搜档网
当前位置:搜档网 › 第02章 煤层气的物质组成性质和利用

第02章 煤层气的物质组成性质和利用

第02章  煤层气的物质组成性质和利用
第02章  煤层气的物质组成性质和利用

第二章煤层气的物质组成、性质和利用

啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊煤层气是指赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解于煤层水中的烃类气体(附录一),其成分以甲烷为主,往往将其简称为煤层甲烷。煤层气与煤型气、瓦斯在词义上有明显差别。

煤型气是指煤系地层中煤和分散有机质,在成岩和煤化过程中形成的天然气,以游离状态、吸附状态和溶解状态赋存于煤层和其它岩层内,其成分大多以甲烷为主,也可能以氮气、二氧化碳或重烃等为主。其中赋存在煤层中,成分以甲烷为主的煤型气称为煤层气或煤层甲烷,赋存在围岩中的煤型气称为煤成气。

瓦斯是赋存在煤层中的煤层气与采动影响带中的煤成(层)气、采空区的煤型气及采掘活动过程中新生成的各种气体的总称。

第一节煤层气的形成

植物体埋藏后,经过微生物的生物化学作用转化为泥炭(泥炭化作用阶段),泥炭又经历以物理化学作用为主的地质作用,向褐煤、烟煤和无烟煤转化(煤化作用阶段),在煤化作用过程中,成煤物质发生了复杂的物理化学变化,挥发份含量和含水量减少,发热量和固定碳含量增加,同时也生成了以甲烷为主的气体。

啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊煤化作用要经历两个过程,通过两个过程,即生物成因过程和热成因过程,生成的气体分别称为生物成因气和热成因气(表2-1)。

表2-1 生物成因和热成因煤层气产生的阶段(据Scott,1994)

一、生物成因气

生物成因气是有机质在微生物降解作用下的产物。指在相对低的温度(一般小于50℃)条件下,通过细菌的参与或作用,在煤层中生成的以甲烷为主并含少量其它成分的气体。生物成因气的生成有两种机制:其一,二氧化碳的还原作用生成甲烷;其二,醋酸、甲醇、甲胺等经发酵作用转化成甲烷(Law,1993)。尽管两种作用都在近地表环境中进行,但根据组分研究,大部分古代聚集的生物气可能来自二氧化碳的还原作用。煤层中生成大量生物成因气的有利条件是:大量有机质的快速沉积、充裕的孔隙空间、低温和高pH值的缺氧环境(Law,1993)。按照生气时间、母质以及地质条件的不同。生物成因气有原生生物成因气和次生生物成因气两种类型,两者在成因上无本质差别。

1、原生生物成因气

原生生物成因气是在煤化作用阶段早期,泥炭沼泽环境中的低变质煤(泥炭~褐煤)经微生物作用使有机质发生一系列复杂过程所生成的气体,又称之为早期生物成因甲烷。由泥炭至褐煤阶段可生成原生生物甲烷气量约为38m3/t(Κрαвдов,1983)。该类气体的生成量约占200℃以下煤层气总生成量的10%(Rightmire,1984)。由于原生生物气常常形成于地表或地下浅处,因而生成的气体极易扩散到大气中,或溶解于水体中,且泥炭或低变质煤对气体的吸附作用也弱,仅有少量气体聚集在煤层内。

对于原生生物成因气和热成因气的形成阶段,不同学者的划分方案不尽相同,Scott等(1994)以R o<0.3%为原生生物气的界限值,而热成因气开始生成的R o值为0.5%(表2-1);Palmer等则将(原生)生物气和热(成因)解气的R o临界值定为0.5%(秦勇等译,1996)。Rice(1994)则认为热成因气的形成始于0.6%左右。之所以出现这种差异,是因为传统的天然气成因理论认为,生物气一般形成于R o值为0.3%以前,而热解气则形成于R o值在0.6%~0.7%之后,即生气母质在R o值0.3%~0.6%的热演化阶段不生气(表2-1即是这种观点的体现)。但近若干年来的研究表明,生气母质在R o值为0.3%~0.6%阶段仍然生气,且可形成相当规模的气田(目前出现的多为煤型气田),这一阶段所生成的气体称为生物热催化过渡带气(徐永昌,1994)。即有机质生气是一个连续的过程,煤层气也应如此。

2、次生生物成因气

啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊煤系地层在后期被构造作用抬升并剥蚀到近地表,细菌通过流动水(多为雨水)可运移到煤层含水层中,在低、中煤级煤中当温度、盐度等环境条件又适宜微生物生存时,在相对低的温度下(一般小于56℃),细菌通过降解和代谢作用将煤层中已生成的湿气、正烷烃和其它有机化合物转变成甲烷和二氧化碳,即形成次生生物成因气。

次生生物气的形成时间一般较晚(几万至几百万年前),煤层中存留的生物成因气大部

分属于次生生物成因气。次生生物成因气的生成和保存需以下条件:煤级为褐煤~焦煤,煤层所在区域发生过隆起(抬升)作用;煤层有适宜的渗透性;沿盆地边缘有流水回灌到盆地煤层中;有细菌运移到煤层中;煤层具有较高的储层压力和能储存大量气体的圈闭条件(Law,1993,Scott,1994)。

二、热成因气

热成因气是在温度(>50℃)和压力作用下,煤有机质发生一系列物理、化学变化,煤中大量富含氢和氧的挥发分物质主要以甲烷、二氧化碳和水的形式释放出来。在较高温度下,有机酸的脱羧基作用也可以生成甲烷和二氧化碳(A yers,1994)。

随着褐煤层埋藏深度的增加,温度的上升,煤的变质程度不断提高,生成了大量的甲烷和其他气体。这一变质过程导致了有机质不断脱氧、脱氢、富碳。生成的气体类型取决于煤的变质程度(图2-1)。Messner(1984)认为:当R0,max大于0.73%(R0,max为镜质组最大反射率)、可燃基挥发份含量大于37.8%时,热成因煤层气开始大量生成。Law(1985)则认为热成因煤层气开始大量生成时的温度为88~93℃,R o,max=0.80%;Rightmire(1984)认为:当R0,max为0.60%,挥发份为40.24%,即相当于高挥发份烟煤C时(相当于我国的褐煤~长焰煤阶段),热成因煤层气开始生成,其生成高峰在150℃左右,相当于中挥发份烟煤、低挥发份烟煤、半无烟煤(相当于我国的焦煤~贫煤阶段)。因此,张新民(1991)等参考天然气的成因分类,以R o,max=1.90%为界,划分0.50%1.90%的过成熟阶段,对应于裂解气。因为煤是以腐植型干酪根(III型干酪根),成岩与煤化作用期间不存在明显的液态烃过程,热解气、裂解气划分不是十分严格。

图2-1 煤化作用阶段及气体生成(据Stach,1982)据Hunt等(1979)研究:在煤化学作用早期(<120℃=,生成的气体以二氧化碳为主,

在高挥发份烟煤与中挥发份烟煤分界处(相当于我国的肥煤阶段)所生成的二氧化碳是甲烷的两倍多。在该点之后,甲烷气的生成量迅速增加,产气高峰在中挥发份烟煤与低挥发份烟煤的分界处(相当于150℃)。此时,镜质组的反射率达到1.8%左右,生成的气量约占从褐煤至无烟煤总生气量的70%。之后继续生气,至无烟煤2号,镜质体反射率超过4.0%,逐步停止生气过程。

形成热成因甲烷大致分三个阶段:

1)褐煤至长焰煤阶段:生成的气量多,成分以CO2为主,占72%~92%,烃类<20%。

且以甲烷为主,重烃气<4%。

2)长焰煤至焦煤阶段:烃类气体迅速增加,占70%~80%,CO2下降至10%左右。烃类气体以CH4为主,但含较多的重烃,至肥、焦煤时重烃可占10%~20%,该阶段是主

要的生油阶段,如壳质组含量多,则油和湿气含量也多。

3)瘦煤至无烟煤阶段:烃类气体占70%,其中CH4占绝对优势(97%~99%),几乎没有重烃。

煤阶和有机质性质的不同,其产气量差异很大。煤阶高,产生的煤型气就多。据原苏联报导,形成1吨褐煤可产生38~68m3煤型气,形成1吨长焰煤可产生138~168m3/t,气煤o 为182~212m3/t ,肥煤为199~230m3/t,焦煤为240~270m3/t,瘦煤为257~287m3/t,贫煤为295~330m3/t,无烟煤为346~422m3/t(Κрαвдов,1983)。不同的显微组分对成气的贡献不同,王少昌等对低煤级煤显微组分的热模拟实验结果表明壳质组、镜质组、惰质组最终成烃效率比约为3.3:1.0:0.8*,傅家谟认为:在相同演化条件下,惰质组产气率最低,镜质组是惰质组的4.3倍,壳质组为惰质组的11倍,并产出较多的液态烃。

第二节煤层气的化学组分

一、煤层气的化学组分

煤层气的化学组分有烃类气体(甲烷及其同系物)、非烃类气体(二氧化碳、氮气、氢气、一氧化碳、硫化氢以及稀有气体氦、氩等)。其中,甲烷、二氧化碳、氮气是煤层气的主要成分,尤以甲烷含量最高,二氧化碳和氮气含量较低,一氧化碳和稀有气体含量甚微。

1、烃类气体

煤层气的主要成分是甲烷,其含量一般大于80%,其它烃类气体含量极少。通常,在同一煤阶,烃类气体随埋藏深度的增大而增加。重烃气主要分布于未受风化的煤层中,此外,重烃含量常常还与煤变质程度有关,一般中变质煤中重烃含量高,而低、高变质煤中低。

通常用甲烷气体(C1)与总烃量(C1~ C5)的比率作为确定气体的干度指标,即C1/ C1~5值大于99%,为特别干的气体,95%~99%为干气,85%~95%为湿气,小于85%,为特别湿的气体。

