂上涂料,经过干燥后再用压光机使得它的表面平滑化,因此原纸与涂料是左右涂布纸品质的重要因素。以一个涂布量为20g/m2的涂布层为例,假设涂料的干比重为1.5,则涂布层之厚度仅约0.0013公分,在如此薄的厚度下,原纸的品质确实占有重要的地位。假使涂布的速度慢时,因为吸水后的原纸纸匹,到达干燥部门不能失去强度,所以必须适度的上胶与保持湿纸的强度。反过来说涂布速度快时,则纸张必须具备一定的强度来抵抗高速涂布所带来的机械力,同时均一的吸水性也是非常的重要。除此之外,涂布用原纸还必须具备下列的性质:尺寸安定性好,不会因水分变化而有太大变化。对涂料的吸附性强。原纸必须不会弯曲,否则会引起涂料条痕而导致纸张断裂。不可有皱纹、破洞等瑕疵。涂布加工时,纸卷必须卷紧,以免发生断纸。原纸性质中会影响涂布主要有:均一性、平滑度、表面吸收性、表面强度、表面情形、化学适性、两面性及纸面光学性等,因此,一张纸的好坏,在于原纸的状况好坏与否。

涂料(Coating color) 涂料配制是制造涂布纸最基本的技术,对产品用途具有关键性的影响,所以涂料须满足涂布作业的操作性及印刷适性等,并按这些条件进行设计制造;即涂料的设计与生产何种涂布纸有关。以数量来看,仍以普通涂布纸为主,但以技术层次而言,则希望拥有铜版纸类的技术。不同产品应使用其相对应的涂料、涂布方法和涂布机。虽然各种类必须达到规定的品质指针,但是最重要的是获得客户的肯定。纸张涂布用的涂料种类很多,而其中较为普遍应用的是水基性涂料。水基性(Water base)涂料的组成大致上可分成四类:颜料、接着剂、添加助剂及水。这四类成份的组合与涂布后纸张的品质息息相关。利用下表一,列出涂料的成份对品质的影响。 颜料 颜料有白土(白色黏土)、碳酸钙、沙丁白、氢氧化铝、二氧化钛和塑料颜料等。 1.白土.白土从成份上分类有:高岭土类、叶石类(pyrophyllite)、云母类(cericite)等。高岭土又进一步细分为:高岭土、多水高岭土等,这些白土都已经被商品化生产但是,现在涂布纸用白土中,基本上把高岭石类都称为高岭土,也就成为涂布用白土的代名词。高岭土颗粒呈六角板状,粒径为0.3-3微米。这些微粒的纵横比、粒径直接影响涂布纸类颜料的品质,目前涂布纸颜料多用高岭土,因为它能赋予涂布纸较高的白纸光

