搜档网
当前位置:搜档网 › 超声检测法检测预应力管道压浆质量

超声检测法检测预应力管道压浆质量

超声检测法检测预应力管道压浆质量
超声检测法检测预应力管道压浆质量

超声检测法检测预应力管道压浆质量

唐恺

(江苏省交通科学研究院股份有限公司,南京,650217)

摘要:随着中国公路建设的高速发展,预应力混凝土结构得到广泛使用,在采用该工艺施工时, 其预留孔道的灌浆质量一直是人们关心的问题。虽然近几年来超声波无损检测的理论与技术都有了很大的进展,单大量的实验研究已证明了目前有关混凝土的超声波技术的应用,大部分是停在对已有损害的识别,或是对混凝土强度的检测上,而在波纹管这种多相复合体系交织在一起的异质结构材料以及混凝土材料使用寿命的早期性能退化阶段的检测与评定方面的研究仅处于起步阶段。因此,超声检测法检测预应力管道压浆质量发仍然具有较大潜力。

关键词:预应力管道压浆预应力损失,超声检测,密实度

前言:随着中国公路建设的高速发展,预应力混凝土结构得到广泛使用,在采用该工艺施工时, 其预留预应力管道的压浆质量一直是人们关心的问题.灌浆是否饱满,将直接影响预应力构件的整体强度和耐久性。因此,人们十分关心预留预应力管道的灌浆质量。但是,在实际灌浆操作中,由于管道堵塞、压浆方法不当、灌浆材料或人为疏忽等问题,沿预应力束有时会出现灌浆不密实,甚至出现孔洞等现象,会造成水分侵入而锈蚀钢束,这都将大大降低混凝土结构构件的耐久性

与承载能力[1]。目前对预应力锚索孔的注浆饱和度控制,主要靠现场监理的旁站

来控制,判断方法是通过观察注浆过程中,浆液的出浆情况来判别该孔是否饱满及是否符合要求,具有很大的主观随意性,况且浆液在孔内的流动情况受施工操作、注浆压力等因素控制,监理人员难以判别浆液在孔内的饱满和固结情况。目前国内开始采用弹性波方法加以解决,通过弹性波的传播途径,对弹性波的振幅,频率,波幅等参数的认识来识别有无缺陷。

1 预应力管道压浆的作用

预应力管道灌浆的密室与否直接关系到桥梁的长期使用性能,对桥梁起着至关重要的作用。预应力管道灌浆技术是将水泥浆注入预留的预应力混凝土预应力管道.水泥浆充分包裹预应力筋。主要能够保护预应力钢材不外露而遭锈蚀,保证预应力混凝土结构或构件的安全寿命;使预应力钢材与混凝土良好结合,保证它们之间预应力的有效传递,使预应力钢材与混凝土共同工作:能够消除由于预应力混凝土结构或构件在反复荷载作用下,应力变化对锚具造成的疲劳破坏,从而提高了结构的可靠度和耐久性。预应力管道压浆的密室可以充分排除预应力管道内的水分和气体,保护预应力筋不锈蚀。后张法预应力梁的预留预应力管道,穿入预应力筋锚固后,仍有1/2-1/3的空隙,压浆后水泥浆与梁体形成一个密实的整体,有利于整体共同受力。密室的注浆可以减轻锚具工作负担,预应力管道压浆后,浆体对预应力筋将产生巨大的握裹力,这样减轻了锚具的负担,即便是锚具超过疲劳极限而失去作用,有水泥浆产生的握裹力作为第2道防线,也无须担心预应力筋脱锚而发生事故。由此可见预应力管道压浆对桥梁的重要性,预应

力桥梁预应力管道注浆质量是桥梁工程质量控制的重要环节[2]。预应力管道注浆

质量越来越引起建设方的重视和注意。经过查证,预制梁板和现浇梁有40%-60%的预应力管道注浆存有问题。检测预应力管道注浆质量,目前在国内、国外也有不少检测检测方法,我们引入弹性波反射法技术检测预应力管道注浆质量,为检