*王少昌等. 陕甘宁盆地上古生界煤成气藏形成条件及勘探方向. 长庆石油地质局,1985

2、非烃类气体

大多数煤层气中的非烃类气体含量通常小于20%,其中氮气约占三分之二,二氧化碳约占三分之一。如美国阿巴拉契亚盆地、阿科马盆地和黑勇士盆地,其煤层气中非烃气体含量极低,远远低于10%。在某些煤层气中,氮气和二氧化碳含量变化很大,如江西丰城煤矿,其氮气含量变化在0.20%~83.39%,二氧化碳含量变化在0.02%~10.12%。氮气分子较小,运移速度快,因而主要受上覆盖层质量的影响。二氧化碳易溶于水,且易被地下水带走,因而二氧化碳含量主要受地下水活动的影响。此外,氮气和二氧化碳含量也受煤层埋深和煤变质程度的影响,一般越靠近地表,氮气和二氧化碳的含量越高;煤变质程度越高,氮气和二氧化碳的含量越低。

虽然煤层气的成分都是以甲烷为主,然而在不同盆地,同一盆地的不同部位,不同煤层,不同埋深,不同煤阶以及不同煤层气井之间,煤层气的组分往往出现较大的差异。控制煤层气成分的主要因素有:1)煤的显微组分,特别是富氢组分的丰度;2)储层压力,它影响煤的吸附能力;3)煤化作用程度,即煤阶/煤级;4)煤层气解吸阶段,吸附性弱或浓度高的组分先解吸;5)水文地质条件,它通过输送细菌及生物成因的气体而影响煤层气的成分(Scott,1995)。

Scott对产自美国1380多口煤层气井的985个气样的分析结果表明:煤层气的平均气成分为:甲烷占93.2%,重烃占2.6%,二氧化碳占3.1%,氮气占1.1%。通过对采自晚石炭世宾夕法尼亚组到新近纪煤层中气体样品(气样直接采自矿井、煤样解吸气和地面开采的煤层气;煤级从褐煤到无烟煤,R o=0.3%~4.9%;含气煤层的深度从121.91m的矿井到4419.38m 的钻孔)研究,Rice(1993)认为:世界各地煤层气的组分差异很大,甲烷和其它烃类组分通常是煤层气的主要组分,并含少量CO2和N2。气体中烃的组成,用气体湿度(C2+即乙烷及其以上重烃百分含量)来表示,湿度值介于0~70.5%之间。

二、煤层甲烷的同位素特征

1、煤层甲烷稳定碳同位素分布

Law(1993)研究认为世界各地煤层气的同位素组成差异较大,甲烷的δ13 C值分布范围很宽,介于-80‰至-16.8‰之间;乙烷的值δ13 C介于-3.29‰~-2.28‰之间;甲烷的δD值分布在-33.3‰~-11.7‰之间;二氧化碳的δ13 C值从-2.66‰到18.6‰。从煤样中解吸出的甲烷的δ13 C值比开采气或自由(游离)气体中甲烷的δ13 C值高出几个千分点(Law,1993)。这是因为在解吸作用过程中,发生同位素分馏作用,13 C富集到了解吸气体中。

国内测试资料表明,煤层气δ13C1变化于-78‰~-13‰之间,分布范围广,同位素组成总体上偏轻,而且不同地区、不同地质时代和不同煤级煤中的δ13 C1分布特征也有所不同。

就地区而言,华北煤层气δ13 C1为-78‰~-28‰,东北煤层气δ13 C1为-68‰~-49‰,华南煤层气δ13 C1为-68‰~-25‰(图2-2)。显然,我国煤层气的δ13 C1地域分布总体上体现出不同地质时代构造背景下煤中有机质生烃演化的特点。华北和华南的煤层主要形成于晚古生代,经历了多阶段的构造演化,煤化作用的地质背景较为复杂,煤级跨度大,生气历程长,δ13C1变化大;东北煤层主要形成于中一新生代,热演化历程及其控制因素相对简单,煤级普遍较低,δ13 C1分布较为集中。

图2-2 我国煤层甲烷稳定碳同位素的地域分布(据叶建平等,1998)

就全国来看,煤层气δ13C1与煤级之间的关系尽管离散性较大,但规律性仍然相当明显(图2-3)。δ13C1随镜质组最大反射率增高变重,但二者之间的这种正相关关系并非是线性的。当镜质组最大反射率小于2. 0%时,δ13C1值增大的速率较快,由-65‰(反射率0. 3%左右)增至-25‰(反射率2. 0%左右),此后直到镜质组最大反射率4.0%附近,δ13 C1值仍低于-20‰。换言之,只有在进人无烟煤阶段之后,煤层气的δ13C1值才开始接近或落人腐殖型常规天然气δ13 C1值的分布范畴(>-35‰)。

进一步分析特定地区煤层气稳定碳同位素的演化趋势发现,不仅δ13C1值与镜质组反射率之间的离散性显著减小,而且存在着有别于全国性趋势的区域规律。华北和华南煤层气δ13C1值与全国性规律一致,随煤级增高而变重,且在进人无烟煤阶段后离散性明显变小(图2-4a,图2-4b)。东北煤层气δ13 C1值的演化却与此相反,煤级增高,δ13 C1值变小(图2-4c )。

腐殖型常规天然气δ13C1与镜质组反射率之间呈对数线性相关关系,华北、华南和全国δ13C1值与煤级之间的相关趋势与此一致,东北与此相反,暗示东北煤层甲烷稳定碳同

位素的分布另有重要控制因素。

图2-3 我国煤层甲烷稳定碳同位素分布与煤级之间关系(据叶建平等,1998)

(a)华北地区(b)华南地区(c)东北地区

图2-4 不同地区甲烷稳定碳同位素分布与煤级之间关系(据叶建平等,1998)

Rice等(1993)总结美国和加拿大煤层甲烷同位素资料得出甲烷的稳定碳同位素δ13 C 值与煤级有很好的相关关系。一般低煤级煤的δ13C1值小,煤阶增加,δ13C1值变大。但是同一煤阶,δ13C1值具有很大的变化范围(图2-5)。此外,δ13C1值与现今的埋深有较好的对应关系,在煤级一定的情况下,浅部煤层甲烷由轻同位素组成,深部煤层甲烷则由重同位素组成。

2、煤层气的鉴别标志

主要利用煤层气组分特征及其同位素特征来鉴别煤层气。

1)相同成熟度,煤层气的甲烷碳同位素比油型气

偏重。在R o,max=0.50~2.5%间,

δ13C1>-30‰是煤层气,-43%~-55‰≤δ13

C1>-30‰是油型气。

2)煤层气比油型气的甲烷同系物的同位素重。

δ13 C 2>-25.1‰,δ13 C 3>-23.2‰为煤层气

δ13 C 2<-28.8‰,δ13 C 3<-25.5‰为油型气

δ13 C 2<-25.1‰至>-28.8‰和δ13 C 3<

-23.2‰至>-25.5‰区间大部分为煤层气,但也

包括部分的混合气。

3)煤化作用早、中期(R o,ma=0.5-1.35%)以成气

作用为主,成油作用为辅的是煤层气。

4)煤成油具明显的姥鲛烷优势,姥鲛烷/植烷

Pr/Ph=0.68-11.6,其中绝大多数大于2.1,

而Ⅰ、Ⅱ型干酪根生成原油的Pr/Ph=1.43,图2-5 煤层δ13 C

与Ro%关系

1

煤层气为姥植均势。 (据Rice等,1993)5)煤层气的汞含量比油型气高,煤层气含汞约

80mg/m3,油型气约7mg/m3。

不同成因的煤层甲烷,其碳同位素不同,可以用甲烷碳同位素来区分煤层甲烷的成因。通常生物成因甲烷,δ13 C1值一般为-55‰至-90‰;而热成因甲烷,δ13 C1值一般>-50‰(图2-6)。

图2-6 煤层气中CH4和CO2的碳同位素特征

(据Scott, 1993)

第三节煤层气地球化学组成和变化的地质控制

世界各地煤层气组分和同位素组成差异很大,煤层气组成主要受煤岩组分(母质)、煤级、生气过程、埋深及相应的温压条件等因素的影响。此外,水动力条件和次生作用(如混合、氧化作用)等也影响煤层气的地球化学组成。啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊

一、煤岩组分

煤岩组分是煤的基本成分,是煤层气的生气母质,所以可能是影响煤层气组成的首要因素。大多数煤归类为腐殖型干酪根,其煤岩组分以镜质组为主,并含有少量的壳质组和惰性组。壳质组通常相对富氢,是煤成油的主要显微组分,具有很高的生烃能力(赵师庆,1991)。近来的有机岩石学和地球化学研究已证明:镜质组和III型干酪根的热演化途径一致,主要生成甲烷和其它气体,镜质组富氢的某些组分亦可生成液态烃(赵师庆,1991;姚素娟,1996);惰性组的产气量比相同煤级的壳质组和镜质组低。三种煤岩组分的烃气产率,以壳质组最高,镜质组次之,惰性组最低(傅家谟,1990)。

在中等变质煤(高挥发份烟煤至中挥发份烟煤)中,腐泥型煤(I、II型干酪根,主要为壳质组和富氢镜质组)能够生成湿气和液态烃,而腐殖型煤(III型干酪根,主要含镜质组)则生成较干的气体。对于高变质煤。煤层气主要成分是甲烷。由残留干酪根和早期生成的重烃裂解而形成。一般地说,含富氧干酪根的煤(镜质组为主)生成的煤层气和含富氢干酪根的煤(壳质组和富氢镜质组为主)生成的煤层气相比,在成熟度相同的条件下,前者比后者δ13 C1值较大,而前者甲烷和乙烷的δ13 C值的分布范围比后者窄。这是因为脂肪族烃热裂解生成的甲烷同位素较轻,这种甲烷在含富氢干酪根的煤层生成的气体中占优势,芳香族烃热裂解生成甲烷的碳同位素较重,它在含富氧干酪根的煤层生成的气体中占主导地位(Law,1993)。

煤的热演化早期阶段所生成的液态烃保留在煤的微结构中,在较高温度时,煤层中的液态烃裂解,生成的气体,它比直接产自干酪根的气体有较大的δ13 C1值(Law,1993)。

二、煤化程度

煤化程度是控制气体生成量和组分的重要因素,同时也影响着煤层气的同位素组成。一般地说,煤变质程度越高,生成的气体量也越多。低变质煤(亚烟煤~中挥发份烟煤)生成的热成因气以二氧化碳为主,而高变质煤(低挥发份烟煤及其以上煤级的煤)生成的气体主要成分为甲烷(图2-1)。