白板纸、白卡纸区别及涂布纸

白板纸是一种正面呈白色且光滑,背面多为灰底的纸板,这种纸板主要用于单面彩色印刷后制成纸盒供包装使用。白板纸正大度尺寸为787mm*1092mm,或按订货合同规定生产其他规格或卷筒纸。白板纸由于纤维组织比较均匀,表面层具有填料与胶料的成分,而且表面涂有一定的涂料,并经过多辊压光处理,所以纸板的质地比较紧密,厚薄也比较均匀,其纸面一般情况下都较洁白而平滑,具有较均匀的吸墨性,表面脱粉与掉毛现象较少,纸质较强韧而具有较好的耐折度,但其含水量较高,一般在10%左右,存在一定的伸缩性,这给印刷会带来一定的影响。白板纸与铜版纸、胶版纸、凸版纸之间的区别在于纸张克度重,纸张比较厚实。 白板纸是由面浆与各层底浆在多圆网多烘缸纸机或长圆网混合纸板机上抄造而成。浆料一般也分为面浆(面层)、二层、三层、四层,各层纸浆料的纤维配比是不同的,而各层浆料的纤维配比,又根据所抄造纸的质量有所区别。 第一层为面层浆,要求白度高,具有一定的强度,通常采用漂白硫酸盐木浆或配加部分漂白化学草浆和白纸边废纸浆;第二层为衬层,起到隔离面层和芯层的作用,也要求具有一定白度,通常用100%机械木浆或浅色废纸浆;第三层为芯层,主要起填充作用,以增加纸板的厚度,提高挺度,一般采用混合废纸浆或草浆,这一层最厚,定量高的纸板常用几个网槽分几次挂浆;最后一层是底层,具有改善纸板外观,提高强度,防止卷曲的功能,通常用高的率浆或较好的废纸浆为原料抄造,纸板底面颜色多位灰色,也可按要求生产其他的底面颜色。 白卡纸是用于供印刷名片、封皮、证书、请柬及包装装潢用的卡纸,白卡纸为平板纸,其尺寸主要为:880mm*1230mm,787mm*1032mm。按质量水平白卡纸分为A、B、C三等。 白卡纸较厚实坚挺,定量较大,其定量有200 g/m2、220 g/m2、250 g/m2、270 g/m2、300 g/m2、400 g/m2等多种规格。白卡纸紧度通常不小于0.80 g/m3,白度要求较高,A、B、C三等的白度分别不小于92.0%、87.0%、82.0%。为防止泅水,白卡纸要求有较大的施胶度,A、B、C三等施胶度分别不小于1.5mm、1.5mm及1.0mm。为了保持纸制品的平整,白卡纸应较厚实坚挺,有较高的挺度和耐破度,对于不同等级不同定量的白卡其挺度有不同的要求,定量越大,等级越高,挺度要求越大,一般纵向挺度应不小于2.10-10.6mN?m,横向挺度应不小于1.06-5.30 mN?m。 A、B、C三等的耐破指数分别不小于2.00KPa?m2/g、1.60 KPa?m2/g及1.20 KPa?m2/g。为保证印刷时油墨均匀分布及纸张本身的外观要求,白卡的平滑度不小于20-40S。另外,白卡纸纸面应平整,不许有斑点和条痕等纸病,不允许发生翘曲变形,纸张的纤维组织应均匀,0.2-1.5mm2的尘埃不多于28个/m2(A等),不许有大于1.5mm2的尘埃。 白卡纸通常采用100%的漂白木浆为原料,面层、底层采用硫酸盐化学针叶木浆,芯层采用阔叶木化学机械浆,浆料经过打浆后加入碳酸钙、硫酸钡等填料,用AKD进行中性重度施胶,在叠网造纸机上进行抄造,并经压光、涂布处理而成,根据需要,经过压纹处理则可生产带有特殊压印花纹的卡纸,凡带有特殊压印花纹的白卡纸则可不检查平滑度和白度。除白色外,通过对浆料进行染色,还可生产各种色泽的卡纸,这时除白度外,其他技术性能均与白卡纸的技术性能一致。 白卡纸和白板纸的区别 白卡纸和白板纸的区别,是因为白卡纸是用原浆生产抄造而成的,而板纸则是用废纸纸浆抄造而成的。 白卡纸通常采用100%的漂白木浆为原料,原浆又称处女浆(virgin pulp),直接取材于森林,这样的纸浆因为纤维从来没有被破坏过,所以抄造而成的纸板非常的挺,各项技术指标也相当过硬。面层、底层采用硫酸盐化学针叶木浆,芯层采用阔叶木化学机械浆,浆料经过打浆后加入碳酸钙、硫酸钡等填料,用AKD进行中性重度施胶,在叠网造纸机上进行抄造,并经压光、涂布处理而成,根据需要,经过压纹处理则可生产带有特殊压印花纹的卡纸,凡带有特殊压印花纹的白卡纸则可不检查平滑度和白度。 而板纸特别是白板纸是一种正面呈白色且光滑,背面多为灰底的纸板,白板纸由于纤维组织比较均匀,表面层具有填料与胶料的成分,而且表面涂有一定的涂料,并经过多辊压光处理,所以纸板的质地比较紧密,厚薄也比较均匀,其纸面一般情况下都较洁白而平滑,具有较均匀的吸墨性,表面脱粉与掉毛现象较少,纸质较强韧而具有较好的耐折度,但其含水量较高,一般在10%左右,存在一定的伸缩性,这给印刷会带来一定的影响。这种纸板主要用于单面彩色印刷后制成纸盒供包装使用。则是由废纸浆抄造而成,由这种浆抄出来的纸没有很好的物理性能,所以不能满足很高档的包装印刷要求,同时因为含有废浆,无法直接接触食品,所以用途受到一定的限制。白板纸是由面浆与各层底浆

