搜档网
当前位置:搜档网 › 修饰Sorption

修饰Sorption

修饰Sorption
修饰Sorption

Review

Removal of heavy metal ions from wastewater by chemically

modi?ed plant wastes as adsorbents:A review

W.S.Wan Ngah *,M.A.K.M.Hana?ah

School of Chemical Sciences,Universiti Sains Malaysia,11800Penang,Malaysia Received 3April 2007;received in revised form 18June 2007;accepted 18June 2007

Available online 27July 2007

Abstract

The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed.It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be a?ected upon chemical treatment.In general,chemically modi?ed plant wastes exhibit higher adsorption capacities than unmodi?ed forms.Numerous chemicals have been used for modi?cations which include mineral and organic acids,bases,oxidizing agent,organic compounds,etc.In this review,an extensive list of plant wastes as adsorbents including rice husks,spent grain,sawdust,sugarcane bagasse,fruit wastes,weeds and others has been compiled.Some of the treated adsorbents show good adsorption capacities for Cd,Cu,Pb,Zn and Ni.ó2007Elsevier Ltd.All rights reserved.

Keywords:Adsorption;Plant wastes;Low-cost adsorbents;Heavy metals;Wastewater treatment

1.Introduction

Heavy metals have been excessively released into the environment due to rapid industrialization and have cre-ated a major global concern.Cadmium,zinc,copper,nickel,lead,mercury and chromium are often detected in industrial wastewaters,which originate from metal plating,mining activities,smelting,battery manufacture,tanneries,petroleum re?ning,paint manufacture,pesticides,pigment manufacture,printing and photographic industries,etc.,(Kadirvelu et al.,2001a;Williams et al.,1998).Unlike organic wastes,heavy metals are non-biodegradable and they can be accumulated in living tissues,causing various diseases and disorders;therefore they must be removed before discharge.Research interest into the production of cheaper adsorbents to replace costly wastewater treatment methods such as chemical precipitation,ion-exchange,elec-tro?otation,membrane separation,reverse osmosis,elec-trodialysis,solvent extraction,etc.(Namasivayam and

Ranganathan,1995)are attracting attention of scientists.Adsorption is one the physico-chemical treatment pro-cesses found to be e?ective in removing heavy metals from aqueous solutions.According to Bailey et al.(1999),an adsorbent can be considered as cheap or low-cost if it is abundant in nature,requires little processing and is a by-product of waste material from waste industry.Plant wastes are inexpensive as they have no or very low eco-nomic value.Most of the adsorption studies have been focused on untreated plant wastes such as papaya wood (Saeed et al.,2005),maize leaf (Babarinde et al.,2006),teak leaf powder (King et al.,2006),lalang (Imperata cylindrica )leaf powder (Hana?ah et al.,2007),rubber (Hevea brasili-ensis )leaf powder (Hana?ah et al.,2006b,c ),Coriandrum sativum (Karunasagar et al.,2005),peanut hull pellets (Johnson et al.,2002),sago waste (Quek et al.,1998),salt-bush (Atriplex canescens )leaves (Sawalha et al.,2007a,b ),tree fern (Ho and Wang,2004;Ho et al.,2004;Ho,2003),rice husk ash and neem bark (Bhattacharya et al.,2006),grape stalk wastes (Villaescusa et al.,2004),etc.Some of the advantages of using plant wastes for wastewa-ter treatment include simple technique,requires little pro-

0960-8524/$-see front matter ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.biortech.2007.06.011

*

Corresponding author.Tel.:+6046533888;fax:+6046574854.E-mail address:wsaime@usm.my (W.S.Wan Ngah).

Available online at https://www.sodocs.net/doc/358561633.html,

Bioresource Technology 99(2008)

3935–3948

cessing,good adsorption capacity,selective adsorption of heavy metal ions,low cost,free availability and easy regen-eration.However,the application of untreated plant wastes as adsorbents can also bring several problems such as low adsorption capacity,high chemical oxygen demand(COD) and biological chemical demand(BOD)as well as total organic carbon(TOC)due to release of soluble organic compounds contained in the plant materials(Gaballah et al.,1997;Nakajima and Sakaguchi,1990).The increase of the COD,BOD and TOC can cause depletion of oxygen content in water and can threaten the aquatic life.There-fore,plant wastes need to be modi?ed or treated before being applied for the decontamination of heavy metals. In this review,an extensive list of adsorbents obtained from plant wastes has been compiled and their methods of mod-i?cation were discussed.A comparison of adsorption e?-ciency between chemically modi?ed and unmodi?ed adsorbents was also reported.

2.Chemically modi?ed plant wastes

Pretreatment of plant wastes can extract soluble organic compounds and enhance chelating e?ciency(Gaballah et al.,1997).Pretreatment methods using di?erent kinds of modifying agents such as base solutions(sodium hydroxide,calcium hydroxide,sodium carbonate)mineral and organic acid solutions(hydrochloric acid,nitric acid, sulfuric acid,tartaric acid,citric acid,thioglycollic acid), organic compounds(ethylenediamine,formaldehyde,epi-chlorohydrin,methanol),oxidizing agent(hydrogen perox-ide),dye(Reactive Orange13),etc.for the purpose of removing soluble organic compounds,eliminating colour-ation of the aqueous solutions and increasing e?ciency of metal adsorption have been performed by many research-ers(Hana?ah et al.,2006a;Reddy et al.,1997;Taty-Cos-todes et al.,2003;Gupta et al.,2003;Namasivayam and Kadirvelu,1997;Sˇc′iban et al.,2006a;Min et al.,2004; Kumar and Bandyopadhyay,2006;Baral et al.,2006;Acar and Eren,2006;Rehman et al.,2006;Abia et al.,2006; Shukla and Pai,2005a,Low et al.,1995;Azab and Peter-son,1989;Lazlo,1987;Wankasi et al.,2006).The types of chemicals used for modifying plant wastes and their maximum adsorption capacities are shown in Table1. 2.1.Rice husks/rice hulls

Rice husk consists of cellulose(32.24%),hemicellulose (21.34%),lignin(21.44%)and mineral ash(15.05%)(Rah-man et al.,1997)as well as high percentage of silica in its mineral ash,which is approximately96.34%(Rahman and Ismail,1993).Rice husk is insoluble in water,has good chemical stability,has high mechanical strength and pos-sesses a granular structure,making it a good adsorbent material for treating heavy metals from wastewater.The removal of heavy metals by rice husk has been extensively reviewed by Chuah et al.(2005).Among the heavy metal ions studied include Cd,Pb,Zn,Cu,Co,Ni and Au.Rice husk can be used to treat heavy metals in the form of either untreated or modi?ed using di?erent modi?cation methods.

Hydrochloric acid(Kumar and Bandyopadhyay, 2006),sodium hydroxide(Guo et al.,2003;Kumar and Bandyopadhyay,2006),sodium carbonate(Kumar and Bandyopadhyay,2006),epichlorohydrin(Kumar and Ban-dyopadhyay,2006),and tartaric acid(Wong et al.,2003a; Wong et al.,2003b)are commonly used in the chemical treatment of rice husk.Pretreatment of rice husks can remove lignin,hemicellulose,reduce cellulose crystallinity and increase the porosity or surface area.In general,chem-ically modi?ed or treated rice husk exhibited higher adsorption capacities on heavy metal ions than unmodi?ed rice husk.For example,Kumar and Bandyopadhyay (2006)reported that rice husk treated with sodium hydrox-ide,sodium carbonate and epichlorohydrin enhanced the adsorption capacity of cadmium.The base treatment using NaOH for instance appeared to remove base soluble mate-rials on the rice husk surface that might interfere with its adsorption property.Tarley et al.(2004)found that adsorption of Cd increase by almost double when rice husk was treated with NaOH.The reported adsorption capaci-ties of Cd were7and4mg gà1for NaOH treated and unmodi?ed rice husk,respectively.

Meanwhile,most of the acids used for treatment of plant wastes were in dilute form such as sulfuric acid, hydrochloric acid and nitric acid.According to Esteghla-lian et al.(1997),dilute acid pretreatment using sulfuric acid can achieve high reaction rates and improve cellulose hydrolysis.Concentrated acids are powerful agents for cel-lulose hydrolysis but they are toxic,corrosive and must be recovered(Sivers and Zacchi,1995).However,in some cases,hydrochloric acid treated rice husk showed lower adsorption capacity of cadmium than the untreated rice husk(Kumar and Bandyopadhyay,2006).When rice husk is treated with hydrochloric acid,adsorption sites on the surface of rice husk will be protonated,leaving the heavy metal ions in the aqueous phase rather than being adsorbed on the adsorbent surface.Wong et al.(2003a)carried out an adsorption study of copper and lead on modi?ed rice husk by various kinds of carboxylic acids(citric acid,sali-cylic acid,tartaric acid,oxalic acid,mandelic acid,malic and nitrilotriacetic acid)and it was reported that the high-est adsorption capacity was achieved by tartaric acid mod-i?ed rice husk.Esteri?ed tartaric acid modi?ed rice husk however signi?cantly reduced the uptake of Cu and Pb. The maximum adsorption capacities for Pb and Cu were reported as108and29mg gà1,respectively.E?ect of che-lators on the uptake of Pb by tartaric acid modi?ed rice husk was also studied.It was reported that higher molar ratios of chelators such as nitrilotriacetic acid(NTA)and ethylenediamine tetraacetic acid(EDTA)caused signi?cant suppressing e?ect on the uptake of Pb.Dyestu?treated rice hulls using Procion red and Procion yellow for the removal of Cr(VI),Ni(II),Cu(II),Zn(II),Cd(II),Hg(II)and Pb(II) were studied by Suemitsu et al.(1986).More than80%of

3936W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–3948

W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–39483937 Table1

Summary of modi?ed plant wastes as adsorbents for the removal of heavy metal ions from aqueous solution

Adsorbent Modifying agent(s)Heavy metal Q max(mg gà1)Source

Rice husk Water washed Cd(II)8.58Kumar and Bandyopadhyay(2006) Sodium hydroxide20.24

Sodium bicarbonate16.18

Epichlorohydrin11.12

Rice husk Tartaric acid Cu(II)31.85Wong et al.(2003b)

Pb(II)120.48

Sawdust(cedrus deodar wood)Sodium hydroxide Cd(II)73.62Memon et al.(2007)

Sawdust(S.robusta)Formaldehyde Cr(VI) 3.6Baral et al.(2006)

Sawdust(Poplar tree)Sulfuric acid Cu(II)13.95Acar and Eren(2006)

Sawdust(Dalbergia sissoo)Sodium hydroxide Ni(II)10.47Rehman et al.(2006)

Sawdust(Poplar tree)Sodium hydroxide Cu(II) 6.92Sˇc′iban et al.(2006a)

Zn(II)15.8

Sawdust(Fir tree)Cu(II)12.7

Zn(II)13.4

Sawdust(Oak tree)Hydrochloric acid Cu(II) 3.60Argun et al.(2007)

Ni(II) 3.37

Cr(VI) 1.74

Sawdust(Pinus sylvestris)Formaldehyde in Sulfuric acid Pb(II)9.78Taty-Costodes et al.(2003)

Cd(II)9.29

Walnut sawdust Formaldehyde in sulfuric acid Cd(II) 4.51Bulut and Tez(2003)

Ni(II) 6.43

Pb(II) 4.48

Sawdust Reactive Orange13Cu(II)8.07Shukla and Pai(2005b)

Ni(II)9.87

Zn(II)17.09

Peanut husk Sulfuric acid Pb(II)29.14Li et al.(2006a)

Cr(III)7.67

Cu(II)10.15

Cr(VI)11.4Dubey and Gopal(2006) Groundnut husk Sulfuric acid followed by silver

impregnation

Cassava waste Thioglycollic acid Cd(II)NA Abia et al.(2006)

Cassava tuber bark waste Thioglycollic acid Cd(II)26.3Horsfall Jr.et al.(2006)

Cu(II)90.9

Zn(II)83.3

Wheat bran Sulfuric acid Cu(II)51.5O¨zer et al.(2004)

Wheat bran Sulfuric acid Cd(II)101O¨zer and Pirinc?c?i(2006)

Juniper?bre Sodium hydroxide Cd(II)29.54Min et al.(2004)

Indian barks Hydrochloric acid Cu(II)Reddy et al.(1997)

–sal51.4

–mango42.6

–jackfruit17.4

Jute?bres Reactive Orange13Cu(II)8.40Shukla and Pai(2005a)

Ni(II) 5.26

Zn(II) 5.95

Hydrogen peroxide Cu(II)7.73

Ni(II) 5.57

Zn(II)8.02

Unmodi?ed Cu(II) 4.23

Ni(II) 3.37

Zn(II) 3.55

Banana pith Nitric acid Cu(II)13.46Low et al.(1995)

Banana stem Formaldehyde Pb(II)91.74Noeline et al.(2005)

Spent grain Hydrochloric acid Cd(II)17.3Low et al.(2000)

Sodium hydroxide Pb(II)35.5

(continued on next page)

Cd(II),Pb(II)and Hg(II)ions were able to be removed by the two types of treated adsorbents,while Cr(VI)recorded the lowest percentage removal(<40%).

2.2.Spent grain

Spent grain obtained from brewery can be used to treat Pb(II)and Cd(II)ions as demonstrated by Low et al.,2000.Treatment of spent grain with NaOH greatly enhanced adsorption of Cd(II)and Pb(II)ions,whereas HCl treated spent grain showed lower adsorption than the untreated spent grain.The increase in adsorption of heavy metal ions after base treatment could be explained by the increase in the amount of galactouronic acid groups after hydrolysis of O-methyl ester groups.The best pH range for metal adsorption was4–6.Kinetic study reveals that the equilib-

Table1(continued)

Adsorbent Modifying agent(s)Heavy metal Q max(mg gà1)Source

Cork powder Calcium chloride Cu(II)15.6Chubar et al.(2004)

Sodium chloride19.5

Sodium hydroxide18.8

Sodium hypochlorite18.0

Sodium iodate19.0

Corncorb Nitric acid Cd(II)19.3Leyva-Ramos et al.(2005)

Citric acid55.2

Imperata cylindrica leaf powder Sodium hydroxide Pb(II)13.50Hana?ah et al.(2006a) Alfalfa biomass Sodium hydroxide Pb(II)89.2Tiemann et al.(2002)

Azolla?liculoides (aquatic fern)Hydrogen peroxide–Magnesium

chloride

Pb(II)228Ganji et al.(2005)

Cd(II)86

Cu(II)62

Zn(II)48

Carrot residues Hydrochloric acid Cr(III)45.09Nasernejad et al.(2005)

Cu(II)32.74

Zn(II)29.61

Sugarcane bagasse Sodium bicarbonate Cu(II)114Junior et al.(2006)

Pb(II)196

Cd(II)189

Ethylenediamine Cu(II)139

Pb(II)164

Cd(II)189

Triethylenetetramine Cu(II)133

Pb(II)313

Cd(II)313

Sugarbeet pulp Hydrochloric acid Cu(II)0.15Pehlivan et al.(2006)

Zn(II)0.18

Bagasse?y ash Hydrogen peroxide Pb(II) 2.50Gupta and Ali(2004)

Cr(III) 4.35

Nipah palm shoot biomass Mercaptoacetic acid Pb(II)52.86Wankasi et al.(2006)

Cu(II)66.71

Groundnut shells Reactive Orange13Cu(II)7.60Shukla and Pai(2005b)

Ni(II)7.49

Zn(II)9.57

Terminalia arjuna nuts ZnCl2Cr(VI)28.43Mohanty et al.(2005)

Coirpith ZnCl2Cr(VI)NA Namasivayam and Sangeetha(2006)

Ni(II)

Hg(II)

Cd(II)Kula et al.(2007)

Sulfuric acid and ammonium persulphate Hg(II)154Namasivayam and Kadirvelu(1999) Cu(II)39.7Namasivayam and Kadirvelu(1997) Hg(II)NA Kadirvelu et al.(2001a)

Pb(II)

Cd(II)

Ni(II)

Cu(II)

Ni(II)62.5Kadirvelu et al.(2001b)

NA–not available.