中国、澳大利亚、美国等地煤层气的研究表明:煤层气中甲烷的δ13C1值和煤级有一定关系。通常,低变质煤生成的煤层气中甲烷的δ13C1值较小,高变质煤生成的煤层气中甲烷的δ13C1值较大。对于未发生次生变化的原生煤层气而言,随着煤变质程度的提高,

相应煤层气中的甲烷富集氘和13 C(Law,1993)。

三、煤层气的成因

如前所述,煤层气的生成有生物成因和热成因两个过程。由于生物成因气和热成因气在形成时间、生成温压、母质和生气机理(有无细菌活动等)等方面的差异,所以这两个过程中所生成的煤层气的组成也有较大差异。

通常由于生物体对12C的富集,所以生物成因气的δ13 C1值较小,甲烷的δ13 C1值一般介于-55‰~-90‰之间,甚或更轻。生物成因气通过二氧化碳还原作用和有机酸发酵作用而生成,这两种不同的生气机制所生成的生物气的同位素特征也有差异。通常,由二氧化碳还原作用生成的甲烷碳同位素较轻(甲烷δ13C1值介于-55‰~-110‰之间),且富氘(δD值介于-150‰~-250‰之间);有机酸发酵作用生成的甲烷碳同位素则较重(甲烷δ13C1值在-40‰~-70‰之间),且消耗氘(δD值在-250‰~-400‰之间)。但要注意,二氧化碳还原生成甲烷的δ13 C1值和CO2基质的δ13 C值有关,甲烷的δD值和地层水的δD值有关(Law,1993)。

与生物成因气相比,热成因煤层气有如下特征:1)重烃一般出现在高中挥发份烟煤及煤化程度更高的煤中;2)随着煤化程度的提高,重同位素13C在甲烷和乙烷中富集(甲烷δ13 C1值大于-55‰),这是因为在热成因成气过程中,随着煤化程度的提高,气体分子中的12C-12C键比12C-13C键更频繁地断开,致使残留气体中富集13C,所以热成因气体的δ13C

1值随之增大;3)随着煤化程度的提高,甲烷也相对富集氘(甲烷δD值大于-250‰,Law,1993)。

四、埋藏深度

煤层埋藏深度和煤层气甲烷δ13 C1值有一定关系。一般来说,随煤层埋藏深度的增加,煤层甲烷的δ13C1值呈增大的趋势,与深层煤层气相比,浅层煤层气为较干气体且所含甲烷的δ13C1值低。从世界各地的资料看,在煤阶相同或相近的情况下,δ13C1值较小的煤层气的赋存深度一般也较浅,随着煤层埋藏深度的增加,煤层气的组分也发生着变化。

五、煤层气的解吸与扩散

煤层后期抬升,煤储层压力场发生改变,煤层气出现解吸和扩散。结构简单、分子量小、重量轻的甲烷比结构复杂、分子量大且较重的重烃气容易解吸,且速度快。在同为甲烷的分子中,轻的12C1由于极性弱,比重的和极性强的13C1容易解吸,且速度快。因此,随煤层埋藏深度的增加,煤层甲烷的δ13 C1值呈增大的趋势。

六、次生作用

煤层气的次生作用是指对早期已生成气体的改造作用。主要是生物成因气和热成因气

的混合和湿气组分的氧化作用。

次生作用影响煤层气的组成,尤其是对于浅层煤层气。在浅部,煤层通常为细菌繁盛的含水层。细菌影响煤层气组成的方式有三种:1)厌氧菌活动导致大量生物成因气的生成并和以前生成的热成因气混合,这种混合作用可以解释某些地区浅层煤层气组分的变化(Law,

1993);2)喜氧菌能够优先和湿气组分起作用,使湿气大部分受到破坏,从而使残留湿气组分的δ

13

C 1值也比预期的要高。这种细菌对湿气组分的改造也可用来解释煤层气组分的变

化;3)喜氧菌的活动造成甲烷的氧化和消耗,使残留甲烷的δ13

C 1和δ

D 值增大(Law ,

1993)。

七、水文地质条件

有些地区水动力条件对煤层气组成的影响十分明显,如美国圣胡安盆地,盆地北部超高压区煤层气为富CO 2的干气,南部低压区煤层气则为贫CO 2的湿气(Scott ,1993)。在区域抬升后又遭受剥蚀的盆地边缘,雨水进入可渗透煤层中,细菌随流动水也一起迁移到煤层中,在细菌的降解和自身代谢活动作用下,生成了次生生物成因气,它是煤层气的一个补充来源,并有可能形成异常高的气体产量。

八、CH 4和CO 2的碳同位素交换平衡效应

煤成烃过程中,形成的煤层气中CH 4和CO 2的含量均较多。CH 4和CO 2的碳同位素交换平衡效应,使煤层中的13

C 1大幅度降低,导致煤层气中CH 4碳同素变轻。其反应如下:

242413

121213

CO CH CO CH C C C C +?+

CH 4和CO 2的碳同位素交换平衡效应使δ13C 1变轻作用,主要发生在煤层气形成后的早期,因为此时煤层气中CH 4和CO 2含量均较高,而后期由于CO 2被大量溶解,CH 4含量占绝对优势而CO 2含量很低,交换平衡对δ13C 1变轻作用影响不大。

第四节 煤层气的物理性质

煤层气的成分以甲烷为主,含量一般在90%以上,多为干气,重烃含量一般较低,还有少量的N 2、CO 2、H 2、CO 、SO 2、H 2S 以及氦、氖、氩、氪、氙等惰性气体及烯有气体。

一、 煤层气分子的大小和分子量

煤层气分子的大小介于0.32~0.55nm 之间,多为近似值(表2-2),分子的偏心度或非均质度,即偏心因子甲烷最小,只有0.008,分子平均自由程(气体分子运动过程中与其它分子两次碰撞之间的距离)约为其分子平均直径的200倍。其分子量是由组成煤层气的各种分子的百分含量累加而成,称为表观分子量。

二、 煤层气的密度

标准状态下(1个大气压,温度15.55℃)单位体积煤层气的重量,单位为kg/m 3。煤层气在地下的密度随分子量及压力的增大而增大,随温度的升高而减小。

煤层气的相对密度是指同温度、压力条件下(1个大气压,温度15.55℃或20℃)煤层气的

密度与空气密度的比值。

三、煤层气的粘度

粘度是流体运动时,其内部质点沿按触面相对运动,产生内摩擦力以阻抗流体变形的性质。常用动力粘度系数,即流体内摩擦切应力与切应变率的比值来表示,其单位为泊(P)、厘泊(CP)、微泊(μP)、千克力秒平方米(Kgf·s/m2)、帕斯卡秒(Pa·s)、毫帕斯卡秒(mPa·s)。1P=102CP=106μP =0.0101972 Kgf·s/m2=0.0980665 Pa·s=98. 0665mPa·s。煤层气的粘度很小,在地表常压20℃时,甲烷的动力粘度系数为1.08×10-5 mPa·s。表示粘度的参数还有运动粘度系数(即动力粘度与密度的比值,单位:cm2/s)和相对粘度(即液体的绝对粘度与水的绝对粘度的比值)

煤层气的粘度与气体的组成、温度、压力等条件有关,在正常压力下,粘度随温度的升高而变大,这与分子运动加速,气体分子碰撞次数增加有关,而随分子量增大而变小。在较高压力下,煤层气的粘度随压力增加而增长,随温度的升高而减小,随分子量的增大而增大。

表2-2 煤中吸附介质分子直径、沸点和分子自由程(0℃,0101325MPa)

表2-3 煤层气成分的物理性质

四、煤层气的临界点

临界温度是指气相纯物质维持液相的最高温度,高于这一温度,气体即不能用简单升高

压力的办法(不降低温度)使之转化为液体;临界压力是指气、液两相共存的最高压力,即在临界温度时,气体凝析所需的压力。高于临界温度,无论压力多大,气体不会液化;高于临界压力,不管温度多少,液态和气态不能同时存在。只有当温度和压力均超过其临界温度和临界压力时,才称为超临界状态。

地层条件下,煤层甲烷超临界吸附的现象是存在的。但只有当煤层甲烷压力(气压)超过4.60MPa(表2-1)才真正出现超临界流体,实际上在我国煤矿瓦斯实测压力中超过此压力的矿井是比较少的。但对于原位且处于封闭系统的煤储层,储层中水压等于气压,只要煤层埋深超过500m,煤层甲烷就可能成为现超临界流体。

对于甲烷和氮气,任一埋深储层温度均高于临界温度,无论压力多大,均不会液化;对于二氧化碳,当储层温度低于31.1℃(表2-2),对于乙烷,当储层温度低于32.4℃(表2-2),而储层压力(气压)高于液化压力,二者可以呈液态形式存在。按正常地温梯度3℃/100m、正常储层压力梯度0.98 MPa/100m,设恒温带深度为20m、温度为10℃,则埋深500m左右,储层温度约为25℃、储层压力为4.9 MPa,此时二者均低于临界温度和压力,二氧化碳和乙烷以气态形式存在;当埋深达到800m,储层温度约为34℃,高于临界温度,二氧化碳和乙烷仍为气态。但当二氧化碳压力大于7.38 MPa、乙烷压力大于4.98 MPa,二氧化碳和乙烷有可能成为超临界流体;只有在500~ 800m范围内的局部层段(封闭体系),储层温度低于临界温度,储层压力高于液化压力,二氧化碳和乙烷才可能以液态形式存在(图2-7)。

上面所述临界温度和临界压力是对单一气体组分而言的。在自然条件下,煤层气通常是多种组分气体的混合物。混合气体的临界温度,高于其最低沸点组分的临界温度,低于最高沸点的临界温度,等于组成混合气体的各个组分的绝对临界温度与相应的分子浓度的乘积之和。相应地也可以计算出混合气体的临界压力。这种计算出来的叫做混合气体的拟临界温度和拟临界压力。

图2-7 二氧化碳在正常地温条件下的液化区间

五、煤层气的溶解度

煤层气能不同程度地溶解于煤储层的地下水中,不同的气体溶解度差别很大。20℃、1atm 下单位体积水中溶解的气体体积称为溶解度(m3气/m3水),溶解度同气体压力的比值称为溶解系数(m3/m3·atm)。甲烷溶解度随