涂布白纸板常见纸病及生产工艺控制

湖南造纸 作者简介:李全朋(1984-),男,山东轻工业学院2007级在读硕士研究生,研究方向:造纸化学品与功能纸。 工艺与技术随着市场经济的发展,在产品销售包装中,纸板 作为包装材料需求量日益增加。为了满足国内市场的需要,全国各地纷纷上了不少白纸板新项目。国产白纸板的生产能力也在成倍地增加。这些产品可作食品、药品、化妆用品的高级包装纸盒。外观好、强度好,又卫生,既能保护商品又能展现商品的经济价值,所以成为各制造厂追求发展的品种,涂布白纸板是以白纸板为原纸,在机内或机外加工,表面采用了高遮盖力的涂布材料加工而成的产品。 1涂布白板纸主要技术要求1.1有良好的印刷适印性 涂布白纸板必须具有:白度高、手感光滑、表面洁净均匀、纸页平整、厚度均匀、尺寸稳定、表面强度好、油墨吸收性适中、印刷后有光泽等性能。1.2有制盒的性能 涂布白纸板经制盒后要有刚性,在高速冲切时切口不呈锯齿形,压线准确,而且弯折不破裂,也就是说纸板有较高的挺度和耐折度[1]。 1.3有表面粘贴性能 这个指标与涂料配方有关,要根据盒子的不同用途及制盒工艺的不同进行调整。2 涂布白板纸常见纸病及解决办法 由于纤维原料组成成份复杂,纤维配比经常变化,在生产过程中经常出现各种纸病。 2.1挺度 挺度是纸板的一个非常重要的物理指标,它影响印刷过程进纸和出纸、印刷速度,主要与纸的厚度、紧度、纤维原料及制浆方法有关。同时纤维之间的结合 力与纸板的水份对挺度影响也很大。因而对同一定量 的纸尽量提高纸的厚度,尽量在芯层使用纤维较长,打浆度高的浆料如报纸。在浆料中加入淀粉和水玻璃及湿强剂也能有效提高纸板的挺度。2.2离层 离层主要表现在面层与衬层、衬层与芯层。芯层与底层间离层虽很少,但在糊底时,由于芯层与底层间结合强度差,底层水份较大,也会使芯层与底层间离层。离层主要是各浆层打浆度配合不好,浆料洗涤不干净,浆料中含有气泡,使各浆层间纤维结合力差,印刷上油墨后,面层或衬层被拉起而引起离层。毛布太脏,使用时间长,滤水性能差,回头真空辊、K 压真空辊吸水性差致使纸板纸幅水份太大,干燥后引起纸页纤维结合不紧密,也易离层。因而加强浆料的洗涤、打浆、各压榨辊正常使用,在各浆层网间使用喷雾淀粉,离层基本可解决[2]。2.3条痕 条痕是卷取时看到的纵向长带状暗道子,一般由气刀局部阻塞所致,如气刀喷缝局部被溅上涂料颗粒。如为暗纹,主要是上网时,网笼阻塞,压光机和压榨辊上有杂物,刮刀清理不干净,喷雾淀粉喷头阻塞。2.4翘曲 主要是以纵向为轴线的翘曲,朝着有涂布的一面弯曲,主要是纸板较厚,两面水份不一致,导致两面的收缩性不一致,形成翘曲。纸板由多层浆料组成,各浆料种类及打浆度不同,造成它们的收缩及结合力不一致造成翘曲,因而合理调整烘缸上下缸的温度,控制好干燥曲线,适当增加压光机、压榨辊线压力,调整纸板正反两面的水份。在涂布前施加背涂,可用PVA 和淀粉溶液,调节打浆度,使各浆料合理配比,可减少翘曲。 摘 要:介绍了涂布白板纸的主要技术要求以及生产过程中常见的纸病和解决办法,并从生产过程中的几个主要方面介绍了如何生产高质量的涂布白板纸。 关键词:涂布白板纸;技术要求;纸病;生产工艺 涂布白纸板常见纸病及生产工艺控制 李全朋赵传山 山东轻工业学院制浆造纸科学与技术省部共建教育部重点实验室 山东济南(250353) 7