3938W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–3948

rium time of adsorption was120min for both metal ions and adsorption followed pseudo-second-order model.The maximum adsorption capacity for lead was two times higher than cadmium.The e?ect of organic ligands (EDTA,nitrilotriacetic acid and salicylic acid)on adsorp-tion e?ciency was assessed and adsorption was greatly reduced by EDTA and nitrilotriacetic acid at molar ratio of1:1(metal:ligand).EDTA and nitrilotriacetic acid could chelate the heavy metal ions,therefore more metal ions would remain in the solutions rather than being adsorbed (Jeon and Park,2005).Salicylic acid on the other hand slightly reduced the percentage of cadmium adsorption but did not a?ect adsorption of lead.

2.3.Sugarcane bagasse/?y ash

Junior et al.(2006)reported the use of succinic anhy-dride modi?ed sugarcane bagasse for treatment of Cu, Cd and Pb from aqueous solutions.Sugarcane bagasse consists of cellulose(50%),polyoses(27%)and lignin (23%).The presence of these three biological polymers causes sugarcane bagasse rich in hydroxyl and phenolic groups and these groups can be modi?ed chemically to pro-duce adsorbent materials with new properties.The authors reported that the hydroxyl groups in sugarcane bagasse could be converted to carboxylic groups by using succinic anhydride.The carboxylic groups were later reacted with three di?erent chemicals mainly NaHCO3,ethylenediamine and triethylenetetramine to produce new properties of adsorbent materials which showed di?erent adsorption capacities for metal ions.It was found that sugarcane bagasse treated with ethylenediamine and triethylenetetra-mine shows a remarkable increase in nitrogen content com-pared to untreated sample,and triethylenetetramine modi?ed sugarcane bagasse has a higher increasing extent. The presence of amide group was also detected in ethylene-diamine and triethylenetetramine modi?ed sugarcane bag-asses as a result of the reaction between–COOH and–NH2groups.Kinetic studies showed that equilibrium time for adsorption of Cu,Cd and Pb onto tethylenediamine and triethylenetetramine modi?ed sugarcane bagasses were slower than that for adsorbent modi?ed with NaHCO3. Triethylenetetramine modi?ed sugarcane bagasse was the best adsorbent material for removal of Cd and Pb since the adsorption capacities for both metals are two times higher than unmodi?ed sugarcane bagasse.This was prob-ably caused by the higher number of nucleophilic sites introduced in triethylenetetramine modi?ed sugarcane bagasse.When sugarcane bagasse was modi?ed with meth-anol,however,the resulting adsorbent did not show a good uptake of cadmium as the maximum adsorption capacity was6.79mg gà1(Ibrahim et al.,2006).

The performance of hydrogen peroxide treated bagasse ?y ash,a solid waste of sugar industry for removal of lead and chromium was explored by Gupta and Ali(2004). Hydrogen peroxide is a good oxidizing agent and used to remove the adhering organic matter on the adsorbent.It was found that hydrogen peroxide treated bagasse?y ash was able to remove chromium in a shorter period of time (60min)compared to lead(80min).The isotherm study also revealed maximum adsorption capacity for chromium was higher than lead.However,the recorded values of maximum adsorption capacities for both metals were low (2.50and4.35mg gà1for Pb and Cr,respectively).The detail mechanism of adsorption by the treated bagasse?y ash was not discussed,but it was thought that adsorption was controlled by?lm di?usion at lower metal concentra-tion and particle di?usion at higher concentration of metal ions.

2.4.Sawdust

Sawdust,obtained from wood industry is an abundant by-product which is easily available in the countryside at negligible price.It contains various organic compounds (lignin,cellulose and hemicellulose)with polyphenolic groups that could bind heavy metal ions through di?erent mechanisms.An experiment on the e?ciency of sawdust in the removal of Cu2+and Zn2+ions was conducted by Sˇc′i-ban et al.(2006a).Two kinds of sawdust,poplar and?r wood were treated with NaOH(?bre-swelling agent)and Na2CO3solutions and the adsorption capacities were com-pared with the untreated sawdusts.For unmodi?ed saw-dust,both types of woods showed higher uptakes of Cu2+ions than Zn2+ions,and adsorption followed Lang-muir isotherm model.Equivalent amounts of adsorption capacities were recorded by both types of sawdust for Zn2+and Cu2+ions,although these two adsorbents have di?erent anatomical structure and chemical composition. After treating with NaOH,a marked increase in adsorption capacity was observed for both heavy metal ions,especially for Zn2+ions(2.5times for Cu2+and15times for Zn2+). The adsorption capacities shown by Langmuir model were 6.92mg gà1(poplar sawdust)and12.70mg gà1(?r saw-dust)for Cu2+,and15.83mg gà1(poplar sawdust)and 13.41mg gà1for Zn2+(?r sawdust),respectively.In another experiment,Sˇc′iban et al.(2006b)found that the leaching of coloured organic matters during the adsorption can be eliminated by pretreatments with formaldehyde in acidic medium,with sodium hydroxide solution after form-aldehyde treatment,or with sodium hydroxide only. According to Sˇc′iban et al.(2006a),NaOH improved the adsorption process by causing the liberation of new adsorption sites on the sawdust surface.An increase in the concentration of NaOH for modi?cation purpose how-ever did not cause a signi?cant increase of the adsorption capacity.The authors suggest that no greater than1%of concentration of NaOH solution should be used for mod-i?cation.The temperature of modi?cation was also not a signi?cant factor for the main increase of adsorption capacities of modi?ed sawdusts.It was observed that only a slight increase in Cu2+and Zn2+adsorption occurred when the?r sawdust was treated with NaOH at higher tem-perature(80°C).The study on adsorption capacity by

W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–39483939

treatment with Na2CO3revealed the modi?ed sawdusts had two times higher adsorption for Cu2+ions and six times higher for Zn2+ions compared to unmodi?ed saw-dusts.The application of Na2CO3for chemical modi?ca-tion is less e?cient than the use of NaOH.This is due to higher number of Na+ions in1g of NaOH compared to 1g of Na2CO3.In general,three possible reasons for the increase in adsorption capacities of heavy metal ions were given by the authors:

(i)Changes on wood surface-increase in surface area,

average pore volume and pore diameter after alkaline treatment.The surface area and average pore diame-ter increased about1.5–2times after modi?cation. (ii)Improvement in ion-exchange process especially with Na+ions.

(iii)Microprecipitation of metal hydroxides–Cu(OH)2 and Zn(OH)2in the pores of sawdust.

Although the work on adsorption of copper and zinc ions onto sawdust of poplar tree was reported by Sˇc′iban et al.(2006a),they did not carry out a detail experiment on the kinetic of adsorption.

The e?ect of sulfuric acid treatment on sawdust of pop-lar tree was studied by Acar and Eren(2006).Sulfuric acid poplar sawdust possessed good removal of92.4%Cu2+at pH5,while untreated sawdust could only removed47%. The kinetic of copper binding indicated that it is a rapid process and about70–80%of copper ions removed from the solution in10min.The percent of copper removal how-ever decreases as the metal concentration increases.The increase in percent of adsorption with adsorbent dose could be due to the increase in surface area and availability of more active sites.The treated poplar sawdust showed maximum adsorption capacity of13.945mg gà1against 5.432mg gà1for untreated sawdust which followed Lang-muir isotherm model.The maximum adsorption capacity for sulfuric acid treated poplar sawdust is higher than to the value recorded by NaOH treated poplar sawdust reported by Sˇc′iban et al.(2006a).Concentrated sulfuric acid was also used to modify coconut tree sawdust for removing mercury and nickel(Kadirvelu et al.,2003).It was reported that100%removal of mercury was achieved compared to81%for nickel and adsorption occurred in 1h.

Rehman et al.(2006)reported the removal of Ni2+ions by using sodium hydroxide treated sawdust of Dalbergia sissoo,a byproduct of sawmills.The treatment of sawdust with NaOH results in the conversion of methyl esters which are the major constituents in cellulose,hemicellulose and lignin to carboxylate ligands.The adsorption time study revealed that nickel ions were removed fast in the?rst 20min due to extra-cellular binding.The maximum adsorp-tion capacity of Ni2+ions was found to be10.47mg gà1at 50°C.Adsorption was more favourable at higher tempera-ture and adsorption followed both Langmuir and Freund-lich isotherm models.

A comparative study on the adsorption e?ciency of untreated and NaOH treated sawdust of cedrus deodar wood was conducted by Memon et al.(2007).They reported that cedrus deodar sawdust mainly consists of acid detergent?bre(cellulose and lignin),hydroxyl groups (tannins)and phenolic compounds.The acidimetric–alkali-metric titration study revealed that sawdust has four major groups responsible for cadmium binding which were car-boxylic,phosphoric,amines and phenolic.Cadmium removal was more favoured by NaOH treated sawdust as the value of adsorption capacity was four times greater than untreated sawdust.Maximum removal of cadmium occurred at pH above4for both types of adsorbents.When the pH of the solution is greater than4,carboxylic groups will be deprotonated and the adsorbent surface will be neg-atively charged resulting in higher adsorption of cadmium. However;at pH less than3,carboxylic groups become pro-tonated and adsorption sites are unable to attract Cd2+ ions.NaOH treated sawdust also shows good settling prop-erty,making it easy to?lter or separate the adsorbent from the solution.Ion-exchange was considered as the predom-inant mechanism of cadmium adsorption as the values of adsorption energy(E)determined from Dubinin–Radushk-evic plots are in the range of9–16kJ molà1.Maximum adsorption capacity recorded at temperature of20°C was

73.62mg gà1.

A detail analysis on the ideal concentration of NaOH for modifying juniper?bre for adsorption of cadmium ions was carried out by Min et al.(2004).Sodium hydroxide treatment of lignocellulosic materials can cause swelling which leads to an increase in internal surface area,a decrease in the degree of polymerization,a decrease in crys-tallinity,separation of structural linkages between lignin and carbohydrates and disruption of the lignin structure. Sodium hydroxide is a good reagent for saponi?cation or the conversion of an ester group to carboxylate and alco-hol,as shown in the equation below:

RCOOR0tH2O!

OHàRCOOàtR0OHe1T

Based on the FTIR analysis,it was found that as the con-centration of NaOH increases(from0to 1.0M),the amount of carboxylate was also increased.A maximum concentration of0.5M of NaOH was suitable to carry out saponi?cation process.After base treatment,the max-imum adsorption capacity of cadmium increased by about three times(from9.18to29.54mg gà1)compared to un-treated juniper?bre despite a decrease in speci?c surface area for the treated adsorbent.Data obtained from pseu-do-second-order kinetic study also revealed that base trea-ted juniper?bre had higher values of adsorption capacity, q e(mg gà1)and initial adsorption rate constant,h (mg gà1minà1)when compared to untreated adsorbent.

Hexavalent chromium adsorption by formaldehyde treated sawdust was studied by Baral et al.,2006.Formal-dehyde is a common compound used to immobilize colour and water soluble compounds from sawdust(Garg et al.,

3940W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–3948

2004).The adsorption capacity of Cr(VI)determined from Langmuir isotherm was low(3.60mg gà1)and equilibrium adsorption time took about5h.Adsorption process was strongly a?ected by several physico-chemical parameters such as pH,adsorbent dose,temperature and initial con-centration of chromium solution.Maximum adsorption occurred at pH range3–6and reduced signi?cantly beyond pH6.The percentage adsorption of Cr(VI)increased with increase in adsorbent dose,but decreased with increase in metal concentration and temperature.Adsorption rate tends to increase with increase in adsorbent dose due to higher number of available adsorption sites.As concentra-tion of Cr(VI)increases with?xed amount of adsorbent dose,more Cr(VI)ions will remain in the aqueous phase, thus percentage adsorption will be small.The decrease in adsorption rate with increase in temperature indicates exo-thermic nature of adsorption,in which adsorption is more favourable at lower temperatures.

According to Taty-Costodes et al.(2003),treatment with formaldehyde induces a stabilization of the hydrosol-uble compounds of adsorbent by creating covalent bonds on the constitutive units.This could eliminate the problem associated with the release of polyphenolic compounds which could cause an increase in COD in wastewater.A research on the adsorption of Pb(II)and Cd(II)onto form-aldehyde treated sawdust of Pinus sylvestris shows that the two metal ions were successfully removed in less than 20min at low concentrations(<10mg là1).It was reported that metal ions could form complexes with the oxygen atom on carbonyl and hydroxyl groups(acting as a Lewis base).The maximum adsorption capacities of Pb(II)and Cd(II)were9.78and9.29mg gà1,respectively.Adsorption kinetic indicates that pseudo-second-order model was bet-ter?tted than pseudo-?rst-order and intraparticle di?usion is one of the rate determining steps.Nickel,cadmium and lead adsorption by walnut sawdust treated with formalde-hyde in sulfuric acid was studied and it was found that adsorption is dependent on contact time,metal concentra-tion and temperature(Bulut and Tez,2003).Equilibrium time was established in about60min for all heavy metals. The kinetic study reveals that adsorption followed pseudo-second-order model better than pseudo-?rst-order.The maximum adsorption capacities were 6.43, 4.51and 4.48mg gà1for Ni,Cd and Pb,respectively.Based on tem-perature study,adsorption was favaourable at higher tem-peratures as the values of D G°become more negative.