测预应力管道注浆质量提供一种检测方法,有效保证桥梁施工质量。。

2 预应力管道压浆技术

在我国所使用的灌浆料一般为纯水泥浆,灌浆工艺一般压力灌浆或真空辅助压浆。在施工现场,预应力管道灌浆是后张法预应力工艺的重要环节。须注意灌浆用水泥标号应符合设计或规划要求。施工中严格控制水泥浆水灰比,灌浆前用压力水冲洗预应力管道,灌浆顺序应先下后上,曲线预应力管道应从最低点开始向两端进行,在最高点设排气管。预应力管道末端应设置排气孔。每条预应力管道宜一次灌成,中途不应停顿。理论上,按照国内外灌浆工艺及质量控制措施,能较好地保证灌浆的密实度。但是,在实际的现场施工中还存在着以下一些因素,会导致灌浆质量问题:压浆不饱满,即为水泥浆未充满整个预应力管道,造成质量缺陷的主要原因为:出浆孔开的位置不对,未开在预应力管道的最高点,对于特殊部位仍按一般的操作进行灌浆,导致灌浆不密实。施工人员责任心不强,在压浆时未等出浆孔冒出浓浆即停止压浆。分两次压浆时,由于第一次压浆不当,导致无法第二次压浆,又没有采取必要的措施就放弃压浆。压浆过程中,由于机械故障等原因,导致压浆中止,但对前面灌浆后的预应力管道又未及时清洗,

致使再次压浆时,由于管道、进出浆口等原因,无法压浆[3]。目前管道成形多采

用预埋金属预应力管道法,金属预应力管道有其自身的优点,但由于生产工艺自身的限制,预应力管道肋和肋之间如果压箍不紧密就会有空隙存在,因此金属预应力管道的密封性能较差。并且在施工现场由于固定预应力管道会使预应力管道受拉侧出现缝隙,或者由于振捣混凝土不慎而造成预应力管道的破坏。总之由于种种原因导致预应力管道出现的缝隙会使混凝土水泥浆渗入管道中,这样不但直接影响混凝土的水化,更严重的是堵塞金属预应力管道道,直接影响灌浆质量。根据规范要求,用于压浆的水泥浆,3h后泌水率不宜超过2%,24h后,泌水应能够被水泥浆完全自我吸收。但实际上,即使泌水经过24h被水泥浆完全吸收,也会在硬化后的水泥石中留下空隙或孔洞,这种空隙或孔洞不但会影响水泥浆与预应力筋的粘结性能,也会使腐蚀物质深入并接触捣预应力筋,因此,最关键的

是不让泌水出现,或者直接将泌出的水排出[4]。

3 超声法检测预应力管道压浆质量技术

3.1 预应力管道压浆质量检测原理

该技术检测预应力管道饱满程度,是利用弹性波在预应力筋中传播特征(振幅,频率,相位)来识别砂浆包裹预应力筋的饱满程度。预应力管道注浆饱满程度会对弹性波产生不同特征的阻抗。我们通过识别弹性波传播特征,阻抗变化,来识别预应力管道注浆饱满程度的方法为简称弹性波反射法。弹性波径向传播通过振幅得以体现。砂浆饱满程度,对弹性波的径向传播有着抑制(压制弹性波振幅)作用,简称为阻抗。注浆饱满,砂浆阻抗作用明显,弹性波信号急剧衰减;注浆不饱满或空浆,砂浆阻抗作用减小,弹性波信号衰减缓慢。弹性波在预应力筋中传递一大段距离后,还存有强烈的弹性波反射信号。该方法通过对所测预应力筋发射超磁弹性波信号,利用加速度传感器拾取反射波信号频率和相位特征,从而辨别预应力管道注浆饱满程度。预应力管道注浆饱满,阻抗增大,从预应力筋拾取的声波图象来看,波形振幅和能量会呈现指数倍衰减,振幅和能量会很快均匀变小,大多出现高频特征。相反,预应力管道注浆不密实,阻抗减小。从预应力筋拾取的声波图象来看,波形振幅和能量会畸变,振幅增大,周期变长,

大多出现低频特征。利用弹性波的传播机理和弹性波震源的特性,用弹性波震源从预应力锚索的一端输入弹性波信号,在锚索的另一端接收此弹性信号,根据弹性波的入射信号和传播输出信号,再利用弹性波在此预应力锚索不同结构传播的传导函数来计算分析桥梁预应力锚索的注浆质量。