涂布纸常见质量纸病分析和处理

附42006年7月海龙生产部专业组培训讲义 一、讲师(部门、专业组、职务、姓名、工号):海龙生产部纸机副值长袁柳(03818) 二、主题:涂布纸常见质量纸病分析和处理 三、时间、地点:7月7日和7月11日地点:纸机会议室 四、培训部门专业岗位及人数:造纸车间各岗位 五、培训目的(培训结束后,受训人员应掌握的专业知识或技能,对工作的帮助如何): 使各岗位进一步加深和了解,对成品质量外观及物理指标的影响和调整的方向。 六、讲义提纲: 就各相关岗位进行分述: 一、湿部 二、压榨部 三、干燥部 四、表胶 五、涂布机工段 七、讲义具体内容(要求字数不少于800字,理论与实践相结合,有发生在公司的实际案例): 一、湿部:匀度,从成纸外观上看可以看到匀度差的纸面会有一些明显的亮点,像压光斑 点似的。因絮聚使局部定量高、厚度高,被压光后产生硬节状。对印刷所要求 的平整性,吸墨性都会构成影响。常见客诉,如上墨不良。 调整应有假设的思维方式: 假设系统内(上网前)浆料就分散不匀,采用增加打浆度分散纤维,降低各助剂的国入量,提高唇板开度,使之在管道充分形成湍流来解絮。 另种上网后,过急的跳浆(湍动)而重新絮聚,及着网脱水过急而产生絮聚,存在着此种现象时,我们应调L/b及各段真空的分布来解决。 就目前纸机存在着高克重,匀度比低克重匀度要好看,我个人倾向于我们的上网前的浆料分散这块是不存在着问题的。见点为A高克重、低车速时,所成形匀度较高,说明在流送系统风的湍流是不存在着问题(能形成湍流纤维,就存在着剪切力)。低克重、高车速的这种湍动力更不存在着问题。 观点B为:上网后重新絮聚,特别高车速时,湍动犹为剧烈,从网上可以明显看到。 所以我们就要求高真空打浆度一样,目的就是为了增加浆料的脱水困难。而在上网真空脱水时,使压缩膨胀需要更高的能量(压缩、膨胀是跳浆一个机理)。包括助留、助滤用量的调整也一样。(低车速状态下几在成镜面,而匀度并不差) 在四号机目前有很大部分人认为脱水真空对匀度影响太大,此种想法可能源于开始,