Chubar et al.(2004)studied the performance of various kinds of chemically treated cork powder obtained from cork oak tree for the removal of Cu,Zn and Ni.Treatment of cork powder with salts such as NaCl and CaCl2causes the conversion of active binding sites from the H+form to Na+and Ca2+form.The salt modi?ed cork powder shows greater adsorption capacity than the unmodi?ed cork especially at higher heavy metal concentrations.It was also noted that the Na+form cork recorded a higher adsorption capacity value than the Ca2+form.This obser-vation can be explained in terms of the di?erent charge of cations whereby the interaction of cork powder binding sites with divalent calcium ions is stronger than the mono-valent sodium ions.Hence,the biosorption reaction of cop-per will be hindered.Treatment of cork powder with an alkaline solution(NaOH)at high temperature increased the sorption capacity toward heavy metals by about33%.

A high concentration of NaOH however causes a decrease in copper removal due to the destruction of the biomass. Besides NaCl,CaCl2and NaOH,modi?cation of cork powder could be carried out using commercial laundry detergent and the amount of copper removed was found to increase,probably due to the exposure of new binding sites.The use of NaClO and NaIO3will increase the num-ber of active binding sites by oxidation of the some of func-tional groups of cork to carboxylic groups,hence more copper ions could be sorbed.An increase of70–80%in cork capacity for copper was achieved after treating cork powder with NaClO containing7%of active chlorine. 2.5.Wheat bran

Wheat bran,a by-product of wheat milling industries proved to be a good adsorbent for removal of many types of heavy metal ions such as Pb(II),Cu(II)and Cd(II).The application of a strong dehydrating agent like sulfuric acid (H2SO4)can have a signi?cant e?ect on the surface area of the adsorbent,which eventually results in better e?ciency of adsorption of copper ions as reported by O¨zer et al. (2004).It was found that upon treatment with sulfuric acid, wheat bran had a much higher surface area.The authors suggested that acid treatment caused changes in surface area by increasing the conversion of macropores to microp-ores.Maximum adsorption capacity for Cu(II)ions was reported as51.5mg gà1(at pH5)and equilibrium time of adsorption was achieved in30min.O¨zer and Pirinc?c?i (2006)conducted a study on the removal of lead ions by sulfuric acid treated wheat bran.It was reported that max-imum lead removal(82.8%)occurred at pH6after2h of contact time.Three isotherm models were analyzed for determining the maximum adsorption capacity of wheat bran particularly Langmuir,Freundlich and Redlich-Peter-son.Based on the non-linear plots,it was found that adsorption?tted well to the Redlich-Peterson than Lang-muir and Freundlich models.The Langmuir plots indicate that maximum adsorption capacities increased with an increase in temperature(79.37mg gà1at60°C and 55.56mg gà1at25°C).The decrease in the values of D G°suggests that adsorption was more favourable at higher temperatures and adsorption was endothermic in nature. The kinetic study showed that lead adsorption could be described well with n th-order kinetic model.O¨zer(2006) also examined the sulfuric acid treated wheat bran for cad-mium ion removal from aqueous solution.After4h of con-tact time,the maximum adsorption capacity that could be achieved for cadmium was101mg gà1at pH5.Therefore, in general the order of maximum removal of the above three metals follows:Cd(II)>Pb(II)>Cu(II).

W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–39483941

2.6.Corncobs

Besides carbonization at high temperature,an adsorbent can be activated by chemical treatment using a concen-trated acid.This method was demonstrated by Khan and Wahab(2006)in the study of adsorption of copper by con-centrated sulfuric acid treated corncobs.It was reported that upon treatment of corncobs with sulfuric acid and heated at150°C,the pH zpc of the adsorbent reduced from 5.2(untreated)to2.7(treated),and the functional groups present in the adsorbent are mainly oxygen containing groups such as–OH,–COOH and–COOà.The maximum adsorption capacity obtained from Langmuir isotherm was 31.45mg gà1.Adsorption was more favoured at higher pH value(4.5)due to low competing e?ect of protons for the adsorption sites.E?ect of interfering ions such as Zn(II), Pb(II)and Ca(II)was also studied.It was noticed that cop-per removal e?ciency was reduced by53%,27%and19% in the presence of Pb(II),Ca(II)and Zn(II),respectively. Regeneration study indicates that sulfuric acid treated corncobs can be regenerated by acidi?ed hydrogen perox-ide solution and as much as90%copper could be recovered.

The study on oxidation of corncob by citric acid and nitric acid was carried out by Leyva-Ramos et al.(2005). Upon oxidation of corncob,a signi?cant increase in the surface area of the adsorbent was observed.An increase in the amount of oxygen found in corncob was due to more oxygenated groups being introduced on the adsorbent sur-face after oxidation.After oxidation,a higher proportion of acidic sites(carboxylic,phenolic and lactonic)was detected,which results in a reduction in the pH ZPC value. It was also reported that the adsorption capacities for citric acid and nitric acid oxidized corncob were much higher than unmodi?ed corncob.

2.7.Weeds

The study on e?ectiveness of lead adsorption by sodium hydroxide treated lalang(one of the ten worst weed of the world)or Imperata cylindrica leaf powder was carried out by Hana?ah et al.(2006a).Maximum adsorption of lead occurred at pH range4–5and an adsorbent dose of 4g là1.Temperature study indicates that chemisorption was the main rate limiting step and pseudo-second-order kinetic model was?tted well.The value of maximum adsorption capacity obtained by NaOH treated Imperata cylindrica(13.50mg gà1)is much higher than untreated adsorbent(5.89mg gà1)(Hana?ah et al.,2007).A faster equilibrium time(20min)was observed for treated Imper-ata cylindrica compared to untreated(120min).The e?ect of metal concentration and thermodynamics on the sorp-tion of Pb(II)and Cd(II)ions by nitric acid treated wild cocoyam(Caladium bicolor)biomass was investigated by Horsfall and Spi?(2005).The biomass was?rst reacted with nitric acid before washed with distilled water,then suspended in hydroxylamine to remove all O-acetyl groups.It was noticed that the amount of Pb(II)sorbed was higher than Cd(II)ions.The smaller ionic radii of Cd(II)(0.97A?) compared to Pb(II)(1.20A?)means greater tendency of Cd(II)to be hydrolyzed,leading to reduced sorption.Sorp-tion capacity increased with increasing metal concentra-tions for both cations.The maximum sorption capacities were49.53and48.20mM gà1for Pb(II)and Cd(II), respectively.Freundlich and Langmuir models were found to be?tted well.The sorption was reported to occur by ion-exchange mechanism involving hydroxyl groups as repre-sented by the following equation:

M2tt2BOH$MeBOT

2

t2Hte2TSpontaneous sorption of Pb(II)and Cd(II)was noticed as the negative values of D G°were obtained in all concentra-tions studied.

2.8.Fruit/vegetable wastes

Adsorption of divalent heavy metal ions particularly Cu2+,Zn2+,Co2+,Ni2+and Pb2+onto acid and alkali trea-ted banana and orange peels was performed by Annadurai et al.(2002).The acid and alkali solutions used for modi?-cation of adsorbents were HNO3and NaOH.In general, the adsorption capacity decreases in the order of Pb2+>Ni2+>Zn2+>Cu2+>Co2+for both adsorbents. Banana peel exhibits higher maximum adsorption capacity for heavy metals compared to orange peel.The reported maximum adsorption capacities were7.97(Pb2+), 6.88 (Ni2+),5.80(Zn2+),4.75(Cu2+)and2.55mg gà1(Co2+) using banana peel;and were7.75(Pb2+), 6.01(Ni2+), 5.25(Zn2+), 3.65(Cu2+)and 1.82mg gà1(Co2+)using orange peel.Acid treated peels showed better adsorption capacities followed by alkali and water treated peels.Based on regeneration studies,it was reported that the peels could be used for two regenerations for removal and recovery of heavy metal ions.

Besides NaOH,Ca(OH)2is another good saponifying agent for the conversion of ester groups to carboxyl groups as demonstrated by Dhakal et al.(2005).In the study, orange waste(consists of cellulose,hemicellulose,pectin, limonene and other low molecular weight compounds) was treated with Ca(OH)2to form saponi?ed gel(SOW). Two forms of saponi?ed gels were prepared(Ca2+-form and H+-form)and their removal e?ciency for six heavy metal ions particularly Fe(III),Pb(II),Cu(II),Zn(II), Cd(II)and Mn(II)were compared.The authors suggested that cation exchange was the main mechanism for the removal of heavy metal ions as the pH of solutions decreased after adsorption.The order of removal for Ca2+-form SOW gel was Pb(II)>Fe(III)>Cu(II)>Cd-(II)>Zn(II)>Mn(II).In the case of H+-form SOW gel, the order of removal was Pb(II)>Fe(III)>Cu(II)> Zn(II)>Cd(II)>Mn(II).As the pH of solutions increases, the percent removal of heavy metal ions also increased except Fe(III).The percent removal of Fe(III)greatly reduced beyond pH3due to formation of soluble iron

3942W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–3948

complexes such as Fe(OH)+,FeeOHTt

2,FeeOHT4t

2

and

FeeOHTà

4.The authors also suggested that ion-exchange

mechanism involves oxygen atom in the pyranose ring of pectin acids cooperating with carboxylic group to form a stable?ve-membered chelate ring.This study indicates that both types of SOW gels are e?ective for removing heavy metal ions in acidic solution.

Chemical modi?cation of cornelian cherry,apricot stone and almond shell by using concentrated sulfuric acid for the removal of Cr(VI)has been studied(Demirbas et al., 2004).All the three types of fruit wastes showed highest removal of Cr(VI)at pH 1.It was also reported that adsorption was highly dependent on the initial metal con-centration as the lowest concentration recorded fastest removal rate(shortest equilibrium time).The equilibrium time for cornelian cherry was20h at53mg là1Cr(VI)con-centration,increased to70h as the concentration increased to203mg là1.The removal rate increased with a decrease in adsorbent size,which indicates that smaller particle size has larger surface area.Four di?erent kinetic models par-ticularly pseudo-?rst-order,pseudo-second-order,Elovich and intraparticle di?usion were evaluated and results showed that pseudo-second-order model correlated well with the experimental data.Recently,Kula et al.(2007) reported the application of ZnCl2(a dehydrating agent) in the activation of olive stone for removal of Cd(II)ions. It was reported that treated olive stone shows a remarkable increase in surface area compared to untreated olive stone. However,the activated olive stone did not show good adsorption capacity for Cd(II)as the reported maximum adsorption capacity was only1.85mg gà1.

Li et al.(2006b)investigated orange peels as an adsor-bent for cadmium adsorption and the e?ect of di?erent cit-ric acid concentrations on the adsorbent characters was studied.Upon treatment with more concentrated citric acid solutions,orange peels showed lower values of pH of zero point charge(pH zpc)due to the increase number of total acidic sites while the total number of basic sites decreased. The increase in citric acid concentration results in more oxygenated groups being introduced to the adsorbent sur-face.Orange peels washed with0.6M citric acid at80°C has a much lower pH ZPC value indicating that the adsor-bent surface becomes more negative due to dissociation of weakly acidic oxygen-containing groups.Chemical treatment with citric acid at high temperature produced condensation product and citric acid anhydride.The reac-tive citric acid anhydride can react with cellulosic hydroxyl groups to form an ester linkage and introduce carboxyl groups to the cellulose(Marshall et al.,1999).The presence of more carboxyl groups will increase more cadmium ions to bind on the adsorbent surface.It was also reported that cadmium adsorption occurred via ion-exchange mecha-nism as the pH of the solution decreases after adsorption, which indicates the presence of more protons in the e?u-ents.Desorption experiment revealed that Cd(II)ions could be removed when the concentration of hydrochloric acid was increased and maximum percentage recovery of cadmium was94%with0.15M HCl solution.The reported value of maximum adsorption capacity was101.16mg gà1. The untreated orange waste however could only adsorb 0.43mmol gà1or48.33mg gà1Cd(Pe′rez-Mar?′n et al., 2007).Previously,Wartelle and Marshall(2000)reported an interesting?nding in which a linear relationship between total negative charge and amount of copper ions adsorbed was observed for12types of agricultural by-products(sugarcane bagasse,peanut shells,macadamia nut hulls,rice hulls,cottonseed hulls,corn cob,soybean hulls,almond shells,almond hulls,pecan shells,English walnut shells and black walnut shells)after modi?cation with citric acid.It was found that after washing with base (NaOH)and modi?ed with citric acid,the total negative charge of all12types of agricultural by-products increased signi?cantly.Among the12adsorbents,soybean hulls(a low density material)showed the highest copper uptake and had a high total negative charge value,which can be explained by the increase in carboxyl groups after thermo-chemical reaction with citric acid.On the other hand,nut-shells(high density materials)such as English walnut shells and black walnut shells displayed low total negative charge values indicating low number of carboxyl groups.Due to the high bulk density,the lignin in nutshells may block or allowed little penetration of citric acid to reactive sites, hence lower copper ion uptake was observed.Wafwoyo et al.(1999)also reported that citric acid treated peanut shells showed higher removal of Cu,Cd,Ni,Zn and Pb ions compared to untreated shells.The metal uptake gets even larger when the shells were treated?rst with NaOH followed by citric acid.Treatment with NaOH will de-esterify and removes tannins,leaving more active binding sites available for metal adsorption.

Heavy metals such as Cr(III),Cu(II)and Zn(II)were able to be removed from wastewater using HCl treated car-rot residues.Acid treatment was performed in order to remove tannins,resins,reducing sugars and coloured mate-rials.According to Nasernejad et al.(2005),adsorption of metal ions onto carrot residues was possible due to the presence of carboxylic and phenolic groups which have cat-ion exchange properties.Based on kinetic study,more than 70%metal ions were removed in the?rst10min and equi-librium was achieved in70min.More metals were adsorbed at higher pH values of the solutions(pH4for Cr(III)and pH5for Cu(II)and Zn(II)).Maximum adsorp-tion capacities were45.09,32.74and29.61mg gà1for Cr(III),Cu(II)and Zn(II),respectively.

2.9.Cassava waste

Chemically modi?ed adsorbent could also be prepared by thiolation(a process of introducing–SH group) method.Abia et al.(2003)carried out an experiment of determining the optimal concentration of thioglycollic acid (HSCH2COOH)for the removal of Cd(II),Cu(II)and Zn(II)ions by cassava waste.Cassava waste consists of ligands such as hydroxyl,sulfur,cyano and amino which

W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–39483943

could bind heavy metal ions.It was noticed that adsorptiv-ity of the cassava waste was greatly improved as the con-centration of modifying agent(thioglycollic acid)was increased from0.5to1.0M due to the increase in sulfhy-dryl groups,–SH.Adsorption was reported to take place on the cell wall of the biomass.Optimum adsorptions of all three heavy metals were achieved in less than30min. The order of maximum adsorption capacity among the three heavy metal ions after treating cassava waste with 1.0M thioglycollic acid follows:Zn(II)>Cu(II)>Cd(II). The authors however did not conduct a detail experiment on the kinetic model of adsorption.