3.2 预应力管道压浆技术实际工程应用

受昆明建设管理有限公司委托,我院对昆明市轿子雪山旅游专线公路建设工程预制梁板预应力管道压浆质量进行检测试验。我单位严格依据国家行业标准对该项目梁板进行抽检。依据合同规定,对本工程预制梁板总计14400m的预应力管道长度进行检验压浆密实。该检测技术得到了业主单位以及现场施工单位的认可,对轿子雪山旅游专线公路全线预应力管道压浆质量控制起到了至关重要的作用。以下是现场检测预应力管道压浆质量的波形图:

现场采集波形图1-1

滤波分析图1-2

预应力管道注浆密实度结果分析:该预应力预应力管道压浆密室,弹性波在预应力管道内规律性变化,无突变点。该预应力管道注浆质量优良。

现场采集波形图2-1

滤波分析图2-2

预应力管道注浆密实度结果分析:该预应力预应力管道内压浆有三处存在波形突变,不是规律性衰减,该位置处可能存在压浆不密室情况,弹性波在预应力管道内传播总体呈规律性变化,故该预应力管道密室度情况可评为良好。

3.3 现场开孔验证孔道压浆饱满度

由于弹性波检测预应力管道压浆质量属于新技术,理论方面验证可行,可是缺少实践经验的支持,在轿子雪山旅游专线公路工程中,通过业主以及施工单位配合,通过一定的现场开孔等试验验证了检测结果,有效验证了该技术的实践可行性。

4 总结

弹性波反射法检测桥梁预应力管道注浆饱满程度,是一种新的检测方法。还处在一定的探索阶段。目前,在研究预应力管道注浆质量的理论上和实践中,存在一定的认识盲区。我们根据声波数据采集的多样性和波形的一致性,进行开孔验证,大量实践表明,该技术具有很多成功的例子,值得在桥梁、边坡等重要结构物的预应力管道、锚索和锚杆注浆质量检测中推广和运用。

参考文献:

[1]、徐向锋,叶见曙,张峰.预应力混凝土箱梁耐久性的调查研究[J].山东交通学院学报,2007,15(3):28-33.

[2]、刘其伟,张鹏飞,吴建平.实桥预应力预应力管道压浆调查和钢丝性能分析[J].桥梁建设,2006(5):72-75.

[3]、罗强胜.预应力预应力管道压浆的施工质量控制[J].湖南交通科

技,2006,32(2):109-111.

[4]、王天生.预应力梁预应力管道压浆存在的问题和产生原因及预防[J].山西交通科技,2006(2):49-50,78.

预应力管道压浆封锚作业指导书

兰新铁路第二双线(新疆段)4标 编号: 预应力管道压浆、封锚 施工作业指导书 单位: 编制: 审核: 审批: 2010年月日发布 2010年月日实施

1.目的 对中铁四局集团第六工程有限公司哈密制梁场后张法预应力单箱单室简支箱梁预应力压浆、封锚施工进行控制,使其结果满足设计和验收标准的规定要求。 2.适用范围 适用于中铁四局集团第六工程有限公司哈密制梁场各类跨度的后张法预应力混凝土双线箱梁预应力工程作业。 3.职责 3.1物资部负责按计划购买水泥、灌浆剂、防水材料等原材料,原材进场时立即通知试验室和安质部进行检验。 3.2试验室负责工艺细则对原材料进行自检,压浆设备委外校验,以及工序试件强度的检测,将检验结果以文字形式及时反馈物资部、工程部、安质部等。 3.3工程部负责发放有效的施工图纸,明确工序流程和控制参数,进行压浆交底和旁站,指导施工。 3.4安质部根据试验室的检验结果签发各工序作业通知单,负责对工序最终产品检查,并报请监理工程师检查,工序最终产品须经监理工程师签字确认合格。 3.5施工班组负责按要求配臵人员和设备,负责施工机具和机械设备的运行及保养,负责预应力孔道的压浆和封锚,并按哈密制梁场《施工工艺细则》、

相关规范和技术交底要求进行施工作业。 4.技术标准 4.1《客运专线预应力混凝土预制梁暂行技术条件》铁科技[2004]120号4.2《铁路混凝土工程施工质量验收补充标准》铁建设[2005]160号 4.3《客运专线铁路桥涵工程施工质量验收暂行标准》铁建设[2005]160号4.4《客运专线铁路桥涵工程施工技术指南》TZ213-2005 4.5《施工工艺细则》 4.6《企业内控标准》 5.资源配臵 5.1机械设备 机械设备配臵表表5.1-1 5.2人员 预应力施工作业人员必须是经过工艺培训且考试合格、富有预应力作业经验,同时要求其具备较高的质量意识和高度责任心的人员。 6.管道压浆作业 每片箱梁终张拉24h后,复查无滑丝、断丝情况后,并经主管工程师同意,切割多余的钢绞线,钢绞线外露量4~5cm,切割钢绞线时对钢绞线根