对涂布纸出现印刷斑点问题的一点看法

对涂布纸出现印刷斑点问题的一点看法 10月12日到天津大宇制纸有限公司参观。 关于其提出的生产的高档铜板纸出现印刷质量的问题,做了以下的分析和评价: 据其生产技术部长描述,铜板纸定量为157g/m2,属于中等克重。两面涂布,每面涂布量20 g/m2,分两次涂布,即面涂和底涂各10g/m2。涂料的组成配方是面涂95份碳酸钙,底涂60份瓷土和40份碳酸钙。面涂涂料固含量达到66%,底涂64-65%。 在其铜板纸的质量问题中,印刷斑点占了很大的比重。铜板纸在套色印刷中,反映黑色油墨被橡皮布粘走,在印刷后的图像中,在浅色(蓝色调)区域斑点很明显突出。我们在这里分析是否是由于涂布纸涂层吸收油墨溶剂的不均一,影响油墨干燥的快慢,致使后干油墨被橡皮布粘走,造成某些区域颜色深浅不一,出现大小不等的花斑,造成差的印刷外观。 进一步分析,首先看原纸。反映在原纸的毛布面,由于原纸带来的毛布印痕,在涂布后明显加重,在此区域出现了色斑现象。还由于原纸经过一个三辊两压区,这里有真空辊,而真空辊上的盲孔印痕在原纸上,虽经涂布,还是在印刷后出现了斑点问题。但以上是否是主要矛盾的焦点问题,是否能通过工艺或生产管理给予解决,将在经后的试验中做讨论。 纸张的匀度很重要,匀度不好,涂布量也不均匀,这直接影响涂层对油墨的吸收。所以把它作为一个研究的变量加以试验,找出其对出现色斑的影响程度。 油墨转印在纸上,首先接触的是纸张表面的涂层,我们把它作为一个重点考察的对象,这里的影响因素的变量有颜料的配方和配比,胶粘剂系统,涂料的固含量及流变性,涂料的干燥和最终成纸的涂层分布均匀情况等。 还有,普遍反映高定量的铜板纸出现印刷色斑问题较严重,这可能是由于随着涂布量的加大,使原纸的缺陷更加突出,涂层出现不均匀的情况更多,导致了对油墨的吸收不均匀。有一句话是,涂布不是掩盖原纸的缺陷而是加重它。 目前,对预测涂布纸出现印刷色斑趋势的主要检测方法有IGT印刷检测仪,Croda测试油墨检测,K&N油墨检测等,但是如何提高工厂或实验室检测与实际印刷生产中出现问题的相关性很关键。 根据以上的分析,初步设想为从以下几个方面入手: 1.分析涂布纸的涂层结构,如涂层的孔隙分布、涂布量的均一情况对油墨的吸收。 2.分析涂料中颜料的配比和配方,试验其对涂层结构的贡献,进而如何影响对油墨的吸收。 3.胶粘剂系统。几种胶粘剂在涂层表面的迁移情况,优化胶粘剂系统。 4.涂布纸的物化性质,如PH值、粗糙度、平滑度、松厚度、表面强度等与胶版印刷的相容性。 5.比较几种适用的检测方法,能给予评价或改进。 以上是我的个人想法,有许多不当错误之处,还请刘老师给予指导指正!