E?ect of concentration of modifying agent on the adsorption of Cd(II)and Zn(II)ions onto thioglycollic acid treated cassava waste was investigated by Horsfall and Abia(2003).Cassava waste treated with1.0M thioglycollic acid showed highest removal of Cd(II)and Zn(II)ions compared to0.5M and untreated adsorbent but the time to reach equilibrium remained similar for treated and untreated adsorbent.It was observed that treated cassava waste had a much higher adsorption capacity for Cd(II) and Zn(II)ions compared to untreated sample.The adsorption capacities were reported as86.68mg gà1Cd, 55.82mg gà1Zn and647.48mg gà1,559.74mg gà1for untreated and treated cassava waste,respectively.The increase in adsorption capacity of Cd and Zn after acid treatment could be associated with the formation of micro-porosity,which leads to enhanced thiol(–SH)groups on the adsorbent surface.The relative ease of exchanging hydrogen atoms of the thiol groups with heavy metal ions results in improved level of adsorption.Desorption studies revealed that untreated cassava waste showed better recov-ery of Cd(II)and Zn(II).The authors suggest that the low recovery of heavy metal ions by acid treated cassava waste was due to enhancement in binding sites after acid treat-ment,which enables the metal ions to bind strongly to the adsorbent surface.Abia et al.(2006)explored di?erent kinetic models to account for the transport of Cd(II)from aqueous solution on to the surface of0.5and 1.0M thiolated cassava wastes.Six kinetic models were tested mainly pseudo-?rst-order,pseudo-second-order,intrapar-ticle di?usion,Elovich,mass transfer and intraparticle di?usivity models.Results indicate that adsorption fol-lowed pseudo-second-order better than the other kinetic models.

2.10.Plant?bres

Two types of chemical modi?cations on jute?bres and their e?ectiveness in the removal of Cu(II),Zn(II)and Ni(II)ions were reported by Shukla and Pai(2005a).The ?rst modi?cation involved a monochloro triazine type reactive dye,Reactive Orange13,which was covalently loaded to the cellulosic matrix of jute?bres.Another mod-i?cation involved oxidation of hydroxyl groups of cellulose present in jute?bres to carboxyl group(a weak cationic ion-exchanger)by using hydrogen peroxide.In the case of dye loaded jute?bres,the dye contains an azo linkage and hydroxyl groups(–OH),a situation favourable for for-mation of six membered ring chelate with metal ions.The presence of sodium sulphonate groups of the dye molecules attached covalently to the adsorbent also enhanced the metal adsorption capacity.The mechanism of ion-exchange between Na+of the dyed material and the heavy metal ions can be represented by the following equation:

ReSO3NaT

2

tM2t!ReSO3TMt2Nate3TFor oxidized jute,the high uptake of heavy metal ions was due to the generation of carboxyl groups(–COOH).The authors reported that oxidation process of jute?bres was carried out under alkaline condition,therefore the carboxyl groups are in the form of carboxylate.The adsorption of heavy metal ions could also take place by ion-exchange mechanism as shown below:

2RCOONatM2t!eRCOOT

2

Mt2Nate4TBased on the Langmuir plots,maximum adsorption capac-ity for Cu(II)ion was achieved by dye loaded jute,followed by oxidized jute and unmodi?ed jute.However,for Ni(II) and Zn(II)ions,maximum adsorption capacities were re-corded by oxidized jute and the lowest was by unmodi?ed jute.

Chemical modi?cation of cellulose?bre to improve its removal performance and adsorption capacity for Cu(II), Ni(II)and Zn(II)ions using ethylenediamine was con-ducted by Torres et al.(2006).Cellulose consists of active hydroxyl groups present on each monomeric unit of cellu-lose,therefore cellulose can react with carboxyl and amine groups of organic compounds.Based on the isotherm study,it was found that ethylenediamine modi?ed cellulose ?bre adsorbed Zn(II)more e?ciently than Ni(II)and Cu(II)ions.The reported values of maximum adsorption capacities were104.1,308.2and69.3mg gà1for Cu,Ni and Zn,respectively.The modi?ed adsorbent was also capable to adsorb metals100times more than unmodi?ed cellulose(Okieimen et al.,2005).Adsorption of heavy metal ions occurred through complexation mechanism in which the amine(–NH2)groups of ethylenediamine take part in the chelation process.

It is well known that adsorption of heavy metals by cellulosic wastes depends on the contact time and temper-ature.Ho and Ofamaja(2006)found that initial concentra-tion of Cu(II)has great e?ect on the equilibrium time for copper adsorption onto HCl treated palm kernel?bre. The time to reach equilibrium was only15min for 50mg là1copper,but increased to60min for200mg là1. The study reveals that copper adsorption increases with the increase of temperature which indicates that the mobil-ity of Cu(II)ions increases with a rise in temperature.The value of activation energy of22kJ molà1suggests that chemisorption was an important process in the adsorption of copper onto HCl treated palm kernel?bre.Adsorption follows pseudo-second-order kinetic model at all copper concentrations studied.

3944W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–3948

2.11.Tree barks

Three di?erent kinds of tree barks mainly sal(Shorea robusta),mango(Mangifera indica)and jackfruit(Artocar-pus integri?oria)were modi?ed using hydrochloric acid solution in order to remove copper from aqueous solutions (Reddy et al.,1997).Treated barks were able to chelate more copper ions than untreated ones.Extraction of solu-ble organic compounds which coloured the decontami-nated solutions was also avoided after pretreatment process.The highest adsorption capacity of copper ions was shown by sal bark(51.4mg gà1),followed by mango (42.6mg gà1)and jackfruit(17.4mg gà1).Binding of cop-per to the bark occurred through cation exchange mecha-nism as the pH of the e?uent decreased after copper adsorption.It was reported that hydroxyl and carboxyl groups were involved in the adsorption process and the results indicate that chelation of1mol of copper generates about1.6–1.8mols of hydronium ions.Regeneration of adsorbent was more successful using higher concentration of HCl solution.

2.12.Azolla(water fern)

Azolla,a small aquatic fern is commonly used as fertil-izer in botanical gardens and as green manure in rice?elds. Binding or ion-exchange of heavy metal ions is possible due to the presence of charged groups such as carboxyl and phosphate in the Azolla matrix(Ganji et al.,2005).The percentage adsorption values of Pb,Cd,Cu and Zn by Azolla treated with MgCl2alone were approximately33, 29,40and24,respectively.These values however increased with increasing concentration of MgCl2due to better ion-exchange behaviour between heavy metals and Mg2+ions on the cell walls of Azolla.No remarkable e?ect on the heavy metal removal was observed when Azolla was trea-ted with H2O2alone.However,the highest metal removal was reported by treating Azolla with2M MgCl2in the presence of8mM H2O2.It was thought that upon treat-ment with H2O2,more hydroxyl groups can be oxidized to carboxyl groups(Robert and Barbati,2002),which later binds with Mg2+ions.The(RCOO)2Mg can act as a good ion-exchange group,hence more heavy metal ions could be exchanged/removed from wastewater.The maximum adsorption capacities for Pb(II),Cd(II),Cu(II)and Zn(II) were228,86,62and48mg gà1,respectively.Heavy metals could be desorbed from Azolla using HCl solution and the order of desorption follows:Zn(II)>Cu(II)>Cd(II)> Pb(II).

2.1

3.Alfalfa biomass

Tiemann et al.(2002)investigated the adsorption of lead ions by alfalfa(Medicago sativa)biomass.The biomass was modi?ed with a combination of methanol/concentrated HCl solution in order to esterify the carboxyl groups.Bind-ing of lead(II)ions on the biomass was not observed after esteri?cation,but adsorption capacity increased to 43mg gà1for unmodi?ed alfalfa and89.2mg gà1for hydrolyzed alfalfa by NaOH.This?ndings indicate that carboxyl groups played a major role for the binding of lea-d(II)ions from solution by alfalfa biomass.The adsorption mechanism for Pb(II)on alfalfa biomass was established using X-ray absorption near edge structure(XANES)spec-troscopy and extended X-ray absorption?ne structure (EXAFS)spectroscopy.The EXAFS data demonstrated that Pb(II)ions formed monodentate complex with oxygen atoms via carboxyl groups and the Pb-O bond distance was 2.60A?

.

2.14.Coirpith carbon

The combined application of concentrated sulfuric acid and ammonium persulphate for activation of coirpith for removal of mercury,copper and nickel was carried out by Namasivayam and Kadirvelu(1999);Namasivayam and Kadirvelu(1997);Kadirvelu et al.(2001b).The adsorption equilibrium time for all heavy metal ions stud-ied was less than60min and the order of maximum adsorption capacity follows:Hg(II)>Ni(II)>Cu(II). Treatment of coirpith with sulfuric acid and ammonium persulphate introduced more functional groups on the car-bon surface and the mechanism of adsorption involves ion-exchange between heavy metal ions and Na+/H+ions as shown below(Namasivayam and Kadirvelu,1997):

2C x OHttM2t!eC x OT

2

M2tt2Hte5T

C x OHt

2

tM2t!C x OM2tt2Hte6T

2C x ONattM2t!eC x OT

2

M2tt2Nate7T

C x ONat

2

tM2t!C x OM2tt2Nate8T

2C x SO3HtM2t!eC x SO3T

2

Mt2Hte9T

2C x SO3NatM2t!eC x SO3T

2

Mt2Nate10T

In another study,chemical activation of coirpith could also be carried out using ZnCl2for removing Cr(VI),Ni(II)and Hg(II)from wastewater(Namasivayam and Sangeetha, 2006).Coirpith activated with ZnCl2was found to have a much higher surface area compared to the coirpith pre-pared in the absence of ZnCl2.Hence,more heavy metal ions were able to be removed from the wastewater.

2.15.Cottonseed hulls and soybean hulls

Marshall and Johns(1996)studied the removal of Zn(II) ions by treating soybean hulls and cottonseed hulls with 0.1M NaOH and0.1M HCl solutions.The results obtained from acid and base treatments were compared with water washed adsorbents.For soybean hulls,a26% increase in adsorption capacity was observed after NaOH treatment compared with water washing.However,the capacity was greatly reduced(about78%)after washing

W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–39483945

the adsorbent with HCl.For cottonseed hulls,zinc adsorp-tion was also increased by79%after washing the adsorbent with NaOH,but reduced by89%after acid treatment.The authors reported that both adsorbents contain pectin sub-stances consisting primarily of galacturonic acid and O-methyl esters.Upon treatment with NaOH,the O-methyl esters are converted to methanol and additional galact-uronic acid.The adsorbent surfaces will have more nega-tive charge sites or greater number of metal adsorption sites,hence greater metal adsorption capacity.Acid-washed hulls however will cause the adsorbent surface to be protonated,causing Zn(II)ions more di?cult to be adsorbed(Kumar and Bandyopadhyay,2006).

3.Conclusion

This review shows that the study on chemically modi?ed plant wastes for heavy metal removal has attracted the attention of more scientists.A wide range of low-cost adsorbents obtained from chemically modi?ed plant wastes has been studied and most studies were focused on the removal of heavy metal ions such as Cd,Cu,Pb,Zn,Ni and Cr(VI)ions.The most common chemicals used for treatment of plant wastes are acids and bases.Chemically modi?ed plant wastes vary greatly in their ability to adsorb heavy metal ions from solution.Chemical modi?cation in general improved the adsorption capacity of adsorbents probably due to higher number of active binding sites after modi?cation,better ion-exchange properties and formation of new functional groups that favours metal uptake. Although chemically modi?ed plant wastes can enhance the adsorption of heavy metal ions,the cost of chemicals used and methods of modi?cation also have to be taken into consideration in order to produce‘low-cost’adsor-bents.Since modi?cation of adsorbent surface might change the properties of adsorbent,it is recommended that for any work on chemically modi?ed plant wastes,charac-terization studies involving surface area,pore size,poros-ity,pH ZPC,etc.should be carried out.Spectroscopic analyses involving Fourier transform infrared(FTIR), energy dispersive spectroscopy(EDS),X-ray absorption near edge structure(XANES)spectroscopy and extended X-ray absorption?ne structure(EXAFS)spectroscopy are also important in order to have a better understanding on the mechanism of metal adsorption on modi?ed plant wastes.

Acknowledgements

The authors wish to thank Universiti Sains Malaysia for ?nancial support(Grant No.:304/PKIMIA/638056)of this review.One of us(Megat Ahmad Kamal Megat Hana?ah) gratefully acknowledges?nancial support from the Malay-sian Public Service Department and Universiti Teknologi MARA.References

Abia, A.A.,Horsfall Jr.,M.,Didi,O.,2003.The use of chemically modi?ed and unmodi?ed cassava waste for the removal of Cd,Cu and Zn ions from aqueous solution.Bioresour.Technol.90,345–348. Abia,A.A.,Didi,O.B.,Asuquo,E.D.,2006.Modelling of Cd2+sorption kinetics from aqueous solutions onto some thiolated agricultural waste adsorbents.J.Appl.Sci.6,2549–2556.

Acar,F.N.,Eren,Z.,2006.Removal of Cu(II)ions by activated poplar sawdust(Samsun Clone)from aqueous solutions.J.Hazard.Mater.B 137,909–914.

Annadurai,G.,Juang,H.S.,Lee,D.J.,2002.Adsorption of heavy metal from water using banana and orange peels.Water Sci.Technol.47, 185–190.

Argun,M.E.,Dursun,S.,Ozdemir,C.,Karatas,M.,2007.Heavy metal adsorption by modi?ed oak sawdust:thermodynamics and kinetics.J.

Hazard.Mater.B141,77–85.

Azab,M.S.,Peterson,P.J.,1989.The removal of Cd(II)from water by the use of biological sorbents.Water Sci.Technol.21,1705–1706. Babarinde,N.A.A.,Oyebamiji Babalola,J.,Adebowale Sanni,R.,2006.

Biosorption of lead ions from aqueous solution by maize leaf.Int.J.

Phys.Sci.1,23–26.

Bailey,S.E.,Olin,T.J.,Bricka,R.M.,Adrian,D.D.,1999.A review of potentially low-cost sorbents for heavy metals.Water Res.33,2469–2479.

Baral,S.S.,Das,S.N.,Rath,P.,2006.Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust.Biochem.

Eng.J.31,216–222.

Bhattacharya,A.K.,Mandal,S.N.,Das,S.K.,2006.Adsorption of Zn(II) from aqueous solution by using di?erent adsorbents.Chem.Eng.J.