管道焊接接头超声波检测

作业指导书控制页: *注:项目主管工程师负责每项目上交一本已执行完成的、并经过完善有完整签名的作业指导书。

重要工序过程监控表 作业指导书(技术措施)修改意见征集表 回收签名(日期):

目录 1 编制依据及引用标准 (1) 2 工程概况及施工范围: (1) 2.1工程概况 (1) 2.2施工范围 (1) 3 施工作业人员配备与人员资格 (1) 4 施工所需机械装备及工器具、安全防护用品配备(注:按600MW机组配备) (1) 4.1仪器 (1) 4.2探头 (2) 4.3仪器和探头组合性能 (2) 4.4试块 (2) 4.5其他工器具 (3) 5 施工条件及施工前准备工作 (3) 6 作业程序、方法及要求 (4) 6.1作业程序流程图 (4) 6.2作业方法及要求 (5) 6.3专项技术措施 (7) 7 质量控制及质量验收 (9) 7.1质量控制标准 (9) 7.2中间控制见证点设置 (9) 7.3中间工序交接点设置 (9) 7.4工艺纪律及质量保证措施 (9) 8 安全、文明施工及环境管理要求和措施 (10) 表8-1职业健康安全风险控制计划表(RCP) (11) 表8-2环境因素及控制措施 (12)

1 编制依据及引用标准 1.1《工程建设标准强制性条文》(电力工程部分) 1.2 DL/T869-2004电力建设施工及验收技术规范(火力发电厂焊接篇) 1.3 DL/T820-2002管道焊接接头超声波检验技术规程。 1.4 JB/T9214-1999《A型脉冲反射式超声探伤系统工作性能测试方法》 1.5 JB/T10062-1999《超声波用探头性能测试方法》 1.6 JB/T10061-1999《A型脉冲反射式超声波仪通用技术条件》 1.7《电力建设安全工作规程》 1.8公司《质量、安全健康、环境管理手册》 1.9公司焊检中心管理制度 2 工程概况及施工范围: 2.1工程概况 (略) 2.2施工范围 本作业指导书适用于外径ф≥32mm,壁厚在4~160mm,单面施焊、双面成型的碳钢及合金钢熔化焊对接接头的超声波检测。也适用于外径ф≥32mm、≤159mm,壁厚在4~8mm的奥氏体不锈钢管对接焊接接头的超声波检测。 除非设计图纸或甲方合同另有规定,超声波检测比例应按照DL/T869-2004《火力发电厂焊接技术规程》执行。 3 施工作业人员配备与人员资格 4 施工所需机械装备及工器具、安全防护用品配备(注:按600MW机组配备)4.1仪器 4.1.1仪器选用见下表:

大循环智能压浆工艺在后张预制梁孔道压浆施工中运用技术报告

大循环智能压浆工艺在后张预制梁施工中的运用 技 术 报 告

天津路桥建设工程有限公司第一分公司2013年12月28日

目录 一、项目的来源 (3) 二、项目的介绍 (3) 三、项目研究的目的及意义 (3) 四、项目研究的主要内容 (4) 五、项目研究方法和技术路线 (5) 六、项目研究过程 (6) (一)大循环智能压浆工艺的了解与熟悉 (6) (二)大循环智能压浆设备的选取与操作培训 (8) (三)大循环智能压浆的首件验收 (10) (四)总结大循环智能压浆工艺并将其投入生产使 (14) 七、社会效益和实际应用分析 (16) 八、大循环智能压浆工艺的发展前景 (17)