压力的增加而增加,低压时呈线性

关系,高压时(>10MPa)呈曲线

关系(图2-6)。温度对溶解度的影

响较复杂,温度<80℃时,随温度升

高溶解度降低;>80℃时,溶解度随

温度升高而增加(图2-8),甲烷溶

解度随矿化度的增加而减少(图

2-9)。所以在高温高压的地下水中溶解气明显增加。如果煤层水被CO2饱和时,则甲烷在水中的溶解度会图2-8 甲烷在水中的溶解度与温度的关系

明显增大。

六、主要气体组分的性质

甲烷为无色、无味、无溴、无毒的气体(表2-3)。但煤储层中往往含有少量其它芳香族碳氢气体,因此常常伴着一些苹果的香味。在大气压0.101325 MPa,温度0℃的标准状态下,甲烷的分子量为16.043,分子大小约为0.33~ 0.42nm;密度为0.0667Kg/m3,相对密度为0.554,比空气轻,当空气中混有5.3~16.0%浓度的甲烷,遇火即可燃烧或爆炸;动力粘度为1.084 ×10-5 Pa·s;临界温度为-82.57℃,临界压力为4.604MPa(表2-2);热值约为37.6KJ/kg。

图2-9 不同温度、不同矿化度条件下的甲烷溶解度与压力的关系

(部分数据源自庞雄奇,2003)

氮气是一种无色、无臭、无味的气体,微溶于水,0℃时1ml水仅能溶解0.023ml的氮气。在1个大气压,温度15.55℃时,其密度为1.182kg/m3,相对密度为0.967(表2-2)。

二氧化碳为无色、无嗅、略具酸味气体。在大气压0.101325 MPa,温度0℃的标准状态下,二氧化碳的分子量为44.010,分子大小约为0.33~ 0.47nm;密度为1.858Kg /m3,相对密度为1.519,比空气重,突然喷出可使人窒息;动力粘度为1.084 ×10-5 Pa·s;临界温度为31.06℃,临界压力为7.384MPa(表2-2)。

第五节煤层气对环境的影响

甲烷是大气中主要的温室气体之一,对红外线的吸收能力很强。根据对包裹在冰核中气泡的气体成分研究。过去200~300年来,大气中甲烷浓度已增加一倍,从工业革命以前的0.6ppm~0.7ppm增至现在的1.7ppm(Tyler,1991)。

甲烷对大气的化学及辐射特性有重要影响,从体积上,其温室效应是CO2的25~30倍。据估算,大气中甲烷浓度每增加1 ppm,可导致地球表面温度增加1℃(Donner,1980)。

大气中的CH4可与-OH、O3、H2O、HO x、H2、Cl2及其它成分发生一系列化学反应,从而影响大气中的H2O和O3的浓度及大气中总体氧化能力。大气中其它气体,如CH3Cl、CH3Br、CHClF3、CH2Cl2和SO2等含量,都直接或间接地受CH4和-OH浓度的影响。所有这些气体都影响大气的物理性质,增加的CH4温室效应。

第六节煤层气的利用

甲烷的临界温度为-82.57℃,这就是说,只要温度比-82.57℃,不管将压力增加到多大,都不可能使甲烷变成液体;当温度等于-82.57℃,压力升高到4.6MPa时,甲烷才开始变为液体。这意味着在一般温度条件(即大气温度)下,是不可能将甲烷液化的。因此,在常温下煤层气不能用作液化天然气(LNG)工业的原料,但却是优质的压缩天然气(CNG)工业的原料。低温条件下天然气的液化(LNG)是一项重大的先进技术,液化后的体积只有同量气态天然气的1/625,从而极大地方便了煤层气的储存、运输和使用,已被许多国家和地区广泛采用。

煤层甲烷的最佳利用方案随地区不同而变化,取决于气体的数量和质量以及当地的能源市场。总之,煤层气的就地使用非常适合我国的国情,这是因为产气量大且十分靠近潜在的工业和民用用户。目前,统一的管道基础设施的缺乏制约了煤层气的大规模利用。

煤层气作为一种洁净能源代替褐煤、硬煤和焦炉煤气等,不仅环境性能好,而且热效率高。甲烷的热值为36.72KJ/m3。按热值计算,大致1000m3甲烷相当于1t标准煤。1250m3甲烷相当于1t石油,1m3高浓度甲烷可发3度电。

1、化工原料

煤层气中的甲烷浓度很高,可与天然气混输,用于制造化工产品,如甲醛,甲醇、甲胺、尿素和碳黑等。甲醇用途最不广泛,不仅是重要的化工原料,又是廉价的汽车燃料,“中国一号”甲醇汽车被誉为“绿色汽车工程”,是我国汽车工业的一次革命。另外,甲醇可制成甲醇电池,应用于其它基础行业。

2、合成油

煤层气合成油(GTL)由合成气、费—托合成和产品精制三部分组成。通过费—托法工艺将煤层气合成转化成含硫量小于1ug/g,芳香烃小于是%(体积百分比)、十六烷值大于70的柴油燃料。

3、工业与民用燃料

煤层气可用于发电、汽车燃料和居民生活用气等多个方面。煤层气经压缩后可由天然气管道系统输送。目前,我国已敷设的天然气管道达5902km,主要分布在四川、广东、河北等。另外,“西气东输”管道、陕西延安到北京的天然气管道都为煤层气开发预留了入口。从总体上看,中国绝大多数矿区都缺乏完整的天然气管道系统。目前主要通过汽车短距离运输供给附近用户,如晋城地区将煤层气压缩到20MPa,每车约装4500m3标准气运送到城市用户。因此,中国适合于建设地方性管道系统。将煤层气供给居民,附近的工厂和公用事业单位,从而实现矿区的煤气化,改善当地的环境质量。在建造管道运输工程时,应考虑煤层气的输送成本、产地与市场的距离以及资源的开采年限。

我国煤矿使用的电主要由燃煤电厂提供,矸石电厂只提供少量电力。煤矿供热也主要以煤为能源。煤层气代替煤发电供热不仅能减轻环境污染,而且能提高热效率。实用的煤层气发电技术可分为以下四种:

1)往复式发动机

包括火花点火式四冲程发动机和狄塞尔双燃料发动机。这种发动机热效率高,燃料气的入口压力低,但一次性投资高,维修费用昂贵。

2)燃气轮机

燃气轮机的燃料必须使用高压煤层气,高压煤层气可直接取自高压主管道或通过外部煤层气压缩机来提供。燃气轮机的工作效率高达30%。英国的拉斯顿TB5000燃气轮机,完全能燃用煤层气。燃气轮机排放气体中的大量余热可通过废热锅炉加以利用以满足供暖需要。燃气轮机的缺点是需要将燃气加压到1.8MPa以上,煤层气的甲烷浓度应在40%以上。

3)汽轮机

汽轮机技术与其它技术相比,热动力效率较低,但该设备的运行十分可靠,服务年限长。在常压下,使用标准锅炉燃用煤层气来生产蒸汽,这种锅炉对煤层气的质量要求不高。

4)联合循环系统

联合循环是煤层气能源动力转换效率最高的一种方式。燃气轮机的排放气体温度高,含氧丰富,可直接送到预热锅炉生产蒸汽来驱动蒸汽轮机,这种联合循环系统可获得大约45%的热效率。

汽车是造成大气污染的重要污染源,它们排放CO、碳氢化合物和氮氧化物。柴油车辆还排放颗粒物。随着车辆在中国的不断增加,作为主要燃料的石油将会变得越来越短缺。使用煤层气能减少车辆排出的污染物。因此,使用压缩甲烷作为燃料的经济和环境效益十分明显。

煤层气的民用主要包括矿区居民的炊事和供热以及矿区食堂、幼儿园、学校的公用事业用气。与人工煤气相比,煤层气的民用具有投资少和效益高的特点,它不需另建气源厂。供民用的煤层气一般含甲烷35%~40%,不含其他干馏有害杂质,无需复杂的净化工艺。因此,煤层气的民用已在各矿区迅速推行。

中教实验:甲烷的制备与性质

甲烷的制备与性质 一、实验教学目标 1.掌握实验室制备CH 4与CH 4性质实验的操作; 2.初步学会CH 4实验的演示教学方法。 二、实验原理 本实验制取甲烷是用乙酸钠和氢氧化钠反应,一般认为是自由基反应,它由以下过程组成: 链引发: CH 3COONa → ?CH 3 + ?COONa 甲烷生成: ?CH 3 + NaOH → CH 4 +?ONa 碳酸钠生成: ?ONa + CH 3COONa →?CH 3 + Na 2CO 3 链中止: ?ONa + ?COONa → Na 2CO 3 当反应温度过高时: ?CH 3 + CH 3COONa → CH 3COOCH 3 +?ONa 链中止时产生CO : 2?COONa → Na 2CO 3 + CO 故表现为的总反方程式为: CH 3COONa + NaOH → 2Na 2CO 3 + CH 4↑ 主反应: CH 3COONa +NaOH Na 2CO 3+CH 4 CH 4的性质 CH 4+2O 2 2H 2O +CO 2 CH 4+Cl 2 CH 3Cl+HCl CH 3Cl+Cl 2 CH 2Cl 2+HCl CH 2Cl 2+Cl 2 CHCl 3+HCl CHCl 3+Cl 2 CCl 4+HCl CH 4的物理性质:通常状况下,CH 4是无色、无味、可燃和微毒的气体,密度比空气小,极难溶于水。结构为正四面体非极性分子,是有机物中最简单的分子。 CH 4的化学性质:通常情况下,CH 4性质稳定,不易与强酸、强碱、卤素单质的水溶液和强氧化剂反应,空气中燃烧产生淡蓝色火焰,甲烷中混入氧气或空气遇明火会发生爆炸(CH 4的爆炸极限体积比为5%-15%),引燃温度为538℃。 三、实验用品 铁架台、酒精灯、垫木、天平、大试管、单孔橡胶塞、锥形瓶(250ml )、烧杯(100ml 、200ml )研钵、水槽、坩埚钳、镊子、药匙、火柴、集气瓶、玻璃片、120°,30°玻璃导管、直型导管、脱脂棉、石棉网、蒸发皿。 Δ 点燃 CaO 光 光 光 光