123,43–51.

Bulut,Y.,Tez,Z.,2003.Removal of heavy metal ions by modi?ed sawdust of walnut.Fresen.Environ.Bull.12,1499–1504.

Chuah,T.G.,Jumasiah,A.,Katayon,S.,Thomas Choong,S.Y.,2005.

Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal:an overview.Desalination175,305–316.

Chubar,N.,Calvalho,J.R.,Correia,M.J.N.,2004.Heavy metals biosorption on cork biomass:e?ect of the pre-treatment.Colloids Surf.A238,51–58.

Demirbas, E.,Kobya,M.,Senturk, E.,Ozkan,T.,2004.Adsorption kinetics for the removal of chromium(VI)from aqueous solutions on the activated carbons prepared from agricultural wastes.Water SA30

(4),533–539.

Dhakal,R.P.,Ghimire,K.N.,Inoue,K.,2005.Adsorptive separation of heavy metals from an aquatic environment using orange.Hydromet-allurgy79,182–190.

Dubey,S.P.,Gopal,K.,2006.Adsorption of chromium(VI)on low cost adsorbents derived from agricultural waste material:a comparative study.J.Hazard.Mater..doi:10.1016/j.jhazmat.2006.11.04. Esteghlalian,A.,Hashimoto,A.G.,Fenske,J.J.,Penner,M.H.,1997.

Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover,poplar and switchgrass.Bioresour.Technol.59,129–136. Gaballah,I.,Goy, D.,Allain, E.,Kilbertus,G.,Thauront,J.,1997.

Recovery of copper through decontamination of synthetic solutions using modi?ed barks.Met.Metall.Trans.B28,13–23.

Ganji,M.T.,Khosravi,M.,Rakhsaee,R.,2005.Biosorption of Pb,Cd, Cu and Zn from wastewater by treated Azolla?liculoides with H2O2/ MgCl2.Int.J.Environ.Sci.Technol.1,265–271.

Garg,V.K.,Kumar,R.,Gupta,R.,2004.Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste:a case study of Prosopis cineraria.Dyes Pigments62,1–10.

Guo,Y.,Yang,S.,Fu,W.,Qi,J.,Li,R.,Wang,Z.,Xu,H.,2003.

Adsorption of malachite green on micro and mesoporous rice husk-based active carbon.Dyes Pigments56,219–229.

Gupta,V.K.,Ali,I.,2004.Removal of lead and chromium from wastewater using bagasse?y ash–a sugar industry waste.J.Colloid Interface Sci.271,321–328.

3946W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–3948

Gupta,V.K.,Jain,C.K.,Ali,I.,Sharma,M.,Saini,V.K.,2003.Removal of cadmium and nickel from wastewater using bagasse?y ash–a sugar industry waste.Water Res.37,4038–4044.

Hana?ah,M.A.K.,Ibrahim,S.C.,Yahya,M.Z.A.,2006a.Equilibrium adsorption study of lead ions onto sodium hydroxide modi?ed Lalang (Imperata cylindrica)leaf powder.J.Appl.Sci.Res.2,1169–1174. Hana?ah,M.A.K.M.,Ngah,W.S.W.,Ibrahim,S.C.,Zakaria,H.,Ilias, W.A.H.W.,2006b.Kinetics and thermodynamic study of lead adsorption onto rubber(Hevea brasiliensis)leaf powder.J.Appl.Sci.

6,2762–2767.

Hana?ah,M.A.K.,Ngah,W.S.W.,Zakaria,H.,Ibrahim,S.C.,2007.

Batch study of liquid-phase adsorption of lead ions using Lalang (Imperata cylindrica)leaf powder.J.Biol.Sci.7,222–230.

Hana?ah,M.A.K.H.,Sha?ei,S.,Harun,M.K.,Yahya,M.Z.A.,2006c.

Kinetic and thermodynamic study of Cd2+adsorption onto rubber tree(Hevea brasiliensis)leaf powder.Mater.Sci.Forum517,217–221.

Ho,Y.S.,2003.Removal of copper ions from aqueous solution by tree fern.Water Res.37,2323–2330.

Ho,Y.S.,Chiu,W.T.,Hsu,C.S.,Huang,C.T.,2004.Sorption of lead ions from aqueous solution using tree fern as a sorbent.Hydrometallurgy 73,55–61.

Ho,Y.S.,Ofamaja,A.E.,2006.Kinetic studies of copper ion adsorption on palm kernel?bre.J.Hazard.Mater.B137,1796–1802.

Ho,Y.S.,Wang, C.C.,2004.Pseudo-isotherms for the sorption of cadmium ion onto tree fern.Process Biochem.39,759–763.

Horsfall Jr.,M.,Abia,A.A.,2003.Sorption of cadmium(II)and zinc(II) ions from aqueous solutions by cassava waste biomass(Manihot sculenta Cranz).Water Res.37,4913–4923.

Horsfall Jr.,Spi?,A.I.,2005.E?ect of metal ion concentration on the biosorption of Pb2+and Cd2+by Caladium bicolor(wild cocoyam).

Afr.J.Biotechnol.4,191–196.

Horsfall Jr.,M.,Abia,A.A.,Spi?,A.I.,2006.Kinetic studies on the adsorption of Cd2+,Cu2+and Zn2+ions from aqueous solutions by cassava(Manihot sculenta Cranz)tuber bark waste.Bioresour.

Technol.97,283–291.

Ibrahim,S.C.,Hana?ah,M.A.K.M.,Yahya,M.Z.A.,2006.Removal of cadmium from aqueous solution by adsorption on sugarcane bagasse.

Am-Euras.J.Agric.Environ.Sci.1,179–184.

Jeon,C.,Park,K.H.,2005.Adsorption and desorption characteristics of mercury(II)ions using aminated chitosan beads.Water Res.36,3938–3944.

Johnson,P.D.,Watson,M.A.,Brown,J.,Jefcoat,I.A.,2002.Peanut hull pellets as a single use sorbent for the capture of Cu(II)from wastewater.Waste Manage.22,471–480.

Junior,O.K.,Gurgel,L.V.A.,de Melo,J.C.P.,Botaro,V.R.,Melo, T.M.S.,de Freitas Gil,R.P.,Gil,L.F.,2006.Adsorption of heavy metal ion from aqueous single metal solution by chemically modi?ed sugarcane bagasse.Bioresour.Technol.98,1291–1297.

Kadirvelu,K.,Kavipriya,M.,Karthika,C.,Radhika,M.,Vennilamani, N.,Pattabhi,S.,2003.Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions.Bioresour.Technol.87,129–132.

Kadirvelu,K.,Thamaraiselvi,K.,Namasivayam,C.,2001a.Removal of heavy metal from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste.Bioresour.Technol.

76,63–65.

Kadirvelu,K.,Thamaraiselvi,K.,Namasivayam,C.,2001b.Adsorption of nickel(II)from aqueous solution onto activated carbon prepared from coirpith.Sep.Purif.Technol.24,497–505.

Karunasagar,D.,Balarama Krishna,M.V.,Rao,S.V.,Arunachalam,J., 2005.Removal of preconcentration of inorganic and methyl mercury from aqueous media using a sorbent prepared from the plant Coriandrum sativum.J.Hazard.Mater.B118,133–139.

Khan,M.N.,Wahab,M.F.,2006.Characterization of chemically modi?ed corncobs and its application in the removal of metal ions from aqueous solution.J.Hazard.Mater.B141,237–244.King,P.,Srivinas,P.,Prasanna Kumar,Y.,Prasad,V.S.R.K.,2006.

Sorption of copper(II)ion from aqueous solution by Tectona grandis l.f.(teak leaves powder).J.Hazard.Mater.B136,560–566.

Kula,I.,Ug?urlu,M.,Karaog?lu,H.,C?elik,A.,2007.Adsorption of Cd(II) ions from aqueous solutions using activated prepared from olive stone by ZnCl2activation.Bioresour.Technol..doi:10.1016/j.biortech.

2007.01.01.

Kumar,U.,Bandyopadhyay,M.,2006.Sorption of cadmium from aqueous solution using pretreated rice husk.Bioresour.Technol.97, 104–109.

Lazlo,J.A.,1987.Mineral binding properties of soy hull.Modeling mineral interactions with insoluble dietary?bre source.J.Agr.Food Chem.35,593–600.

Leyva-Ramos,R.,Bernal-Jacome,L.A.,Acosta-Rodriguez,I.,2005.

Adsorption of cadmium(II)from aqueous solution on natural and oxidized corncob.Sep.Purif.Technol.45,41–49.

Li,Q.,Zhai,J.,Zhang,W.,Wang,M.,Zhou,J.,2006a.Kinetic studies of adsorption of Pb(II),Cr(III)and Cu(II)from aqueous solution by sawdust and modi?ed peanut husk.J.Hazard.Mater.B141,163–167.

Li,X.,Tang,Y.,Xuan,Z.,Liu,Y.,Luo, F.,2006b.Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+from aqueous solution.Sep.Purif.Technol.55,69–75.

Low,K.S.,Lee,C.K.,Liew,S.C.,2000.Sorption of cadmium and lead from aqueous solutions by spent grain.Process Biochem.36,59–64. Low,K.S.,Lee, C.K.,Leo, A.C.,1995.Removal of metals from electroplating wastes using banana pith.Bioresour.Technol.51, 227–231.

Marshall,W.E.,Johns,M.M.,1996.Agricultural by-products as metal adsorbents:sorption properties and resistance to mechanical abrasion.

J.Chem.Tech.Biotechnol.66,192–198.

Marshall,W.E.,Wartelle,L.H.,Boler,D.E.,Johns,M.M.,Toles,A.A., 1999.Enhanced metal adsorption by soybean hulls modi?ed with citric acid.Bioresour.Technol.69,263–268.

Memon,S.Q.,Memon,N.,Shah,S.W.,Khuhawar,M.Y.,Bhanger,M.I., 2007.Sawdust–a green and economical sorbent for the removal of cadmium(II)ions.J.Hazard.Mater.B139,116–121.

Min,S.H.,Han,J.S.,Shin,E.W.,Park,J.K.,2004.Improvement of cadmium ion removal by base treatment of juniper?ber.Water Res.

38,1289–1295.

Mohanty,K.,Jha,M.,Meikap,B.C.,Biswas,M.N.,2005.Removal of chromium(VI)from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride.

Chem.Eng.Sci.60,3049–3059.

Nakajima,A.,Sakaguchi,T.,1990.Recovery and removal of uranium by using plant wastes.Biomass21,55–63.

Namasivayam,C.,Ranganathan,K.,1995.Removal of Pb(II),Cd(II)and Ni(II)and mixture of metal ions by adsorption onto waste Fe(III)/ Cr(III)hydroxide and?xed bed studies.Environ.Technol.16,851–860.

Namasivayam,C.,Kadirvelu,K.,1997.Agricultural solid wastes for the removal of heavy metals:adsorption of Cu(II)by coirpith carbon.

Chemosphere34,377–399.

Namasivayam, C.,Kadirvelu,K.,1999.Uptake of mercury(II)from wastewater by activated carbon from an unwanted agricultural solid by-product:coirpith.Carbon37,79–84.

Namasivayam,C.,Sangeetha,D.,2006.Recycling of agricultural solid waste,coirpith:removal of anions,heavy metals,organics and dyes from water by adsorption onto ZnCl2activated coirpith carbon.J.

Hazard.Mater.B135,449–452.

Nasernejad,B.,Zadeh,T.E.,Pour,B.B.,Bygi,M.E.,Zamani,A.,2005.

Comparison for biosorption modeling of heavy metals(Cr(III),Cu(II), Zn(II))adsorption from wastewater by carrot residues.Process Biochem.40,1319–1322.

Noeline, B.F.,Manohar, D.M.,Anirudhan,T.S.,2005.Kinetic and equilibrium modeling of lead(II)sorption from water and wastewater by polymerized banana stem in a batch reactor.Sep.Purif.Technol.

45,131–140.

W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–39483947

Okieimen, F.E.,Sogbaike, C.E.,Ebhoaye,J.E.,2005.Removal of cadmium and copper ions from aqueous solution with cellulose graft copolymers.Sep.Purif.Technol.44,85–89.

O¨zer,A.,2006.Removal of Pb(II)ions from aqueous solutions by sulfuric acid-treated wheat bran.J.Hazard.Mater.B141,753–761.

O¨zer,A.,Pirinc?c?i,H.B.,2006.The adsorption of Cd(II)ions on sulfuric acid-treated wheat bran.J.Hazard.Mater.B137,849–855.

O¨zer,A.,O¨zer,D.,O¨zer,A.,2004.The adsorption of copper(II)ions onto dehydrated wheat bran(DWB):determination of equilibrium and thermodynamic parameters.Process Biochem.39,2183–2191. Pehlivan,E.,Cetin,S.,Yan?k,B.H.,2006.Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and?y ash.J.Hazard.Mater.B135,193–199.

Pe′rez-Mar?′n,A.B.,Meseguer Zapata,V.,Ortun?o,J.F.,Aguilar,M.,Sa′ez, J.,Llore′ns,M.,2007.Removal of cadmium from aqueous solutions by adsorption onto orange waste.J.Hazard.Mater.139,122–131. Quek,S.Y.,Wase,D.A.J.,Forster,C.F.,1998.The use of sago waste for the sorption of lead and copper.Water SA24,251–256.

Rahman,I.A.,Ismail,J.,1993.Preparation and characterization of a spherical gel from a low-cost material.J.Mater.Chem.3,931–934. Rahman,I.A.,Ismail,J.,Osman,H.,1997.E?ect of nitric acid digestion on organic materials and silica in rice husk.J.Mater.Chem.7,1505–1509.

Reddy,B.R.,Mirgha?ari,N.,Gaballah,I.,1997.Removal and recycling of copper from aqueous solutions using treated Indian barks.Resour.

Conserv.Recycl.21,227–245.

Rehman,H.,Shakirullah,M.,Ahmad,I.,Shah,S.,Hamedullah,2006.

Sorption studies of nickel ions onto sawdust of Dalbergia sissoo.J.

Chin.Chem.Soc.53,1045–1052.

Robert,R.,Barbati,S.,2002.Intermediates in wet oxidation of cellulose: identi?cation of hydroxyl radical and characterization of hydrogen peroxide.Water Res.36,4821–4829.

Saeed,A.,Waheed Akhter,M.,Iqbal,M.,2005.Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent.Sep.Purif.Technol.45,25–31.