一、项目来源 天津路桥建设工程有限公司第一分公司2013年自选科研课题。 二、项目介绍 唐廊高速公路天津段一期工程第三标段工程位于天津市宁河县境内,西起东棘坨镇杨富庄村,向东斜跨西关引河进入宁河镇界内,在牛口庄东南、张辛庄西侧接蓟运河大桥,全长4.786千米,本标段共计桥梁结构物9个,分别为西关引河大桥、K11+444.5中桥、K12+047中桥、K12+520中桥、宝芦互通A1匝道桥、宝芦互通A2匝道桥、K13+550箱型通道、K13+617箱型通道、K14+281.5中桥,桥梁全长1336.35米。 其中西关引河大桥上部结构主要为后张预应力空心板梁(0-20跨),跨径为20米、19.8米,后张简支小箱梁(20-26跨),跨径为35m、30m、24m。后张简支变连续小箱梁(26-29、29-33跨),跨径为30m。后张预制板梁共计490片,后张预制小箱梁共计130片,需要620次预制梁后张预应力孔道压浆施工。 三、项目研究的目的及意义 传统压浆工艺中,一是对压浆材料和水用量控制不严,水胶比过大,导致泌水率大,在孔道内容易形成钢绞线锈蚀的环境;二是压浆设备落后,压浆泵的压力不稳定,浆液在孔道内易产生气塞,造成压浆不密实;三是真空辅助压浆过程中,不能形成完全的密闭空间,影响压浆效果;四是人为影响因素过大,压浆记录数据缺乏真实性。采

预应力结构管道压浆通病的预防措施

预应力结构管道压浆通病的预防措施【摘要】本文针对预应力结构管道压浆中出现的质量通病,从压浆设备选择,压浆材料配合比设计、灌浆等几个主要环节论述应注意的有关问题。 【关健词】预应力管道;压浆通病;预防措施 引言 预应力结构管道压浆是为了防止管道中的预应力钢材 腐蚀,起保护作用;使张拉材料与构件混凝土之间连接为一个整体,预应力管道压浆是预制混凝土梁比较关键的一道工序,压浆的质量直接影响桥梁的质量和使用寿命。通过对以往预应力管道压浆质量的检查,发现存在压浆不饱满、压浆材料强度不足、压浆管道冻胀等通病。要想做好这项工作,必须注意以下几个方面: 1 压浆设备 为了顺利地进行灌浆施工,材料及其质量适宜是当然的条件,但施工使用的机具不适当、不完备,也不能很好地进行灌浆施工。因此,施工机具的性能、容量以及对工程是否合适,控制着施工的成败。 1.1 选择具有能够获得泌水率小、流动性好的灰浆机械,而且拌和均匀。而滚动式搅拌机由于机体中的滚动高速旋转,使灰浆产生涡流,不但搅拌不均匀,而且会产生离析。当灌

注数量特别多时,为了不使流动性降低,最好采用能够搅拌的旋转搅动罐。 1.2 灰浆泵必须缓慢而又不混入空气地灌注灰浆。灰浆泵有电动式和手动式两种。灌注大型预应力钢束灰浆时,宜选择电动灰浆泵,否则,宜选择手动灰浆泵。其优点为灌注作业简单,时间短,其缺点与手动泵相反,对灰浆泵的阻抗没有感觉,容易引起所说的灰浆阻塞事故。为此,对于灌注能力较大的应采用电动泵,如果灌注压力在0.5Mpa 以上,最好设置使灰浆可由旁通管流走的装置。此外,还应当装有能准确读出灌注压力的压力表,且应事先仔细标定好。 2 压浆材料的配比 2.1 灰浆稠度是决定能否可靠地进行灌浆作业的重要 因素,因此,应考虑气温、管道直径、灌注长度、灌注数量以及灌注机具等来决定。当管道与予应力钢材之间的间隙较大时,因为管道内有较宽阔的灌注通道,灰浆能较容易地由灌入孔流向排出孔;当管道与予应力钢材之间的间隙较小时,灰浆不能很容易地由灌入孔流向排出孔,特别是予应力钢丝群起筛网作用,在灌入的灰浆前部会积存较干的灰浆,因此,过于干稠的灰浆,是造成堵塞。 2.2 灰浆不但能把予应力钢材完全包裹住,而且灰浆抗压强度应不低于图纸规定,且不低30Mpa。