最经典总结-物质的组成、性质和分类

物质的组成、性质和分类 最新考纲 考向分析考点一物质的组成和分类 Z 真题感悟 hen ti gan wu (课前) 1.(2017·北京·6)古丝绸之路贸易中的下列商品,主要成分属于无机物的是(A) A.瓷器B.丝绸C.茶叶D.中草药 属于有机物,B项错误;茶叶的主要成分为茶多酚(属于酚类)、生物碱、氨基酸、有机酸等,属于有机物,C项错误;中草药成分复杂,通常含有糖类、氨基酸、蛋白质、油脂、维生素、有机酸、生物碱等,其主要成分属于有机物,D项错误。 2.(2018·江苏·6)下列有关物质性质的叙述一定不正确的是(A) A.向FeCl2溶液中滴加NH4SCN溶液,溶液显红色 B.KAl(SO4)2·12H2O溶于水可形成Al(OH)3胶体 C.NH4Cl与Ca(OH)2混合加热可生成NH3 D.Cu与FeCl3溶液反应可生成CuCl2 [解析]A错:Fe3+遇SCN-溶液显红色。 3.(2018·江苏·3)下列有关物质性质与用途具有对应关系的是(D) A.NaHCO3受热易分解,可用于制胃酸中和剂 B.SiO2熔点高硬度大,可用于制光导纤维

C.Al2O3是两性氧化物,可用作耐高温材料 D.CaO能与水反应,可用作食品干燥剂 [解析]D对:CaO无毒,能与水反应生成Ca(OH)2,常用作食品干燥剂。A错:NaHCO3能与胃酸中的盐酸反应,可用于中和胃酸,但与NaHCO3受热易分解无关。B错:SiO2制光导纤维是利用了SiO2可以对光进行折射和全反射,与其熔点和硬度无关。C错:Al2O3的熔点很高,可用作耐高温材料,与Al2O3的两性无关。 4.(2016·全国Ⅱ·26)联氨(又称肼,N2H4,无色液体)是一种应用广泛的化工原料,可用作火箭燃料。回答下列问题: (1)联氨分子的电子式为,其中氮的化合价为_-2__。 (2)实验室中可用次氯酸钠溶液与氨反应制备联氨,反应的化学方程式为2NH3+NaClO===N2H4+NaCl+H2O。 [解析](1)N2H4中原子间以共价键结合,其电子式为。N2H4中H为+1价,由各元素化合价代数和为0,可确定N为-2价。(2)反应中NaClO和NH3分别作氧化剂和还原剂,根据得失电子守恒和原子守恒可写出并配平相应的化学方程式。 R 弱点突破 uo dian tu po (课堂) 知能补漏 1.警惕物质组成、分类中的“四大误区” (1)误认为由同种元素组成的物质一定是纯净物。 ①某物质可能由一种元素的不同单质混合而成。如O2、O3组成的混合气体就是混合物。 ②分子式相同的化合物可能存在同分异构体。如C4H10的结构有两种,正丁烷和异丁烷,二者组成混合物。 (2)误认为能电离出H+的物质一定是酸。如NaHSO4是一种盐。 (3)误认为酸性氧化物一定是非金属氧化物。如Mn2O7是金属氧化物但属于酸性氧化物,而且非金属氧化物也不一定属于酸性氧化物,如CO、NO为不成盐氧化物等。 (4)误认为金属氧化物一定是碱性氧化物。如Al2O3属于两性氧化物,Na2O2属于过氧化物。 2.拓展延伸 高中化学涉及的基本概念比较多,可设题的角度还有: (1)反应类型:四大基本反应类型、氧化还原反应等。 (2)物质概念:电解质和非电解质,强电解质和弱电解质,溶液、胶体和浊液,酸性氧

甲烷的性质

甲烷 甲烷分子式CH4。最简单的有机化合物。甲烷是没有颜色、 没有气味的气体,沸点-161.4℃,比空气轻,它是极难溶于 水的可燃性气体。甲烷和空气成适当比例的混合物,遇火花 会发生爆炸。化学性质相当稳定,跟强酸、强碱或强氧化剂 (如KMnO4)等一般不起反应。在适当条件下会发生氧化、热解及卤代等反应。 甲烷在自然界分布很广,是天然气、沼气、坑气及煤气的主要成分之一。它可用作燃料及制造氢、一氧化碳、炭黑、乙炔、氢氰酸及文字甲醛等物质的原料。 413kJ/mol、109°28′,甲烷分子是正四面体空间构型,上面的结构式只是表示分子里各原子的连接情况,并不能真实表示各原子的空间相对位置。 1.物质的理化常数: 国标编号21007 CAS号74-82-8 中文名称甲烷 英文名称methane;Marsh gas 别名沼气 分子式CH4 外观与性状无色无臭气体 分子量16.04 蒸汽压53.32kPa/-168.8℃闪点:-188℃ 熔点-182.5℃沸点:-161.5℃溶解性微溶于水,溶于醇、乙醚 密度相对密度(水=1)0.42(-164℃);相对密度(空气=1)0.55 稳定性稳定 危险标记4(易燃液体) 主要用途用作燃料和用于炭黑、氢、乙炔、甲醛等的制造 2.对环境的影响: 一、健康危害 侵入途径:吸入。 健康危害:甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%-30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。 二、毒理学资料及环境行为 毒性:属微毒类。允许气体安全地扩散到大气中或当作燃料使用。有单纯

物质的组成性质和分类

物质的组成、性质和分类: (一)掌握基本概念 1.分子 分子是能够独立存在并保持物质化学性质的一种微粒。 (1)分子同原子、离子一样是构成物质的基本微粒. (2)按组成分子的原子个数可分为: 单原子分子如:He、Ne、Ar、Kr… 双原子分子如:O2、H2、HCl、NO… 多原子分子如:H2O、P4、C6H12O6… 2.原子 原子是化学变化中的最小微粒。确切地说,在化学反应中原子核不变,只有核外电子发生变化。 (1)原子是组成某些物质(如金刚石、晶体硅、二氧化硅等原子晶体)和分子的基本微粒。 (2)原子是由原子核(中子、质子)和核外电子构成的。 3.离子 离子是指带电荷的原子或原子团。 (1)离子可分为: 阳离子:Li+、Na+、H+、NH4+… 阴离子:Cl–、O2–、OH–、SO42–… (2)存在离子的物质: ①离子化合物中:NaCl、CaCl2、Na2SO4… ②电解质溶液中:盐酸、NaOH溶液…

③金属晶体中:钠、铁、钾、铜… 4.元素 元素是具有相同核电荷数(即质子数)的同—类原子的总称。 (1)元素与物质、分子、原子的区别与联系:物质是由元素组成的(宏观看);物质是由分子、原子或离子构成的(微观看)。 (2)某些元素可以形成不同的单质(性质、结构不同)—同素异形体。 (3)各种元素在地壳中的质量分数各不相同,占前五位的依次是:O、Si、Al、Fe、Ca。 5.同位素 是指同一元素不同核素之间互称同位素,即具有相同质子数,不同中子数的同一类原子互称同位素。如H有三种同位素:11H、21H、31H(氕、氘、氚)。 6.核素 核素是具有特定质量数、原子序数和核能态,而且其寿命足以被观察的一类原子。 (1)同种元素、可以有若干种不同的核素—同位素。 (2)同一种元素的各种核素尽管中子数不同,但它们的质子数和电子数相同。核外电子排布相同,因而它们的化学性质几乎是相同的。 7.原子团 原子团是指多个原子结合成的集体,在许多反应中,原子团作为一个集体参加反应。原子团有几下几种类型:根(如SO42-、OHˉ、CH3COOˉ等)、官能团(有机物分子中能反映物质特殊性质的原子团,如—OH、—NO2、—COOH等)、游离基(又称自由基、具有不成价电子的原子团,如甲基游离基·CH3)。 8.基 化合物中具有特殊性质的一部分原子或原子团,或化合物分子中去掉某些原子或原子团后剩下的原子团。 (1)有机物的官能团是决定物质主要性质的基,如醇的羟基(—OH)和羧酸的羧基(—COOH)。 (2)甲烷(CH4)分子去掉一个氢原子后剩余部分(·CH3)含有未成对的价

高中化学:物质的组成、性质和分类知识点

高中化学:物质的组成、性质和分类知识点 考点1 物质的组成 1.元素——宏观概念,说明物质的宏观组成。 元素是质子数相同的一类原子的统称。质子数相同的微粒不一定是同一种元素,因为微粒的含义要比原子广泛。 2.分子、原子、离子——微观概念,说明物质的微观构成。 (1)分子是保持物质化学性质的一种微粒。(单原子分子、双原子分子、多原子分子) (2)原子是化学变化中的最小微粒。(不是构成物质的最小微粒) (3)离子是带电的原子或原子团。(基:中性原子团) 3.核素——具有一定数目的质子和一定数目的中子的一种原子 同位素——具有相同质子数和不同中子数的原子互称为同位素 同素异形体——同种元素形成的结构不同的单质 特别提醒: 1.离子与基团: 2.同位素与同素异形体: [知识规律] 物质到底是由分子、原子还是离子构成?这与物质所属的晶体类型有关。如金刚石(C)、晶体Si都属原子晶体,其晶体中只有原子;NaCl、KClO3属离子晶体,其晶体中只有阴阳离子;单质S、P4属分子晶体,它们是由原子形成分子,进而构成晶体的。具体地: (1)由分子构成的物质(分子晶体): ①非金属单质:如H2、X2、O2、O3、N2、P4、S、C60、稀有气体等 ②非金属氢化物:如HX、H2O、NH3、H2S等 ③酸酐:如SO2、CO2、SO3、P2O5、N2O5 等 ④酸类:如HClO4、HClO、H2SO4、H3PO4、H2SiO3等 ⑤有机物:如烃类、烃的衍生物、糖类、氨基酸等 ⑥其它:如NO、N2O4、Al2Cl6等 (2)由原子直接构成的物质(原子晶体):稀有气体、金刚石、晶体硅、二氧化硅、碳化硅、石墨(混合型晶体)等; (3)由阴阳离子构成的物质(离子晶体):绝大多数盐、强碱、低价金属氧化物。 (4)由阳离子和自由电子构成的物质(金属晶体):金属单质、合金

第一讲物质的组成、性质和分类(步步高)