常见涂布加工纸纸病及解决方法

常见涂布加工纸纸病及解决方法 袁瑞红 赵传山 ((山东轻工业学院制浆造纸工程省部共建重点学科,山东济南市,250353)) 摘 要 本文主要就涂布加工纸常见的纸病如涂布不均、涂布翘曲、皱纹、刮痕、两面差、胡须等进行了详细的叙述,并且针对这些纸病提出了具体的解决办法。 关键词 涂布加工纸 涂布不均 涂布翘曲 皱纹 刮痕 两面差 近年来,造纸工业作为我国为数不多的尚供不应求的产业之一进入了一个快速发展的时期。其中,尤为引人注目的是高技术含量、高附加值产品的飞速发展。在这方面,纸张和纸板的整饰加工技术和装备之一的涂布方法和技术装备的先进性和适用性,起着推波助澜的作用。对纸张进行涂布处理,可以提高纸张的质量和附加值。 涂布加工纸属于高技术含量的产品,在生产中存在很多质量问题,在不同的地方不同的原因产生的纸病也不尽相同,所以应在搞清涂布加工纸产生纸病的原因的基础之上,如何针对这些问题采取具体的措施是造纸工作者需要解决的问题,只有解决这些问题,才能提高纸的质量,使自己的产品立于不败之地。下面就涂布加工纸常见的纸病及具体的解决办法进行详细的介绍。 1 涂布不均 涂布不均匀是指纸张在涂布过程中,由于受到某种因素的影响[1],造成纸页涂布面局部涂料稀少,严重的接近漏涂(所谓漏涂是指纸页涂布由于受到非正常因素的影响没有涂覆涂料),而且这种纸病在日光下或普通灯光下难以看到,必须要借助紫外灯才可以看到,这又增加了查找涂布不均匀的难度;涂布不均会造成成纸定量和厚度的变化,从而对最终的使用效果产生影响。尤其是高质量的涂布加工纸,如无碳复写纸如果有部分没有涂覆涂料,就会使这部分无碳复写纸丧失复写功能,几乎不能显色或显色很淡,从而使无碳复写纸丧失或基木丧失复写功能,这是一种严重的纸病,尤其是比较重要的文件使用存在上述纸病的无碳复写纸会造成严重的后果。还有传真纸,如果涂布不均造成显像不成会造成巨大的损失。 1 1 涂布不均的原因分析 涂布不均匀这种纸病,诱发因素多,有的可能是若干个因素在起作用,则解决难度大。其主要原因有以下几个方面[2]: (1)原纸的均一性。原纸均一性指的是纵横向上的定量、厚度、水分、纤维组织等的均一程度。原纸均一性的好坏将直接纸张的涂布加工过程以及产品的质量,均一性差的原纸,会造成涂布后涂布量不均,干燥不均,变形不一致,最终影响产品的使用。所以一定要使原纸的均一性良好[3]。 (2)从涂料角度分析,涂料中含有杂质会影响涂料在施涂辊上的成膜均匀性;如果涂料中含有较多气泡,这些气泡会随着涂料流动、转移而涂覆到纸面上,形成涂布不均匀;如果涂料成膜性不佳,导致涂料在施涂辊上形成的料膜易破、易裂而引起涂布不均匀现象,进而影响纸张质量[4]。 (3)空气冷却器的影响。如果排水管路堵塞,冷凝水无法排出,气水不能分离,则冷凝水随压缩空气一起吹到涂布纸面上,也会造成涂 14