Sawalha,M.F.,Peralta-Videa,J.R.,Romero-Gonza′lez,J.,Duarte-Gar-dea,M.,Gardea-Torresdey,J.L.,2007a.Thermodynamic and iso-therm studies of the biosorption of Cu(II),Pb(II),and Zn(II)by leaves of saltbush(Atriplex canescens).J.Chem.Thermodyn.39,488–492. Sawalha,M.F.,Peralta-Videa,J.R.,Romero-Gonza′lez,J.,Gardea-Tor-resdey,J.L.,2007b.Biosorption of Cd(II),Cr(III),and Cr(VI)by saltbush(Atriplex canescens)biomass:thermodynamic and isotherm studies.J.Colloid Interface Sci.300,100–104.

Sˇc′iban,M.,Klasˇnja,M.,Sˇkrbic′,B.,2006a.Modi?ed softwood sawdust as adsorbent of heavy metal ions from water.J.Hazard.Mater.B136, 266–271.

Sˇc′iban,M.,Klasˇnja,M.,Sˇkrbic′,B.,2006b.Modi?ed hardwood sawdust as adsorbent of heavy metal ions from water.Wood Sci.Technol.40, 217–227.Shukla,S.R.,Pai,R.S.,2005a.Adsorption of Cu(II),Ni(II)and Zn(II)on modi?ed jute?bres.Bioresour.Technol.96,1430–1438.

Shukla,S.R.,Pai,R.S.,2005b.Adsorption of Cu(II),Ni(II)and Zn(II)on dye loaded groundnut shells and sawdust.Sep.Purif.Technol.43,1–8. Sivers,M.V.,Zacchi,G.,1995.A techno-economical comparison of three processes for the production of ethanol from pine.Bioresour.Technol.

51,43–52.

Suemitsu,R.,Uenishi,R.,Akashi,I.,Nakano,M.,1986.The use of dyestu?-treated rice hulls for removal of heavy metal ions from waste water.J.Appl.Polym.Sci.31,75–83.

Tarley,C.R.T.,Ferreira,S.L.C.,Arruda,M.A.Z.,https://www.sodocs.net/doc/358561633.html,e of modi?ed rice husks as a natural solid adsorbent of trace metals:characterisation and development of an on-line preconcentration system for cadmium and lead determination by FAAS.Microchem.J.77,163–175.

Taty-Costodes,V.C.,Fauduet,H.,Porte, C.,Delacroix, A.,2003.

Removal of Cd(II)and Pb(II)ions from aqueous solutions by adsorption onto sawdust of Pinus sylvestris.J.Hazard.Mater.B 105,121–142.

Tiemann,K.J.,Gamez,G.,Dokken,K.,Parsons,J.G.,Gardea-Torresdey, J.L.,2002.Chemical modi?cation and X-ray absorption studies for lead(II)binding by Medicago sativa(alfalfa)biomass.Microchem.J.

71,287–293.

Torres,J.D.,Faria,E.A.,Prado,A.G.S.,2006.Thermodynamic studies of the interaction at the solid/liquid interface between metal ions and cellulose modi?ed with ethylenediamine.J.Hazard.Mater.B129,239–243.

Villaescusa,I.,Fiol,N.,Mart?′nez,M.,Miralles,N.,Pocj,J.,Serarols,J., 2004.Removal of copper and nickel ions from aqueous solutions by grape stalks wastes.Water Res.38,992–1002.

Wafwoyo,W.,Seo,C.W.,Marshall,W.E.,1999.Utilization of peanut shells as adsorbents for selected metals.J.Chem.Technol.Biotechnol.

74,1117–1121.

Wankasi, D.,Horsfall Jr.,M.,Spi?, A.I.,2006.Sorption kinetics of Pb2+and Cu2+ions from aqueous solution by Nipah palm(Nypa fruticans Wurmb)shoot biomass.Elec.J.Biotechnol.9,587–592. Wartelle,L.H.,Marshall,W.E.,2000.Citric acid modi?ed agricultural by-products as copper ion adsorbents.Adv.Environ.Res.4,1–7. Williams,C.J.,Aderhold,D.,Edyvean,G.J.,https://www.sodocs.net/doc/358561633.html,parison between biosorbents for the removal of metal ions from aqueous solutions.

Water Res.32,216–224.

Wong,K.K.,Lee,C.K.,Low,K.S.,Haron,M.J.,2003a.Removal of Cu and Pb by tartaric acid modi?ed rice husk from aqueous solutions.

Chemosphere50,23–28.

Wong,K.K.,Lee,C.K.,Low,K.S.,Haron,M.J.,2003b.Removal of Cu and Pb from electroplating wastewater using tartaric acid modi?ed rice husk.Process Biochem.39,437–445.

3948W.S.Wan Ngah,M.A.K.M.Hana?ah/Bioresource Technology99(2008)3935–3948

word套用图片模板

竭诚为您提供优质文档/双击可除 word套用图片模板 篇一:利用word和excel制作套打模板方法 利用word和excel制作套打模板 a、打印自行设计的奖状。除部分信息(如姓名、年级、科目、奖别、指导教师等)不固定,其余内容都是固定的。 1、在excel表格中新建表格,五列,第一行写上标题:姓名、年级、科目、奖别、指导教师,录入相应信息,保存。 2、在word中将奖状排好,姓名、年级等五个地方不打字,也不留空隙。 3、调出“邮件合并”工具栏。(视图→工具栏→邮件合并) 4、在工具栏上,点“打开数据源”按钮,在文件类型中选择“excel文件”,找到刚才保存的表格,选择工作表(一般都是sheet1)。 5、在应打印姓名地方,点“插入域”,在“插入合并域”框中选择相应的“域名”(就是excel第一行的标题名,如“姓名”),插入→关闭。同样方法完成其他地方,全部做好后,点“查看合并数据”,再点击“上一记录”、“下一记录”,

就可以一条条的打印了。 6、更快速的方法:点击“合并到新文档”,就会将所有的数据按一条数据一页文档的方法新建一个文档(即:“字母1”文档),或是点“合并到打印机”,就会全部打印出来了。 b、套印已有表格的空栏处。(如:学籍卡、义务卡等) 首先、用扫描仪把表格扫描成图片文件,插入到文件,调整纸张大小与表格文件的原始尺寸一致,然后右击该图片并选择“设置图片格式”,在弹出的对话框中选择“版式”标签,然后选择“衬于文字下方”,调整图片使其正好覆盖整个页面。 接着、在需要打印的空栏处插入文本框,调整其大小正好和表格图片的空栏尺寸一致。设置文本框为“无填充颜色”和“无线条颜色”。最后、按“a”的方法进行操作。 篇二:用word排版来制作快递模板 下面告诉(word套用图片模板)大家一种简单方便的方法:用word排版来制作快递模板(我是用的中通的)工具:1、针式打印机一台, 2、扫描仪一台(非必备,因为需要将快递单扫描到电脑中去。如果你没有,那么把快递单拿到其他有扫描仪的地方扫描一下,然后把文件复制到自己的电脑中去也行。) 3、小尺一个,用来量快递单的尺寸。步骤:1.用尺子

完整word版,个人储蓄业务操作指南

实验一个人储蓄业务 一、实验目的 (一)熟悉个人储蓄业务的相关业务种类和基本知识; (二)熟练个人储蓄业务相关柜面操作流程、基本程序; (三)了解个人储蓄业务相关重要凭证与单证的种类及用途。 二、实验环境 (一)系统模块环境:柜面业务系统 (二)情景数据库环境:日常练习授权库情景包,机构共有36个(包括北京、广州两家分行),操作柜员300名,每个机构网点开设9名柜员,分别属于C、D、E、F权限操作级别。(三)建议添加进柜面业务系统‘常用交易’的快捷菜单(可将下面内容直接复制进对话框):5341,尾箱查询 5221,客户号查询 5222,账户查询 5345,卡号查询 5361,大额现金入账 53562,企业支票查询 5232,表内账务查询 5235,表外账务查询 三、教学组织 (一)学生分组方式:学生的按每组6-8人分组。 (二)银行机构分配:每个小组分属于实验银行的一个机构网点,可以是分行营业部或二级支行。 (三)柜员号申请方式:自行申请。 (四)不同权限柜员配置:每个小组的全部成员中确保至少C、D、E、F操作权限的柜员都有人担任。 (五)柜员分工与协作方式及流程:小组成员根据小组协商结果分配各自柜员权限,并自行申请指定网点的柜员号、柜员尾箱。登录柜面业务系统后,根据实训课程要求,开展相应的业务练习,遇到属于银行内控要求需要授权、复核时,高级权限柜员为经办柜员进行业务授权。 (六)教学演示预计时间:30分钟。

(七)学生练习时间:90分钟。 (八)实验项目课时安排:4课时。 四、基本业务种类与流程 五、系统操作要点与难点 (一)开立客户号界面中哪些位置属必填项目,哪些属选填项目? (二)开立客户号的合法证件包括哪些? (三)开立储蓄账号,现金方式与转账方式开户操作过程有何区别? (四)开立储蓄账号,需空白储蓄存折,如何查询存折号?如何使用? (五)开立一卡通,需空白银行卡,如何查询卡号? (六)存取款、转账、挂失等业务,哪些环节可能需要授权? (七)熟练进行客户信息查询、账号查询、尾箱查询、卡凭证关联查询等。 六、实验实训内容 (一)自拟客户信息,至少开立两个个人客户,客户甲和客户乙(注:请使用其他别称代替‘甲’、‘乙’); (二)查询客户甲、客户乙的客户信息、客户号。 (三)为客户乙办理‘开卡本客户’业务,开办一张空白的银行一卡通C (思考:如何通过银行卡凭证号查询16位卡号?)

红外测温仪的操作指南及各模块说明

《红外测温仪的操作指南及各模块说明》 红外测温仪操作指南:将单片机连接电源后,只需将红外测温仪的红外探头瞄准被测物体,按下矩阵键盘上的S13按钮(设定为“开始测温”),测温仪开始工作,LCD显示屏上显示两个温度数值,上为被测点温度,下为环境温度(由探头外环探测得出)。由于探头精度灵敏,温度数值在稳定建立时间过后仍有小幅度跳变。按下矩阵键盘上的 S14按钮(设定为“STOP”),LCD显示按下时刻的温度值,方便读数。按下S13“开始测温”,测温仪开始新一轮测温。 单片机模块 红外测温仪系统的硬件结构框图

红外测温仪系统的软件方案设计框图 主程序模块:主要完成系统初始化,温度的检测,串行口通信,键盘和显示等功能。其中 系统初始化包括: 时间中断的初始化、外部中断源的初始化、串口通信中断的初始化、LED 显示的初始化。 红外测温模块:包括获取温度数据,计算温度值。 键盘扫描模块:获取按键信息,处理按键请求等。 显示模块:获取并处理相应的温度数据,通过LED数显管显示温度数据。 单片机处理模块 单片机模块的工作原理是:加载相应程序的STC89C51单片机把红外测温模块传来的数据加以处理,送LED显示屏显示。 下图1是单片机处理模块的电路原理图

图1 单片机处理模块电路图 其复位电路如图2-1左边上部分,本单片机处理模块是通过开关手动复位的,只要在RST引脚出现大于10ms的高电平,单片机就进入复位状态,这样做的目的是便于根据实际情况而选择是否复位温度测量数据。而此仪器的震荡电路选用的是晶体震荡电路,其具体电路如图2-1左边下部分。采用晶体震荡电路的原因是因为它的频率稳定性好,而这正是本红外测温仪非常重要的技术要求。 单片机作为红外测温仪的核心处理部件,它关系到整个仪器的性能指标。因此它的选择是非常重要的。本测温仪选择的STC89C51RC单片机,下面是STC89C51RC单片机相关资料信息: STC89C51RC单片机是宏晶科技推出的新一代超强抗干扰/高速/低功耗的新一代8051单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可任意选择,最新的D版本部集成MAX810专用复位电路。STC89C51RC系列单片机具有在系统可编程(ISP)特性,这样可以省去购买通用编程器,单片机在用户系统上即可下载/烧录用户程序,无须将单片机从以生产好的产品上拆下。对于一些尚未定型的设计可以一边设计一边完善,加快了设计速度,减少了一些软件缺陷风险。由于可以在用户的目标系统上将程序直接下载进单片机看运行结果,故无须仿真器。下图2-2是此单片机的引脚图: 图2-2 STC89C51RC单片机引脚图 一、STC89C51RC单片机的特点: 1.增强型6时钟/机器周期,12时钟/机器周期8051 CPU; 2.工作电压:5.5v- 3.8v; 3.工作频率围:0-40MHz,相当于普通8051的0~80M,实际工作频率可达48MHz; 4.4k的Flash程序存储器;

word目录及图表编号自动生成操作指南

第一节、自动生成文章目录的操作: 一、设置标题格式 1.选中文章中的所有一级标题;并按照系模版要求更改标题字体及字号 2.在“格式”工具栏的左端,“样式”列表中单击“标题1”。 仿照步骤1、2设置二、三级标题格式为标题2、标题3。 二、自动生成目录 1.把光标定位到文章第1页的首行第1个字符左侧(目录应在文章的前面); 2.执行菜单命令“插入/引用/索引和目录”打开“索引的目录”对话框; 3.在对话框中单击“目录”选项卡,进行相关设置后,单击“确定”按钮,文章的目录自动生成完成。 第二节在word中自动生成图表目录 第一步:对图进行自动编号 自动编号可以通过 Word 的 " 题注 " 功能来实现。 1、按文档格式要求,第一章的图编号格式通常为 " 图 1-×" 。 2、将图插入文档后,选中新插入的图,在菜单条上选择“插入” “引用” “ 题注” 。新建一个标签 " 图 1 - " ,编号格式为阿拉伯数字(如果不是点击 " 编号 " 修改),位置为所选项目下方,单击 " 确定 " 后 Word 就插入了标签文字和序号,此时可以在序号后键入说明,比如 "XX 功能 " 等。 3、再次插入图时题注的添加方法相同,不同的是不用新建标签了,直接选择就可以了。 Word 会自动按图在文档中出现的顺序进行编号 第二步:生成图表目录 对图进行编号完毕后,在菜单条上选择“ 插入” “ 引用” “ 索引和目录” 。选择“ 图表目录选项” ,点击“ 确定” 按钮,图表目录就 OK 自动生成啦。 以后删除图表时,只要选择更新域就可实现图表编号的自动更新! 目录的更新相同! 第三节目录页码应该与正文页码编码不同。 把光标定位在目录页末,执行“插入/分隔符/下一页/确定”操作,在目录与正文之间插入分页符; 执行“视图/页眉和页脚”命令,把光标定位到正文首页的页脚处,单击“页眉和页脚”工具栏上的“链接到前一个”按钮正文页脚与目录页脚的链接;执行“插入/页码”命令,在“格式”中选择页码格式、选中“起始页码”为“1”,单击“确定。至此完成正文的页码插入。