2222222222222222222222222222222222222222222222222222222222222222222222222 考点一 物质的组成 1.元素、物质及微粒间的关系 (1)宏观上物质是由元素组成的,微观上物质是由分子、原子或离子构成的。 (2)元素:具有相同核电荷数的一类原子的总称。 (3)元素与物质的关系 元素――→组成????? 单质:只由一种元素组成的纯净物化合物:由多种元素组成的纯净物 (4)元素在物质中的存在形态 ①游离态:元素以单质形式存在的状态。 ②化合态:元素以化合物形式存在的状态。 (5)元素、微粒及物质间的关系图 2.同素异形体 (1)________________________________叫同素异形体。同素异形体的形成有两种方式:①原子个数不同,如O 2和O 3;②原子排列方式不同,如金刚石和石墨。 (2)同素异形体之间的性质差异主要体现在________性质上,同素异形体之间的转化属于________变化。

3.混合物和纯净物 (1)纯净物:________________________________________________。 (2)混合物:________________________________________________。 深度思考 1.下列元素①Na②Mg③Al④Cu⑤C⑥Si ⑦O⑧S⑨N⑩P?Cl?He 在自然界中, (1)只以化合态存在的是__________________。 (2)只以游离态存在的是__________________。 (3)既以化合态存在又以游离态存在的是_________________________________________。2.判断下列说法是否正确,若不正确,说明理由。 ①元素在自然界中的存在形式有原子、分子或离子 ②在化学变化中,分子可以再分,离子和原子不可以再分 ③同一种元素可能有多种不同原子,同一种原子也可能形成不同的离子 ④原子与该原子形成的离子相对原子质量几乎相等 ⑤由同一种元素组成的物质一定是同一种物质 ⑥物质的化学性质一定是由分子保持的 ⑦质子数、中子数和电子数都相同的粒子一定是同一种粒子 1.(2015·大同高三摸底考试)下列各组物质能真实表示物质分子组成的是() A.NO、C2H5OH、HNO3、I2 B.CaO、N2、HCl、H2O C.NH3、H2S、Si、CO D.CO2、SiO2、CH3COOH、H2SO4 2.正误判断,正确的划“√”,错误的划“×” (1)只含一种元素的物质一定是纯净物() (2)含水的物质不一定是混合物() (3)只由一种分子组成的物质一定为纯净物,组成混合物的元素可能只有一种() (4)纯净物只由一种原子组成,而混合物由多种原子组成() (5)只由一种元素的阳离子与另一种元素的阴离子组成的物质一定为纯净物() 3.按要求回答问题。 ①冰水混合物②水煤气③铝热剂④普通玻璃⑤水玻璃⑥有机玻璃⑦漂白粉⑧TNT⑨H2SO4⑩含氧40%的氧化镁?花生油?福尔马林?密封保存的NO2气体

物质的组成分类和性质

1.(重庆市名校联盟2014届高三联合考试化学试卷)化学与生活、生产、航天、航海等诸多领域相关。下列有关上述领域的描述不正确的是() A. 在太空舱可以实现过滤和分液的实验操作 B. 在海轮外壳上镶入铜块,可加速船体的腐蚀速率 C. 我国首艘航母“辽宁舰” 上用于舰载机降落的拦阻索是特种钢缆,属于金属材料 D. 石英光导纤维,在遇到强碱时可能发生“断路” 难易度:容易 答案: A 2.解读:在太空舱里没有地球引力,处于失重状态,在失重状态下不能实现过滤和分液的实验操作,A项错误;Cu与Fe构成原电池时,Fe的活泼性比Cu强,Fe作负极被腐蚀,所以在海轮外壳上镶入铜块,可加速船体的腐蚀速率,B项正确;特种钢缆是铁的合金,属于金属材料,C项正确;石英的主要成分是二氧化硅,二氧化硅能与强碱反应生成硅酸盐和水,所以石英光导纤维,在遇到强碱时可能发生“断路” ,D(天津市蓟县第二中学2014届 高三第一次模拟考试化学试卷)下列对生产、生活有关化学问题的分析正确的是() A. 医疗上进行胃部造影前,患者服用的“钡餐” 是BaCO3等不溶于水的物质 B. 铝合金的大量使用归功于人们能用焦炭等还原剂从氧化铝中获取铝 C. 明矾净水是利用了Al3+的水解性和氧化性 D. 液氯罐中的液氯泄漏时,可将其移入水塘中,并向水塘中加入生石灰 难易度:容易 答案:D 解读:碳酸钡与胃酸中的盐酸反应生成的可溶性氯化钡有剧毒,所以碳酸钡不能用作钡餐,A项错误;铝的冶炼应用电解氧化铝法,不能用热还原法,B项错误;明矾净水是利用了Al3+的水解生成的氢氧化铝胶体的吸附性净水,C项错误;生石灰和水反应生成氢氧化钙,氯气有毒,氯气和氢氧化钙反应生成无毒的氯化钙、次氯酸钙和水,从而降低氯气的毒性,D项正确。

物质的组成、性质和分类

第二章 化学物质及其变化 物质的组成、性质和分类 一、物质的组成 1.元素、物质及微粒间的关系 (1)宏观上物质是由元素组成的,微观上物质是由______、______或______构成的。 (宏观组成只讲种类不讲个数,微观组成既讲种类又讲个数) (2)元素:具有______________的一类原子的总称。 (3)元素与物质的关系 元素――→组成? ?? 单质: 的纯净物。化合物: 的纯净物。 (4)元素在物质中的存在形态 ①游离态:元素以________形式存在的状态。 ②化合态:元素以________形式存在的状态。 (5)元素、物质及微粒间的关系如右图所示: 二、物质的分类 1.简单分类法概述:分类是学习和研究化学物质及其变化的一种常用科学方法。 2.分类法:常用的两种是_______ ___法和____________法。 3.物质的分类: 注意:由同种元素组成的物质不一定是纯净物,如氧气和臭氧的混合气体,金刚石和石墨的混合物。 4.无机化合物的树状分类

三、分散系、胶体 1.分散系 (1)概念:__________________________________________所得到的体系。 (2)分类: 分类标准:根据对分散系进行分类,共有三种类型(见下图):根据分类标准在数轴上填写分散系名称。 2.胶体

(1)定义:分散质粒子直径介于____________之间的分散系。 (2)分类:按分散剂划分??? ① :如AgI 胶体② :如烟水晶③ :如烟、雾、云 按分散系颗粒的情况划分: (3) 胶体的性质 ①丁达尔效应:用一束光通过盛有Fe(OH)3胶体的烧杯时,在与光束垂直的方向上 进行观察,可以看到__________________,这个现象称作____________,这是由于胶体微粒对可见光的散射而形成的。丁达尔效应可用于区别________和________。 ②电泳:在________的作用下,胶体微粒作________移动,这种现象称为电泳,电 泳现象说明________带电荷。利用电泳可进行工厂除尘。 ③聚沉:胶体形成沉淀析出的现象称为聚沉:三角洲的形成、明矾净水、盐卤点豆 腐都是胶体聚沉现象。胶体聚沉的条件有:a.____________;b.__________;c._________ __________。 (4) Fe(OH)3胶体的制备 向沸水中逐滴加入____________,继续煮沸至液体呈____________,停止加热,即制得Fe(OH)3胶体,化学方程式为__________ ___________________。 (5)由于胶粒半径较大不能透过半透膜,而离子、小分子半径较小可透过半透膜, 可以用 渗析的方法对胶体进行提纯 四、三类分散系的比较 五、物质的性质和变化

甲烷知识点总结与精练

最简单的有机物——甲烷 考纲点击 1.使学生掌握甲烷的结构式、甲烷的电子式和甲烷分子的正四面体结构; 2.掌握甲烷的化学性质,了解有关实验的结论,了解取代反应; 3.了解甲烷的存在和甲烷的用途等。 重点: 甲烷的结构和甲烷的化学性质 有机物:组成里含 碳 元素的化合物。(CO 、CO 2、H 2CO 3 及其盐除外) 烃:仅由 碳 和 氢 两种元素组成的化合物。 一、甲烷 1. 甲烷的分子组成和结构 ① 分子式 ②电子式 ③结构式 ④ 结构简式 CH 4 CH 4 ⑤结构特点: 整个分子呈 正四面体 型结构,4个C —H 键的键长、键角、 键能(强度)完全相同,键的空间排列对称, 键角为 109°28 ,分子为非极 性分子。 注意:CH 2Cl 2(二氯甲烷)只有1 种结构,说明甲烷是正四面体结构 2.物理性质: 甲烷是一种 无 色、 没有气味 的气体, 极难 溶于水,密度比空气 小 。 3.化学性质: 比较稳定,通常不与 强酸 、 强碱 、 强氧化 剂反应。 甲烷不能使酸性高锰酸钾溶液、溴的四氯化碳溶液褪色 (即跟二者不反 ) 在特定条件下,也会发生某些反应。 (1)氧化反应: CH 4(g )+ 2O 2 (g ) CO 2(g)+2H 2O (2)取代反应: 有机物分子中某些 原子 或 原子团 被其他的 原子 或原子团所代替的反应。 现象 : ①试管内黄绿色气体颜色变浅 ②试管壁出现油状液滴 点燃

③试管中有少量白雾 ④试管内液面上升 结论:甲烷与氯气的混合气体无光照时,不发生反应, 在光照条件下,甲烷与氯气发生了化学反应。 化学方程式: ①生成的卤代物:均不溶于水 ②甲烷中每取代1molH ,需1molCl 2来反应 (3)甲烷受热分解:CH 4 C + 2H 2 二、烷烃 1.定义:烃分子中的碳原子之间只以 单 键结合,碳原子剩余的价键全部跟 氢 原子相 结合,使每个碳原子的化合价都已充分利用,都达到“ 饱和 ”。这样的烃叫做饱和烃,又叫烷烃。 2.组成通式: C n H 2n +2 。 3.结构特点 ①碳碳单键(C —C) ②呈链状(直链或带支链) ③ “饱和”:碳原子剩余的价键全部氢原子结合, 每个碳原子都形成 4 个单键。 烷烃 甲烷 乙烷 丙烷 丁烷 异丁烷 分 子 式 CH 4 C 2H 6 C 3H 8 C 4H 10 C 4H 10 结构简式 CH 4 CH 3CH 3 CH 3CH 2CH 3 CH 3CH 2CH 2CH 3 CH 3CH 2CH 3 4物理性质: 烷烃随着碳原子增多,其熔沸点升高, 碳原子1——4的烷烃,常温下是气态,多于4个碳原子的烷烃是液态或固态。 (新戊烷是气态) 烷烃分子中,支链越多,熔沸点越低,相对密度越小。 5.烷烃的化学性质:与甲烷相似,通常状况下很稳定,跟 强酸 、 强碱 、 强氧化剂 都 高温 (炭黑) CH 3