造纸涂布方面的知识

造纸涂布方面的知识 1、为什么要进行纸面涂布加工处理? 答:经过压光后,纸面纤维已不再是松散排列,而是具有一定的紧度,但表面的平滑度仍不能满足高档精细印刷的要求。非涂布纸表面均匀性差,印刷后的墨色不匀,光泽度低,不能使细小的网点还原,造成层次丢失,图像实地部分均匀性下降,影响印刷复制效果,因此精细印刷用纸必须进行纸面涂布加工处理,进一步改善纸张表面性能。 2、纸页涂布加工的目的是什么? 答:纸页涂布加工的目的是在由纤维形成的凹凸不平和有较大孔隙的普通纸的表面上,覆盖一层由细微粒子组成的对油墨有良好吸收性的涂料,以便得到具有良好的均匀性和平滑度的纸面。通过涂布还可以提高纸张的光泽度,改善纸张的稳定性和不透明度,这些特性均随着涂布量的增加而增加。 3、印刷涂布纸的种类有哪些? 答:印刷涂料一般可以分为普通涂布纸和特殊涂布纸两大类。普通涂布纸是采用普通涂布方式把涂料涂布于原纸表面,经干燥后再进行压光处理,最后裁切或复卷成平板纸或卷筒纸,如铜版纸、亚光纸、轻量涂布纸等;特殊涂布纸是指采用特殊涂料或特殊的加工方式制成的印刷涂布纸,如铸涂纸(玻璃卡纸)、压花纸和无光涂布纸等。 4、印刷涂布纸的生产流程? 答:印刷涂布纸的生产工艺流程如下: 原纸的选择→涂料制备→涂布机涂布→干燥→压光或表面整理→分切或复卷。 5、涂布工艺如何分类? 答:涂布作业按涂布机与造纸机的关系分为机内式和机外式,按涂布次数分为单层涂布和双层涂布,机内式涂布是在造纸机上装有涂布机,使造纸与涂布连续进行,双层涂布的纸张比单层涂布的纸张具有更好的印刷适性,能提高涂布纸的质量。用于涂布作业的涂布机主要有辊式涂布机、气刀涂布机和刮刀涂布机三种。 6、涂布纸的干燥方式有哪些? 答:涂料涂布在原纸表面后,不能像非涂布纸那样直接用烘缸进行干燥,因涂层还片于湿润状态,直接接触干燥会使涂料粘到烘缸表面。一般应采用红外线干燥或热风干燥,或采用这些干燥方式干燥到一定干度后,再用烘缸进行接触干燥。 7、涂布纸表面压光作用是什么? 答:涂布加工后的原纸表面还存在大量细微的凹凸不平的地方,不能满足印刷所要求的平滑度,同时也不具有光泽度。因此必须进行表面压光处理,最常用的压光方法为超级压光。超级压光机由多个金属辊和纸粕辊组成,纸张在辊与辊之间通过时受压力和磨擦力作用而产生光泽。无光涂布纸则不需要进行超级压光,或只进行轻微的压光。 8、涂布纸对原纸有何要求? 答:原纸的质量对涂布纸有着极重要的影响、控制不好会影响涂布纸的性能。从原纸纸浆上讲,铜版原纸多采用硫酸盐木浆,其中70%为阔叶木浆,其余用针叶木浆。对于低定量、高质量铜版原纸,针叶木桨的配入量要相应高些。在强度方面,铜版原纸要具备较高的抗张强度和表面强度,除改变纸浆的成分外,还应采

涂布纸病及处理方法

涂布纸病及处理方法 猫眼 是由于背辊粘附有硬物、涂料、有损纸等突出异物或辊筒表面损伤等原因造成。形状象猫的眼睛,且以背辊圆周长为间隔距离,顺着纸机方向规则地连续发生。究其原因:为刮刀在刮下涂料时压力大,使得缺陷的中心部分涂料量少,而左右部分涂布量多。若将涂布纸表面对着光线透视即可判别。 解决方法: (1)防止涂料块、损纸块等异物掉落附着在背辊上。 (2)将涂布机停机清洗,用湿布将背辊擦干净即可消除。 (3)背辊受伤处利用砂纸研磨加以修整,若无法改善,应更换背辊。 (纸面黑点) 刮刀痕 此现象为刮刀式涂布机最常见的纸病。它是顺着纸面纸机方向有针状或丝状的伤痕。在运转中的刮刀出121处可以看到有短仅数公分而长亦有达1公尺以上的刀痕间歇性地出现,伤痕的程度,有些像刀刻那么深,亦有些像毛刷轻轻刷过那么浅。判别方法,最好站在运转中涂布机的刮刀出121处注意观察,若已经成为成品,前者(刀痕深)一见便知,后者(刀痕浅)则