完整word版软件系统操作手册

3DMS监控平台软件使用说明书

4.23 版本: 深圳市亚美达通讯设备有限公司 目录 5 .......................................................................................................................... 1、系统登录6、主界面 ............................................................................................................................. 2 .............................................................................................................................. 62.1标题 栏 .............................................................................................................................. 62.2菜单 栏 .............................................................................................................................. 62.3工具 栏 .............................................................................................................................. 6状态栏

SOP模板-标准操作流程编写程序(可编辑修改word版)

标准操作流程编写程序 编制部门:商务部 文件审核: 文件批准: 批准日期:2005.05.25 修改记录

1目的 指导文件编写者能够高效的编写出符合文件编写标准程序的文件来。 2范围 此文件适合所有编写标准操作流程的文件编写人员。

3职责 3.1SOP 文件编写总负责人对程序的有效性负责。 3.2编写 SOP 文件的相关人员执行本程序,并反馈修改信息。 3.3SOP 文件编写总负责人根据此程序对各部门文件编写人进行培训。 3.4各主过程负责人对文件的编写和修改的有效性负责。 4定义 4.1SOP:SOP 是标准操作程序(standard operation program)英文的第一个字母的缩写。为各部门共性的、可以固化的业务活动。 4.2工具书:制定的作为岗位快速参考的文件,例如:公差,目标值等贴或放在工作区域附近用于员工工作时参考的文件,这类文件主要包括操作方法,测试标准,流程图等限于特定岗位使用的操作指南,可以作为程序文件的一部分,也可以单独使用。 4.3附件:指 SOP 文件中所引用的文件,执行文件的同时也必须同时执行的文件,主要包括管理规定,规章制度和标准,可以作为程序文件的一部分,也可以单独使用。 4.4流程体系:共由四部分组成,SOP-规范制度-表单-手册。其中,规范为各部门之间在共性流程操作之上的不同的业务管理细的规定,是对 SOP 的支持和补充;表单是与 SOP,和管理规范相匹配的单据、附件等文件;手册是已经固化的指导我们进行 SOP 操作或执行规范制度的指南性文件。 5程序说明

7 流程修改文件编写人 5.7 8 流程附件文件编写人 5.8 5程序说明 5.1编出流程图 5.1.1文件编写员根据部门业务主过程编出相应的流程图。 5.1.2根据管理的需要和流程的可持续性和有效性确定流程的控制环节。 5.1.3流程的控制环节一般是另一个新流程或子流程或附件的起点。 5.1.4画流程图的统一工具为 Visio,图标模板为 Sap.vss。图标说明: 5.2确定流程清单 5.2.1部门文件编写人员根据流程图的主过程确定本部门的流程数量和名称。 5.3流程编写 5.3.1程序文件包括以下内容 : (1)目的-此程序的执行目的。 (2)范围-此程序文件所规定及涉及的范围。 (3)职责-明确列出该程序的主要制定人及执行人。 (4)定义-对程序中所使用的专门和特定名词给出定义。 (5)程序说明-详细表述具体工作的执行方法来强调及解释如何作,其重心是技术 性、技巧性及可操作性,应涉及技术指标、标准、规范和记录等。同样可用文字,流程图, 表格,图片等多种形式描述并可以用数字或字母标明前后顺序,明了易懂。 (6)记录-列出并在有可能的情况下附上本程序中所用的报告、记录、表格、单据或 电子记录名称和编号。 (7)参考文件及附件-列出并在有可能的情况下附上本程序中所采用的重要参考文 件。另外必须列明此程序支持的纲要和其他相关文件的名称,具体包括三项: -参考文件-列出本程序所参考的重要文献及编号。 -本程序支持的纲要-此程序支持的纲要及编号。 -附件-列出全文引用的支持此程序的文件或工具书及编号等 5.3.2程序文件内容的编码、字体及版面 (1)页眉、页脚设置 页眉设置见模板,涵盖“文档名称”、“文档编号”、“文件负责人”和“第 X 页共 X 页”

Word学习要点模板

Word学习要点 一、利用模板创建新文档: 1、优点很多:可以加快文档的创建、标准化文档 二、光标双击定位插入点, 2、输入法工具条的使用: 1、ctrl+space 中英文输入法切换,ctrl+shift 不同输入法之间切换。 ①全半角转换---全角指个数字或字母占用一个汉字的字符;半角指一个数字或字母占用半个汉字的字符。 ②软键盘的使用------单击软键盘显示/隐藏软键盘;显示软键盘后用鼠标单击录入;右/左键单击选取软键盘类型(特殊字符、pc键盘、希腊字符………) 三、文字编辑: 1、选定-----鼠标拖拉;词双击;段落三击;ctrl+鼠标拖动非连续文本的选定。 2、段落------一段文字末尾有回车符号的就形成一个段落 3、移动复制文本的快捷方法:移动---选定后按住鼠标左键移动到目标位置。复制----选定后按住ctrl+按住鼠标左键移动到目标位置。 4、常用热键----ctrl+c复制、ctrl+v粘贴、ctrl+a全选、ctrl+z撤销。 四、书签: 1、书签的制作------在指定位置/按插入菜单/选择书签选项,编辑书签名,会在插入点形成水印的字形;将选定文字/按插入菜单/选择书签选项,编辑书签名,会在选定文本前后形成的大刮号形。 2、书签的作用------用于定位查询。 五、文字排版: 1、对文字的格式的排版-------选中文本中的字体直接点击格式工具栏对应的设置对文字进行设置;选中文本中的字体点击格式----字体(对文字进行字形、字号、下划线、阴影等效果的设置。) 2、文字格式的字符间距选项-------①缩放选项用于文字的宽度缩放比例②间距选项用于调整文字之间。段落的间距③位置选项指设置的文字相对于正常文字的位置高低设置。

企业复工必备防疫指南WORD模板(A4打印)

企业复工必备防疫指南 1.上班途中如何做 正确佩戴一次性医用口罩。尽量不乘坐公共交通工具,建议步行、骑行或乘坐私家车、班车上班。如必须乘坐公共交通工具时,务必全程佩戴口罩。途中尽量避免用手触摸车上物品。 2.入楼工作如何做 进入办公楼前自觉接受体温检测,体温正常可入楼工作,并到卫生间洗手。若体温超过37.2℃,请勿入楼工作,并回家观察休息,必要时到医院就诊。 3.入室办公如何做 保持办公区环境清洁,建议每日通风3次,每次20-30分钟,通风时注意保暖。人与人之间保持1米以上距离,多人办公时佩戴口罩。保持勤洗手、多饮水,坚持在进食前、如厕后按照六步法严格洗手。接待外来人员双方佩戴口罩。 4.参加会议如何做 建议佩戴口罩,进入会议室前洗手消毒。开会人员间隔1米以上。减少集中开会,控制会议时间,会议时间过长时,开窗通风1次。会议结束后场地、家具须进行消毒。茶具用品建议开水浸泡消毒。 5.食堂进餐如何做

采用分餐进食,避免人员密集。餐厅每日消毒1次,餐桌椅使用后进行消毒。餐具用品须高温消毒。操作间保持清洁干燥,严禁生食和熟食用品混用,避免肉类生食。建议营养配餐,清淡适口。 6.下班路上如何做 洗手后佩戴一次性医用口罩外出,回到家中摘掉口罩后首先洗手消毒。手机和钥匙使用消毒湿巾或75%酒精擦拭。居室保持通风和卫生清洁,避免多人聚会。 7.公务采购如何做 须佩戴口罩出行,避开密集人群。与人接触保持1米以上距离,避免在公共场所长时间停留。 8.工间运动如何做 建议适当、适度活动,保证身体状况良好。避免过度、过量运动,造成身体免疫能力下降。 9.公共区域如何做 每日须对门厅、楼道、会议室、电梯、楼梯、卫生间等公共部位进行消毒,尽量使用喷雾消毒。每个区域使用的保洁用具要分开,避免混用。传递纸质文件前后均需洗手,传阅文件时佩戴口罩。 10.公务出行如何做 专车内部及门把手建议每日用75%酒精擦拭1次。乘坐班车须佩戴口罩,建议班车在使用后用75%酒精对车内及门把手擦拭消毒。

简易常用-Word文档使用技巧方法大全(超全)

Word文档使用技巧方法大全 Word2000、2003、2007、2010快捷键使用大全总结常用快捷键 快捷键作用 一、字体类 Ctrl+B 使字符变为粗体 Ctrl+I 使字符变为斜体 Ctrl+U 为字符添加下划线 Ctrl+Shift+D 双下划线 Ctrl+Shift+< 缩小字号 Ctrl+Shift+> 增大字号

Ctrl+] 逐磅增大字号 Ctrl+[ 逐磅减小字号 Ctrl+Shift+F 改变字体 Ctrl+Shift+P 改变字号 Ctrl+D 改变字符格式("格式"菜单中的"字体"命令) Shift+F3 切换字母大小写(一次首字母变成大写,两次单词变成大写) CTRL+SHIFT+A 将所选字母设为大写 二、格式类 Ctrl+Shift+C 复制格式 Ctrl+Shift+V 粘贴格式 Ctrl+1 单倍行距(1为主键盘的数字键) Ctrl+2 双倍行距

Ctrl+5 1.5 倍行距 Ctrl+0 在段前添加一行间距 Shift+F1(单击)需查看文字格式了解其格式的文字Ctrl+E 段落居中 Ctrl+J 两端对齐 Ctrl+L 左对齐 Ctrl+R 右对齐 Ctrl+Shift+J 分散对齐 Ctrl+M 左侧段落缩进 Ctrl+Shift+M 取消左侧段落缩进 Ctrl+T 创建悬挂缩进 Ctrl+Shift+T 减小悬挂缩进量

Ctrl+Shift+S 应用样式 Ctrl+Shift+N 应用"正文"样式 Alt+Ctrl+1 应用"标题1"样式 Alt+Ctrl+2 应用"标题2"样式 Alt+Ctrl+3 应用"标题3"样式 三、编辑和文字移动 Backspace 删除左侧的一个字符 Ctrl+Backspace 删除左侧的一个单词 Delete 删除右侧的一个字符 Ctrl+Delete 删除右侧的一个单词 F2(然后移动插入移动选取的文字或图形点并按Enter键)

完整word版用户操作手册模板

项目名称用户操作手册 部门:项目:密级: 日期: 编写说明 类别:项目文档

密级: 撰稿人: 修改人: 存放位置: 编辑软件: 版本信息: 版本修改点说明 页1目录. 目录 1 引 言 .................................................................. ..................................................................... 1-1 1.1 编写目的................................................................................................................... 1-1 项目背景................................................................................................................... 1-1 1.2 术语定义................................................................................................................... 1-1 1.3 参考资料................................................................................................................... 1-1 1.4 软件概述 .2 ..................................................................... ......................................................... 2-3 2.1 目标........................................................................................................................... 2-3 功能.2.2 .......................................................................................................................... 2-3 性能 2.3 ........................................................................................................................... 2-3 3 运行环

2017年操作手册模板word版本

<项目名称> 操作手册 年月日

修改记录

目录 1简介 (1) 1.1手册目的 (1) 1.2手册范围 (1) 1.3名词定义 (2) 1.4参考文件 (2) 2系统简述 (2) 3公共操作 (2) 3.1开关机 (2) 3.2注册 (2) 3.3主菜单操作 (3) 3.4退出 (3) 3.5屏幕画面的布局 (3) 3.6公共画面属性 (4) 3.7提示窗 (4) 3.8按钮定义 (5) 3.9键盘定义 (6) 4功能概述 (7) 5功能模块1 (7) 5.1子功能模块1 (8) 5.2子功能模块2 (8) 6功能2 (8) 7功能3 (8) 8附件 (8)

1简介 本章将简要地说明软件操作手册(以下简称本手册)的目的、范围、名词定义和参考文件。 1.1 手册目的 本手册的目的在于告诉XXXXXX系统(以下简称本系统)的使用者,本系统提供了哪些功能,以及如何正确地、有效地来使用这些功能。 1.2 手册范围 本手册首先简要地介绍本系统结构以及软件环境,然后说明本系统为使用者提供的各项功能及其详细的操作步骤。关于系统详细软硬件结构、系统安装及系统运行维护方面的内容,请参考本系统的《系统安装手册》及《系统运行维护手册》。 本手册的使用者包括: 这里罗列手册的使用者。例如: 营业人员 帐务人员 网点操作员 … … … 本手册各章节内容安排如下: 第一章简介: 简单说明本手册的目的、范围、名词定义和参考文件。 第二章系统概述: 简单说明本系统的结构及其执行环境。 第三章公共操作: 介绍系统注册与退出、关机等公共操作,并指明为系统中各项操作所共有的屏幕属性、按钮定义及键盘定义。 第四章功能概述 第五章操作说明: 逐一说明各项功能及其详细的操作步骤。 其中“第四章功能概述”与“第五章操作说明”为本手册之重点,希望使用者能深入了解。 1 /9