高中化学甲烷说课稿(共5篇)

篇一:甲烷说课稿 第一节最简单的有机化合物——甲烷 第1课时 尊敬的评委,各位老师, 大家好! 我是来自黄梅三中的吕小霞,我今天说课的题目是新课标人教版高中化学必修二第三章第一节<<最简单的有机化合物-------甲烷>>的第一课时。下面我将从以下几个方面说说我的设计思路,请各位批评指正。 一、说教材 1.教材的地位及其作用 《最简单的有机化合物—甲烷》是学生第一次接触有机物结构和性质。烃作为一切有机物的母体,而甲烷又是最简单的有机物,学生对甲烷的理解将直接影响到今后对各种有机物的理解。通过这堂课的教学,希望帮助学生树立正确的有机学习方法。 2. 教学目标 根据新课程理念和新教材特点,结合高中学生已有的知识和能力水平确定了一下三维目标: 知识与技能 ①了解自然界中甲烷的存在及储量情况 ②通过实践活动使学生深刻认识甲烷的结构特点 ③通过实验探究理解并掌握甲烷的取代反应原理 ④通过对甲烷结构和性质的学习,使学生初步建立从结构角度学习有机物性质的有机化学学习模式 过程与方法 ①通过探究实验、模型、图片、动画等,培养学生关心科学,研究科学和探索科学的精神 ②通过讲授、讨论、自学、小组合作等教学方法和比较,类比等科学方法与逻辑方法,教给学生科学的学习方法 ③培养学生设计实验,观察实验,并根据实验现象得出可能的规律的能力 情感、态度与价值观 ①引导学生关注人类面临的与化学相关的社会问题,培养学生的社会责任感和参与意识 ②通过甲烷的结构和性质的探索,激发学生学习化学的兴趣 3.教学重点和难点 甲烷分子的结构和甲烷的取代反应 二、说教法 本节课采用教师引导,学生自己自主,相互合作,探究实验的方法进行教学。 三、说学法 和教法相呼应,引导学生采用自主学习、相互讨论、及时对比、和实验探究等学习方法来完成学习任务。 四、说教学过程 采用板块教学,分为四个学习板块。即:板块一:甲烷的结构探究;板块二:甲烷的物理性质;板块三:甲烷的氧化反应;板块四:甲烷的取代反应。在活动中相互交流、相互评价,让学生成为课堂的主体。并帮助学生形成“结构决定性质,性质体现用途”的认知关系。具体的教学流程: 【引入】随着“西气东输”工程的顺利实施,越来越多的家庭使用上了天然气,请问天

物质的组成、分类和性质

第章 化学物质及其变化 第一节 物质的组成、分类和性质 (对应学生用书第14页) [考纲知识整合] 1.物质的组成 (1)构成粒子 (2)元素与物质的关系

元素组成,??? 单质:只由一种元素组成的纯净物。 化合物:由多种元素组成的纯净物。 (3)元素在物质中的存在形态 ①游离态:元素以单质形式存在的状态。 ②化合态:元素以化合物形式存在的状态。 提醒:同种元素形成的不同单质互称同素异形体,他们之间的转化为化学变化;它们混合后形成混合物。如O 2与O 3,金刚石与石墨等。 2.物质的分类 (1)分类方法 ①交叉分类法——从不同角度对物质进行分类。 ②树状分类法——按不同层次对物质进行逐级分类,各层之间属于包含关系。 请把下列物质的序号填写到下图的括号中 ①硫黄 ②HClO ③苛性钠 ④铜 ⑤小苏打 ⑥氧化钠 ⑦Fe(OH)3胶体 ⑧NaCl 溶液 (2)几类物质的概念 ①纯净物:由同种单质或化合物组成的物质。 ②混合物:由几种不同单质或化合物组成的物质。 ③氧化物:由两种元素组成其中一种为氧元素的化合物。 ④酸:电离出的阳离子全部是H +的化合物。 ⑤碱:电离出的阴离子全部是OH -的化合物。

⑥盐:金属阳离子或铵根离子与酸根阴离子构成的化合物。 [高考命题点突破] 命题点1物质的组成和构成粒子 1.下列说法正确的是________(填序号)。 (1)构成物质的粒子一定是原子或分子 (2)物质发生化学反应时,分子可以变化但原子不可变化 (3)同一种元素可能有多种不同原子,同一种原子也可能形成不同的离子 (4)只由一种分子构成的物质一定为纯净物,组成混合物的物质可能只有一种 元素 (5)只由一种元素的阳离子与另一种元素的阴离子构成的物质一定为纯净物 (6)CuSO4·5H2O中含有CuSO4和H2O,故CuSO4·5H2O为混合物 (7)任何化合物均由原子构成 (8)OH-和—OH属于相同的原子团 (9)NH+4、OH-、H3O+的电子数和质子数均相同 (10)O2与O3形成的混合气体为纯净物,O2与O3的转化为化学变化 (11)正丁烷与异丁烷的分子式均为C4H10,但二者的混合气体为混合物 【答案】(2)(3)(4)(11) [易错防范]误认为由相同元素组成的物质一定是纯净物 (1)若某物质是由一种元素的单质混合而成,如O2、O3组成的混合气体就是混合物,由12C和13C组成的石墨则是纯净物。 (2)分子式相同的化合物可能存在同分异构体,最简式相同的化合物不一定是同一物质。如C4H10的结构有正丁烷和异丁烷,二者组成混合物。 命题点2物质的分类 2.(2018·铜陵模拟)下列物质中,属于纯净物的是() ①陶瓷②水泥③玻璃④漂白粉⑤胆矾⑥氯水⑦液氯 A.①③⑤B.②④⑥ C.⑤⑦D.⑥⑦ C[①陶瓷的主要成分是SiO2和硅酸盐,属于混合物;②水泥是硅酸三钙、

2018年高考化学分项汇编--物质结构与性质(选修)(附解析)

2018年高考化学分项汇编--物质结构与性质(选修)(附解析)1.【2018新课标1 卷】Li是最轻的固体金属,采用Li作为负极材 料的电池具有小而轻、能量密度大等优良性能,得到广泛应用。回答下列问题:(1)下列Li原子电子排布图表示的状态中,能量最低 和最高的分别为_____、_____(填标号)。 A. B. C. D.(2) Li+与H?具有相同的电子构型,r(Li+)小于r(H?),原因是______。(3)LiAlH4是有机合成中常用的还原剂,LiAlH4中的阴离子空间构型是 ______、中心原子的杂化形式为______。LiAlH4中,存在_____(填标号)。 A.离子键 B.σ键 C.π键 D.氢键(4)Li2O是离子 晶体,其晶格能可通过图(a)的Born?Haber循环计算得到。可知, Li原子的第一电离能为________kJ?mol?1,O=O键键能为 ______kJ?mol?1,Li2O晶格能为______kJ?mol?1。(5)Li2O具有 反萤石结构,晶胞如图(b)所示。已知晶胞参数为0.4665 nm,阿伏 加德罗常数的值为NA,则Li2O的密度为______g?cm?3(列出计算式)。【答案】 D C Li+核电荷数较大正四面体 sp3 AB 520 498 2908 【解析】分析:(1)根据处于基态时能量低,处于激发态时能量高判断;(2)根据原子核对最外层电子的吸引力判断;(3)根据价层电子 对互斥理论分析;根据物质的组成微粒判断化学键;(4)第一电离能是气态电中性基态原子失去一个电子转化为气态基态正离子所需 要的最低能量,据此计算;根据氧气转化为氧原子时的能量变化计算键能;晶格能是气态离子形成1摩尔离子晶体释放的能量,据此解答;(5)根据晶胞中含有的离子个数,结合密度的定义计算。点睛:本题考查核外电子排布,轨道杂化类型的判断,分子构型,电离能、晶格能,化学键类型,晶胞的计算等知识,保持了往年知识点比较分散的特点,立足课本进行适当拓展,但整体难度不大。难点仍然是晶胞的有关判断与计算,晶胞中原子的数目往往采用均摊法:①位于晶胞顶点的原子为8个晶胞共用,对一个晶胞的贡献为1/8;②位于晶胞面心的原子为2个晶胞共用,对一个晶胞的贡献为1/2;③位于晶胞棱心的原子为4个晶胞共用,对一个晶胞的贡献为1/4;④位于晶胞体心的原子为1个晶胞共用,对一个晶胞的贡献为1。 2.【2018新 课标2卷】硫及其化合物有许多用途,相关物质的物理常数如下表所

甲烷的化学性质教案

《甲烷的化学性质》 教学目标 【知识与能力】 知道甲烷的化学性质;理解取代反应的定义。 【过程与方法】 通过建立甲烷与氯气反应模型,初步接触并理解有机化学反应的原理。 【情感、态度和价值观】 通过联系生活生产实际,树立运用化学解决生活生产问题的意识。 教学重难点 【重点】 甲烷的化学性质。 【难点】 甲烷与氯气的取代反应。 教学方法 观察法、实验法、讨论法、问答法等。 教学过程 (一)创设情境,引入新课 播放视频“新中国日记西气东输工程启动”。 思考:“西气东输”输的气体是天然气,它的主要成分是甲烷,为什么要输送天然气? 展示图片:甲烷气体在生活中的用途。 讲解:这与甲烷的化学性质密切相关,今天我们就来学习甲烷的化学性质。(二)科学探究 提问:请回忆化学反应的实质是什么?甲烷的空间构型是什么?