须将纸面对着反射光拿着靠近眼睛平行地窥视才能判别。 发生原因:刮刀与纸页表面的颗粒硬物或涂料内的杂质等,将涂层破坏而形成。 解决方法: (1)可用木棒轻轻挤压刮刀,将异物挤出即可。此类刮刀痕为凹刀痕,还有一种凸刀痕,则是由于刮刀有缺口,通过缺口的涂料在纸页上会形成一条黄线,遇此情况只有更换刮刀了。 (2)金属或砂粒等粒子所引起的刀痕一提高涂料浓度、洗净涂料过滤网、使用网目较小的过滤网。将涂布机停车彻底洗净涂料供给系数,调整刮刀的接触角,改变原纸表面的粗糙度及提高原纸胶度。 (3)原纸脱皮所引起的刀痕一提高原纸表面强度、原纸施胶度,及叩解度。调整刮刀接触角及涂料浓度。更换刮刀等。 细刮痕 通常是干燥室内有导辊不转,导辊带有干料破坏了纸页的涂层而出现。 解决方法: 刮干净导辊上的干料,并使导辊恢复转动。 光泽差 是由于钢刮刀在使用过一段时间后,弹性减小,刀口磨损无法通过正常的加压、减压来调整涂布量,以至达不到正常的涂布量而出现。 解决方法: 更换新的刮刀。 刷子印 由于涂料固含量偏大,如果调整涂布量时,刮刀压力变化过大,在刮刀的涂料会很快凝固并在刀口形成大量细小的颗粒,湿涂料在通过刀口细小的颗粒时,涂层很不平整,象被毛刷刷过一般。故名刷子印。 解决方法: 用木棒轻搓刀背,将刀口的硬颗粒搓掉即可。 漏涂

非涂布纸与涂布纸的区别

本文摘自再生资源回收-变宝网(https://www.sodocs.net/doc/3511559822.html,) 非涂布纸与涂布纸的区别 涂布纸的制造,简单的说是指在原纸之上涂上涂料,经过干燥后再用压光机使得它的表面平滑化,因此原纸与涂料是左右涂布纸品质的重要因素。以一个涂布量为20g/m2的涂布层为例,假设涂料的干比重为1.5,则涂布层之厚度仅约0.0013公分,在如此薄的厚度下,原纸的品质确实占有重要的地位。假使涂布的速度慢时,因为吸水后的原纸纸匹,到达干燥部门不能失去强度,所以必须适度的上胶与保持湿纸的强度。反过来说涂布速度快时,则纸张必须具备一定的强度来抵抗高速涂布所带来的机械力,同时均一的吸水性也是非常的重要。除此之外,涂布用原纸还必须具备下列的性质:尺寸安定性好,不会因水分变化而有太大变化。对涂料的吸附性强。原纸必须不会弯曲,否则会引起涂料条痕而导致纸张断裂。不可有皱纹、破洞等瑕疵。涂布加工时,纸卷必须卷紧,以免发生断纸。原纸性质中会影响涂布主要有:均一性、平滑度、表面吸收性、表面强度、表面情形、化学适性、两面性及纸面光学性等,因此,一张纸的好坏,在于原纸的状况好坏与否。 涂料配制是制造涂布纸最基本的技术,对产品用途具有关键性的影响,所以涂料须满足涂布作业的操作性及印刷适性等,并

按这些条件进行设计制造;即涂料的设计与生产何种涂布纸有关。以数量来看,仍以普通涂布纸为主,但以技术层次而言,则希望拥有铜版纸类的技术。不同产品应使用其相对应的涂料、涂布方法和涂布机。虽然各种类必须达到规定的品质指针,但是最重要的是获得客户的肯定。纸张涂布用的涂料种类很多,而其中较为普遍应用的是水基性涂料。水基性(Water base)涂料的组成大致上可分成四类:颜料、接着剂、添加助剂及水。这四类成份的组合与涂布后纸张的品质息息相关。 颜料 颜料有白土(白色黏土)、碳酸钙、沙丁白、氢氧化铝、二氧化钛和塑料颜料等。1.白土白土从成份上分类有:高岭土类、叶石类(pyrophyllite)、云母类(cericite)等。高岭土又进一步细分为:高岭土、多水高岭土等,这些白土都已经被商品化生产但是,现在涂布纸用白土中,基本上把高岭石类都称为高岭土,也就成为涂布用白土的代名词。高岭土颗粒呈六角板状,粒径为0.3-3微米。这些微粒的纵横比、粒径直接影响涂布纸类颜料的品质,目前涂布纸颜料多用高岭土,因为它能赋予涂布纸较高的白纸光泽性,所需的接着剂适量,黏性和分散性较好,使涂料能提高固形份。

相关主题