快速套用IEEE Word模板方法

快速套用IEEE Word模板方法及注意事项(仅供参考) 所谓套用IEEE Word模板,就是将自己论文的内容逐步替换模板中的相应内容(千万不要整体复制) 具体方法与注意事项如下: 1、在屏幕上同时打开IEEE模版文档和自己已定稿论文的Word文档; 2、将IEEE模版文档中全部文字的字体改为红色字体(自己的论文还是黑色字体); 3、标题与正文应分开替换,正文也应该逐段逐段替换 以替换题目为例:将自己论文的题目复制到模版中题目的尾部(即,前面红色字体为模板中的题目,后面黑色字体为自己论文的题目),选择模板中题目的部分红色文字,使用工具栏中的格式刷,将复制过来的题目(黑色字体)刷红(目的是使题目字体与大小跟模板的一致),同时,再将其改为黑色字体,最后再删除前面的红色文字即可(文章标题为3号字加粗,实词首字母大写,其余小写); 4、继续采用上述替换方法,依次替换其他内容; 5、注意事项: (1)引言中的第一个单词分两次替换,先替换首字母,再替换该单词的其他字母,在删除红色字体时使用Backspace 键删除比较保险; (2)一、二级标题不能与正文一起套用,套用后注意及时修改字号 一级标题的每个实词的首字母是10号字体,其他字母是8号 二级标题每个单词的首字母大写,其余小写,字号均为斜体10号; (3)首页左下角的作者信息需要单独替换,其中要注意人名的简写方式,例:Xiaoming Wang,简写为X Wang; (4)替换图片下方的文字说明时注意,格式为Fig+点+空格+点+两个空格+图片文字说明(首字母大写); (5)替换表格上方的文字时注意,表的标题TABLE为大写8号字,后加空格加罗马数字,换行输入表的标题,标题全部大写,其中每个实词的首字母8号,其余字母6号;表头为实词首字母大写; (6)公式编号所在行应先选择右端对齐,然后在公式编号前加空格,直至公式“居中”; (7)引用文献编号时注意,参考文献按顺序引用,不用上标表示;引用的参考文献如果是第2和第3篇,表示为[2],[3];如果是第1到第3篇,则表示为[1]-[3]; (8)替换参考文献时,请按照下面的格式修改: 首先非英文文献需要译成相应的英文后著录;人名按西文习惯,名前姓后,名只用首字母加点,姓用全称;列出全部作者,超过六位后用,et al. ①在线专著:作者.(出版年,月日).书名(版本)[Online]. Available: 网址: ②在线期刊:作者.(出版年,月).文章名.期刊名(期刊名为斜体,实词首字母大写).[Online].卷(期).页码范围. Available: 网址: ③专著析出文献:作者,“文章名”(文章名加双引号,正体,实词首字母大写), in 专著名(专著名为斜体,实字 首字母大写),版本.卷,编者.出版地:出版商,年份, pp.页码范围. ④专著:作者, 书名(书名为斜体,实词首字母大写).出版地: 出版商,年份, pp.页码范围. ⑤期刊论文:作者,“文章名”(文章名加双引号,正体,实词首字母大写),期刊名(期刊名为斜体,实词首字母大 写),卷,期,pp.引用页码,月份.年份. ⑥会议论文:作者, “文章名”(文章名加双引号,正体,实词首字母大写),in 会议名称(会议名称斜体,实词首 字母大写),举办地,年份,pp.引用页码. ⑦专利文献:作者, “专利名”(专利名加双引号,正体,实词首字母大写),国家Patent 专利号, 月日, 年份. ⑧标准文献:标准名(标准名斜体,实词首字母大写),标准号, 年份. (9)文中需要强调的内容,使用斜体即可,不能采用其它方式(加粗或加下划线等)标注; (10)科技英语专家发现作者信息(首页左下角)的表述不统一,现规范如下,请作者对照修改: 关于作者信息的规范 文章标题下面按照名前姓后的顺序给出所有作者的全名,并以逗号间隔开,若有两个或以上的作者,在最后一个作者名前加and;若作者是IEEE会员,也请注明;举例如下: Yiyi Wang, Sansan Li and Wuliu Zhao, IEEE Member 请在第一页的左下角注明文章的资助项目和编号,然后给出作者信息,包括姓名(姓全拼,名只需首字母)、从小到大顺序的作者单位(到二级单位)、邮箱,通讯作者还需要注明联系电话,举例如下: This work was supported by the National Natural Science Foundation of China under Grant No. 60128008. Y Wang is with the Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PRC(e-mail: author@https://www.sodocs.net/doc/358561633.html,). S Li, corresponding author, is with the Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PRC(phone: 027-8754****; fax:027-8754****; e-mail: author@ https://www.sodocs.net/doc/358561633.html,) W Zhao is with the Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PRC (e-mail: author@https://www.sodocs.net/doc/358561633.html,) , he is also with the Department of Electronic, Wuhan University of Science and Technology, Wuhan 430081, Hubei, PRC.

大疆御操作指南精编WORD版

大疆御操作指南精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一、功能亮点 MavicPro配备28mm(35mm格式等效)低畸变广角相机和高精度防抖云台,可拍摄1200万像素JPEG以及无损RAW格式的照片及4K超高清视频。信号传输距离最远可达7km。 二、飞行模式 1、P模式(定位): 使用GPS模块和前视视觉系统和下视视觉系统以实现飞行器精确悬停、指点飞行以及高级模式等功能。P模式下,GPS信号良好时,利用GPS可精准定位;GPS信号欠佳,光照条件满足视觉系统需求时利用视觉系统定位。开启前视避障功能且光照条件满足视觉系统需求时,最大飞行姿态角为16°,最大飞行速度10m/s。未开启前视避障功能时最大飞行姿态角为25°,最大飞行速度16m/s。 在GPS卫星信号差或者指南针受干扰、并且不满足视觉定位工作条件时,飞行器将进入姿态(ATTI)模式。姿态模式下,飞行器容易受外界干扰,从而在水平方向将会产生飘移;并且视觉系统以及部分智能飞行模式将无法使用。因此,该模式下飞行器自身无法实现定点悬停以及自主刹车,请尽快降落到安全位置以避免发生事故。同时应当尽量避免在GPS卫星信号差以及狭窄空间飞行,以免进入姿态模式,导致飞行事故。 2、S模式(运动):

使用GPS模块以实现精确悬停。飞行器操控感度经过调整,最大飞行速度将会提升。当选择使用S模式时,前视视觉系统将自动关闭,飞行器无法自行避障。S模式下不支持地面站及高级模式功能。 3、注意: 在使用S模式(运动)飞行时,前视视觉系统不会生效,飞行器无法主动刹车和躲避障碍物,用户务必留意周围环境,操控飞行器躲避飞行路线上的障碍物。 三、飞行器状态指示灯说明 四、自动返航(智能返航,智能低电量返航以及失控返航。) 1、记录返航点 起飞时或飞行过程中,GPS信号首次达到(四格及以上)时,将记录飞行器当前位置为返航点,记录成功后,飞行器状态指示灯将快速闪烁若干次。 2、失控返航 当GPS信号良好,指南针工作正常,且飞行器成功记录返航点后,当无线信号在RC 控制模式下中断3秒或以上,或在Wi-Fi控制模式下中断20秒或以上,飞控系统将接管飞行器控制权,控制飞行器飞回最近记录的返航点。如果在返航过程中,无线信号恢复正常,返航过程仍将继续,用户可短按遥控器智能返航按键以取消返航。 注意: a.当GPS信号欠佳或者GPS不工作时,无法实现返航。

Word 操作指南

Word 操作指南 1、启动word. 开始--程序—Microsoft office –Microsoft office word 2003. 也有可能不是2003版本的,只要找到word打开就行了。如果想以后用着方便,可以把这个软件在桌面建立一个快捷方式。用这个路径“开始--程序—Microsoft office –Microsoft office word 2003.”找到它,然后--右击—发送到—桌面快捷方式”。这样以后就可以在桌面 直接找到它,打开即可。(这个是图标) 2、文本编辑 1)材料题目:打完后,点击上面工具条上的 ,这个图标是“居中对齐”的意思。 使题目位于第一行正中间。 2)正文。刚才是“居中对齐”,写正文要变成“两端对齐”,即 . 然后就可以写你的材料了。 3、调整字号大小 1)题目字号的大小,你可以单独来设置。 第一步,选中题目的文字,然后点击 右边的小黑三角,里面有字号选择,把字体调整到你想要的大小就行了。 2)正文的字号。 选中所有的正文文字,然后还在刚才那个设置里修改字体的大

小。 4、调整段落。 选中正文的所有文字,在空白处单击右键,找到“段落…”,这里要进行两个设置。 1)首行缩进。也就是每段第一行空出两格的设置。在“段落”里找 到“首行缩进”点击。它 的值是“2字符”。 2)文字行与行之间的间距设置。 ,找到“行距”,你可以选择“单倍行距”,也可以选择“1.5倍行距”,这样,两行文字之间的空隙就开以调整了,一般情况下,“1.5倍行距”比较合适。 5、调整字体 首先选中文字,,在这里选出想要的字体。“宋体”,“黑体”“楷体”都行。 6、调整字体颜色。 题目和文字,可以设置不同的颜色。 ,找到上面工具条的大写A,点击后面的小三角,里面有很多颜色,你可以选择。 7、保存。

Word 文档操作指南

Word 文档操作指南 在键盘的功能区有一个INSERT键,这个键可以调输入模式,你说的问题,是你的INSERT 处于覆盖状态了,也就是说你在前面打字的会覆盖掉后面的文字,如果出现这种情况你再按一下INSERT键,看问题解决了吧 ▲~~~~~~~~~~~~~~~~再告诉你一些Word快捷键吧,着些 对你是很有帮助的虽然多,慢慢记 [F1]键:帮助 [F2]键:移动文字或图形,按回车键确认 [F4]键:重复上一次的操作 [F5]键:编辑时的定位 [F6]键:在文档和任务窗格或其他Word窗格之间切换 [F8]键:打开Word的选择模式 [F12]键:打开“另存为”对话框 [shift+F2]组合键:复制文本 [shift+F3]组合键:改变字母大小写 [shift+F4]组合键:重复查找或定位有 [shift+F12]组合键:选择“文件”菜单中的“保存”菜单项 [shift+F5]组合键:跳转文档中上一次编辑位置 [shift+←] 组合键:选中光标左侧一个字符 [shift+→] 组合键:选中光标右侧一个字符 [shift+↑] 组合键:选中光标当前位置至上一行之间的内容 [shi ft+↓] 组合键:选中光标当前位置至下一行之间的内容 [shift+Ena] 组合键:选中光标所在处至行尾 [shift+Home] 组合键:选中光标所在处至行首 [shift+pageup] 组合键:选中光标当前位置至上一屏之间的一行内容 [Shift+Pagedown] 组合键:选中光标当前位置至下一屏之间的一行内容 [ctri+F2] 组合键:打印预览 [ctri+F4] 组合键:关闭窗口 [ctri+F6] 组合键:在打开的文档之间切换 [ctri+F12] 组合键:打开“打开”对话框 [ctri+1] 组合键:单倍行距 [ctri+2] 组合键:双倍行距 [ctri+5] 组合键:1.5倍行距 [ctri+O] 组合键:段前添加一行间距 [ctri+A] 组合键:全选 [ctri+B] 组合键:字符变为粗体 [ctri+C] 组合键:复制 [ctri+shift+D] 组合键:分散对齐 [ctri+E] 组合键:段落居中 [ctri+F] 组合键:查找

word模块操作指南

1、设置页眉页脚。 答:视图→页眉页脚→出现页眉页脚工具条。在工具条中的页面设置中,可以设置首页不同和奇偶页不同。 如果要消除页眉的横线,选选定页眉然后在格式→样式和格式→选择正文。 2、批注 答:在视图→标记点选的情况下,可以在需要加批注的部分,插入→批注。点算标记可以隐藏或显示批注。 3、如何进行简体、繁体之间的转换。 答:工具→语言→中文简繁转换。 4、公式编辑器的使用。 答:1.插入---对象----“microsoft 公式3.0” 2.进行公式的设置。 5、去除绘图时出现的画布。 答:工具→选项→常规→去除“插入自选图形时自动创建画布”复选框6、使用索引和目录 答:1.定位到放置的位置 2.选择“插入/引入/索引和目录”命令 3.打开“索引和目录”对话框,选择“目录”选项卡 4.设置完毕后,点确定 7、为汉字加注音 1.选定文字 2.格式---中文版式----拼音指南—确定 3.选择相应设置,字体、大小等

8、进行中文版式其他设置:带圈字符、纵横混排,双行合一、合并字符: 1.选定文字 2.格式---中文版式----带圈字符、纵横混排,双行合一、合并字符—确定9、快速输入特殊符号 1.选定位置 2.插入----特殊符号 3.选择对应符号 10、调整单元格中文字对齐方式 选中需要调整的表格,点击鼠标右键,调整对齐方式. 11、设置表格标题行重复 选中表格的第一行---选择表格菜单----标题行重复。 12、替换文章中内容: 编辑菜单---替换---在查找内容中输入需要替换的内容----在替换为中输入新内容----点击全部替换----关闭。 13、设置“标题1”样式: 选中需要设置的内容----点击格式菜单----样式和格式----选择标题一-----然后根据题目调整字体大小。 14、设置字体格式: 选中需要设置的内容---格式---字体—设置字体、字形、字号等。 15、设置段落格式: 选中需要设置的内容---格式----段落---设置段前段后间距、特殊格式里的首行缩进—行距里的1.5倍行距等。

word高级使用技巧操作指南

Word2007高级使用技巧 1.利用标题样式统一文档格式 我们日常使用Word工作时,除了文档的录入之外,我们的绝大部分时间都花在文档的修饰上,样式则正是专门为提升文档的修饰效率而提出的。使用样式能够协助用户确保格式编排的一致性,从而减少很多重复的操作,并且不需要重新设置文本格式,就可快速更新一个文档的设计,在短时间内排出高质量的文档。我们常用的是为案例文档的标题设置相对应的标题样式。 (1) 打开word2007文档,选择菜单栏中的“开始”选项,在下面的工具栏中既有相对应的“样式”的任务窗格。打开之后,我们能够看到它的列表中列出了现有的几种样式,如“标题1”、“标题2”等。 (2) 把插入点定位于将要执行样式更改的标题段落,然后用鼠标点一下“样式”任务窗格中的“标题1”,这时能够看到插入点所在的标题段落被应用了“标题1”样式。 (3) 用同样的方法为案例文档中其它的标题指定相对应的标题样式,全部完成后请保存一下文件。此时,即可将案例文档中的所有标题设置了相对应等级层次的标题样式了。 2.基于样式快速生成目录 要自动生成案例文档的目录,首先是要对目录的标题实行样式设置定义,然后再自动生成目录。创建目录最简单的方法就是使用内置的标题样式。 (1)打开案例文档,将文档中的各标题按照上述所讲的“标题样式”定义。 (2)点击word2007菜单栏中的“引用”按钮,找到“目录”选项,点击“目录”选项 下面的倒三角,选择“自动目录”。这时候即可自动生成相对应的目录。 (3)如果对生成的目录需要调整,经调整后点击“更新目录”,即可将目录实行更新。

3.个性设置页眉页脚 (1)打开“页眉页脚”工具栏 单击菜单栏中的“插入”按钮,便能够看到“页眉页脚”任务窗口。 点击“页眉”/“页脚”选项,然后选择“编辑页眉”/“编辑页脚”选项,既能够进入编辑状态,如图: (2)编辑页眉页脚 A进入编辑状态 将鼠标指针移至页眉框内,即可开始输入和编辑页眉页脚的内容。要回到主文档,可选择“页眉和页脚”工具栏上的“关闭”按钮,或者双击主文本区。要重新进入页眉和页脚编辑状态,可在主文档页眉或页脚区域内双击。当然,在“转至页眉”/“转至页脚”选项中,能够变换“页眉”或者“页脚”的编辑。 B设置文档奇偶页不同页眉 有的文档可能需要给奇数页和偶数页设置不同的页眉或页脚。要使奇偶页的页眉和页脚不同,也是通过“页眉页脚”工具栏中来实现。方法是在出现的“设计”菜单中勾选“奇偶页不同”选择框。 设置文档奇偶页不同页眉:“奇数页页眉”输入内容后,点击“页眉和页脚”工具栏的“显示下一项”按钮,即转换到“偶数页页眉”编辑状态。(“偶数页页眉”输入内容后,单击“显

相关主题