讲解:甲烷是正四面体结构的,结构决定性质,所以通常情况下甲烷比较稳定,与强酸、强碱、高锰酸钾等强氧化剂不发生反应。在一定条件下,也能发生反应。 1.氧化反应 向学生展示天然气燃烧、可燃冰的图片。 提问:天然气的用途是什么?为什么说可燃冰是中国能源梦? 引导学生回答天然气燃烧的现象,猜测燃烧的产物。 讲解天然气、可燃冰的主要成分及甲烷燃烧的实验现象与产物,对环境危害小的特点。 注意:列举生活实例“瓦斯爆炸”,提示学生可燃性气体在点燃前要验纯。 请学生尝试书写甲烷燃烧的化学方程式,教师引导并讲评。 2.取代反应 演示实验:①在收集好甲烷的试管中,迅速加入0.5 g KMnO4和1 mL盐酸,用黑纸包好。②在收集好甲烷的试管中,迅速加入0.5 g KMnO4和1 mL盐酸,距离15 cm用燃着的镁条照射。 学生观察实验现象、总结结论。 结论:室温时不反应,光照时反应瓶内气体颜色变浅,内壁出现油状液滴,有少量白雾。 给出化学反应方程式: 请学生尝试书写一氯甲烷与氯气进一步反应的化学反应方程式。 动画展示甲烷与氯气发生反应时分子模型的变化。 讲解:取代反应:有机物分子里的某些原子或原子团被其他原子或原子团取代的反应。 请学生回忆锌与硫酸的置换反应,对比取代反应和置换反应。师生总结,形成表格。 (三)课堂小结,课后作业

甲烷危险特性(甲烷理化性)

甲烷的危险有害特性表 标识中文名甲烷英文名Methane 分子式CH4危规号21007UN编号:1971 分子量16.04危险性类别第2.1类易燃气体 理化特性熔点(℃)-182.5沸点(℃)-161.5 燃烧热(kJ/mol)889.5 饱和蒸气压 (kPa) 53.32(-168.8℃) 相对密度(水=1) 0.42(-164℃) (空气=1) 0.55 外观性状无色无臭气体 溶解性微溶于水,溶于醇、乙醚 稳定性---聚合危害--- 禁忌物 强氧化剂、氟、 氯 燃烧(分解)产 物 一氧化碳、二氧化 碳 主要用途用作燃料和用于炭黑、氢、乙炔、甲醛等的制造 燃爆特性燃烧性易燃 建规火险分 级 甲 闪点(℃)-188引燃温度(℃)538 爆炸下限(V%) 5.3 爆炸上限 ( V%) 15 危险特性 易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与五氧化溴、氯气、次氯酸、三氟化氮、液氧、二氟 化氧及其它强氧化剂接触剧烈反应 灭火方法 切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、 泡沫、二氧化碳、干粉 毒性及健康危 害 车间卫生标 准 未制定标准 侵入途径吸入、皮肤接触 急性毒性 LD50:无资料 LC50:无资料 健康危害 甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲烷达25%~30%时,可引起头痛、头晕、乏 力、注意力不集中、呼吸和心跳加速、共济失调。若不及时脱离, 可致窒息死亡。皮肤接触液化本品,可致冻伤。 急救措施皮肤接触若有冻伤,就医治疗 眼睛接触--- 吸入 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医 食入--- 应急急救措施

第一讲物质的组成性质分类

基本概念 第一讲物质的组成、性质和分类化学用语 知识点一:物质的组成和分类 例1、判断正误。如果错误请举出例子。 1、酸性氧化物一定是非金属氧化物( ) ____________ 2、非金属氧化物一定是酸性氧化物( ) ____________ 3、金属氧化物一定是碱性氧化物( ) ____________ 4、碱性氧化物一定是金属氧化物( ) ____________ 5、酸性氧化物、碱性氧化物一定能和水反应生成相应的酸和碱。( ) ____________ 知识点二:物质的性质和变化 (一)、物理性质/物理变化(二)、化学性质/化学变化 (三)、化学变化表达的化学用语:化学方程式、离子方程式、热化学方程式、电极反应式、 水解方程式、电离方程式 例2、判断下列变化是物理变化还是化学变化 1、三态变化(气化、液化、升华) 2、煤的干馏 3、石油的分馏 4、蒸馏 5、石油的裂化 6、石油的裂解 7、蛋白质的盐析 8、蛋白质的变性 9、钝化10、胶体的聚沉11、胶体的电泳12、电解质导电13、金属导电14、块状生石灰在空气中变成粉末15、晶体碳酸钠在空气中变成粉末16、HCl溶于水17、电灯发光、发热18、石灰水中通入少量CO2变浑浊19、室温下饱和石灰水加热变浑浊 其中属于物理变化的有______________________________ 其中属于化学变化的有______________________________

知识点三:化学用语 五种符号:元素符号、离子符号、价标符号、核素组成符号、结构示意图 七种式子:化学式、分子式、结构式、结构简式、键线式、最简式(实验式)、电子式 例3:用电子式表示以下微粒会物质 1、碘原子、碘离子、碘单质、碘化氢、碘化钠 ________________________________________________ 2、钠原子、钠离子、钠单质、氯化钠 __________________________________________ 3、氯化铵、双氧水、过氧化钠氢氧化钠次氯酸 ________________________________________________________ 例4:用电子式表示以下化合物的形成过程: 水_____________________________________________________ 氯化镁__________________________________________________ 四:物质的转化 五:分散系 _____ _____ 组成了分散系,分散系的分类_____ _____ _____ (一)分散系、分散质、分散剂的概念 分散系:一种或几种物质分散到另一种物质里形成的_____________ 分散质:被分散的物质 分散剂:容纳分散质的物质

专题一_物质的组成、性质和分类(含答案)

物质的组成、性质和分类 知识网络 金属 非金属(包括稀有气体) 单质 氧化物酸性氧化物碱性氧化物 两性氧化物 不成盐氧化物 根据酸根分为含氧酸、无氧酸 根据电离出H +数目分为一元酸、二元酸、多元酸 根据电离程度分为强酸、弱酸 根据溶解性可分为可溶性碱、微溶性碱和难溶性碱 根据电离程度可分为强碱、弱碱 根据电离出OH —数目可分为一元碱、二元碱等 酸碱根据阳离子可分为钠盐、钾盐等 根据酸根分为硫酸盐、硝酸盐等 根据组成可分为正盐、酸式盐、复盐等 根据成盐的酸碱性可分为强酸弱碱盐、弱酸强碱盐等盐化合物无机物有机物烷烃 烯烃 炔烃 芳香烃 醇、酚 醛、酮 羧酸、酯 卤代烃烃烃的衍生 物 物质纯净物混合物 要点扫描 一、电解质和非电解质概念理解的易错点 1.电解质和非电解质都是化合物,单质既不是电解质也不是非电解质。 2.有些电解质只能在水溶液里导电,如共价型电解质HCl 、H 2SO 4等,因为液态HCl 、H 2SO 4不导电;离子型电解质,如NaHCO 3、CaCO 3、BaCO 3等,因为这些物质不存在熔融态。 3.判断一种化合物是电解质还是非电解质,要看起导电作用的离子是否是由该物质自身电离出来的。如SO 2、NH 3的水溶液能导电,但导电离子分别是H +、HSO 3—、NH 4+、OH —,不是由SO 2、NH 3本身电离出来,所以SO 2、NH 3均为非电解质。 4.电解质的导电性与电解质是强电解质还是弱电解质无关。溶液导电性的强弱取决与溶液中自由移动离子浓度的大小。 5.原子是化学变化中最小的微粒,化学反应不涉及原子核,化学变化的实质是原子的重新组合,核聚变、核裂变都不属于化学变化。同素异形体的转化属于化学变化,但不属于氧化还原反应。 二、胶体及其性质的知识点 1.胶体的本质特征:分散质微粒直径的大小在1~100nm 之间,而不是丁达尔效应。

高中化学选修3知识点全部归纳(物质的结构与性质)

高中化学选修3知识点全部归纳(物质的结构与性质) 第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势. 说明: ①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、P ②.元素电离能的运用: a. 用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱. b .电离能是原子核外电子分层排布的实验验证. 分析原子核外电子层结构,如某元素的I n+1?I n,则该元素的最外层电子数为n。 (3).元素电负性的周期性变化. 元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。 随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势. 电负性的运用: a.确定元素类型(一般>1.8,非金属元素;<1.8,金属元素). b.确定化学键类型(两元素电负性差值>1.7,离子键;<1.7,共价键). c.判断元素价态正负(电负性大的为负价,小的为正价).

高中化学《甲烷的化学性质》教师资格证面试教案

高中化学《甲烷的化学性质》教师资格证面试教案 导语:关于高中化学《甲烷的化学性质》的面试教案你知道要怎么写吗?首先我们要知道甲烷的化学性质;理解取代反应的定义。懂得通过建立甲烷与氯气反应模型,初步接触并理解有机化学反应的原理。一起来看看吧。 一、教学目标 【知识与技能】知道甲烷的化学性质;理解取代反应的定义。 【过程与方法】通过建立甲烷与氯气反应模型,初步接触并理解有机化学反应的原理。 【情感态度与价值观】通过联系生活生产实际,树立运用化学解决生活生产问题的意识。 二、教学重难点 【重点】甲烷的化学性质。 【难点】甲烷与氯气的取代反应。 三、教学过程 环节一:创设情境,引入新课 播放视频“新中国日记西气东输工程启动”。 思考:“西气东输”输的气体是天然气,它的主要成分是甲烷,为什么要输送天然气? 展示图片:甲烷气体在生活中的用途。 讲解:这与甲烷的化学性质密切相关,今天我们就来学习甲烷的化学性质。

环节二:科学探究 提问:请回忆化学反应的实质是什么?甲烷的空间构型是什么? 讲解:甲烷是正四面体结构的,结构决定性质,所以通常情况 下甲烷比较稳定,与强酸、强碱、高锰酸钾等强氧化剂不发生反应。在一定条件下,也能发生反应。 1.氧化反应 向学生展示天然气燃烧、可燃冰的图片。 提问:天然气的用途是什么?为什么说可燃冰是中国能源梦? 引导学生回答天然气燃烧的现象,猜测燃烧的产物。 讲解天然气、可燃冰的主要成分及甲烷燃烧的实验现象与产物,对环境危害小的特点。 注意:列举生活实例“瓦斯爆炸”,提示学生可燃性气体在点 燃前要验纯。 请学生尝试书写甲烷燃烧的化学方程式,教师引导并讲评。 2.取代反应 演示实验:①在收集好甲烷的试管中,迅速加入0.5gKMnO4和 1mL盐酸,用黑纸包好;②在收集好甲烷的试管中,迅速加入 0.5gKMnO4和1mL盐酸,距离15cm用燃着的镁条照射。 学生观察实验现象、总结结论。 结论:室温时不反应,光照时反应瓶内气体颜色变浅,内壁出 现油状液滴,有少量白雾。 请学生尝试书写一氯甲烷与氯气进一步反应的化学反应方程式。

相关主题