后张法预应力结构孔道压浆技术指南

后张法预应力结构孔道压浆技术指南 目次 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (2) 4.1原材料 (2) 4.2施工设备 (4) 4.3浆体性能 (4) 5 配合比设计 (5) 5.1设计原则 (5) 5.2设计准备 (5) 5.3试验室设计 (5) 5.4生产配合比验证 (6) 5.5试生产 (6) 6 试验方法 (7) 7 施工工艺 (8) 7.1施工准备 (8) 7.2制浆 (8) 7.3抽真空 (8) 7.4压浆 (8) 7.5工作温度 (9) 7.6质量检查 (9) 8 规范性附录 (10) 附录A1高速制浆试验机 (10) 附录A2流动度试验 (11) 附录A3沉积率试验 (12) 附录A4自由膨胀率试验 (13) 附录A5压力泌水试验 (14) 附录A6V管注浆充盈度试验 (15) 附录B1斜管压浆充盈度试验 (16) 附录C1高速制浆、压浆站 (17) 附录C2预应力孔道压浆施工记录表 (18)

1 范围 本标准规定了后张法预应力结构孔道压浆的材料检验规则、浆体性能、配合比设计、试验方法、施工工艺等要求。 本标准适用于桥梁结构、岩体滑坡加固等后张法预应力结构孔道压浆使用。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新的版本适用于本标准。 GB 175-2007 通用硅酸盐水泥 GB 176-1996 水泥化学分析方法 GB/T 1346-2001 水泥标准稠度用水量、凝结时间、安定性检验方法 GB 12573-1990 水泥取样方法 GB/T 17671-1999 水泥胶砂强度检验方法(ISO法) JGJ 63-1989 混凝土拌和用水标准 JTG E41-2010 公路桥涵施工技术规范 CCES 01-2004 混凝土结构耐久性设计与施工指南 3 术语和定义 下列术语和定义适用于本标准。 3.1孔道压浆料 孔道压浆料是由水泥、高效减水剂、微膨胀剂、矿物掺合料等多种材料干拌而成的混合料。它是在施工现场按一定比例与水均匀后,用于后张梁预应力孔道充填的压浆材料。 3.2孔道压浆剂 孔道压浆剂是由高效减水剂、微膨胀剂、矿物掺合料等多种材料干拌而成的压浆材料。 3.3高速制浆机 高速制浆机是将水泥、灌浆料、压浆剂与水混合并快速制成浆液。采用涡流制浆原理,转速不低于1500r/min,具有制浆速度快,浆液搅拌均匀等特点。 3.4高速制浆试验机 高速制浆试验机是在室内将水泥、灌浆料、压浆剂与水混合并快速制成浆液。采用涡流制浆原理,转速不低于1500r/min具有制浆速度快,浆液搅拌均匀等特点。

箱梁预应力孔道压浆方法

箱梁预应力孔道压浆方法 本工程采用真空辅助灌浆工艺进行孔道灌浆。 1、施工准备工作 a、应能制造出胶状稠度的水泥浆,压浆机必须能为0.7mp的常压连续作业。压力表在首次使用前必须及时检查,及时校准。 b、检查确认材料数量、种类是否齐备;检查机具是否完好; c张拉完成后,切除外露的钢绞线(外露量≤30mm,连续束应考虑连接长度),将密封工具罩安装在锚垫板上进行封锚。工具罩在灌浆后3小时内拆除并清洗。安装时检查橡胶密封圈是否破损断裂,将密封罩与锚垫板上的安装孔对正,用螺栓拧紧,注意将排气口朝正上方。 2、试抽真空 将灌浆阀,排气阀全都关闭,抽真空阀打开,启动真空泵抽真空,观察真空压力表读数,当管内的真空度维持在-0.08Mpa时,停泵约1min时间,若压力能保持不变即可认为孔道能达到并维持真空。 3、水泥浆制作 A、水泥浆的要求 水泥浆的配合比及有关性能应符合规范要求,水泥浆经过3小时泌水量不应超过2%。 B搅拌要求:搅拌水泥浆之前,加水空转数分钟,将积水倒净,使搅拌机内壁充分湿润。搅拌好的灰浆要做到基本卸尽。在全部灰浆出之前不得再投入未拌和的材料,更不能采取边出料边进料的方法。 C装料顺序 a先将称量好的水(扣除用于溶化减水剂的那部分水),水泥,膨胀剂,粉煤灰倒入搅拌机,搅拌2min; b将溶于水的减水剂倒入搅拌机,搅拌3min出料; c水泥浆出料后应尽量马上泵送,否则要不停地搅拌; d必须严格控制用水量,否则多加的水全部泌出,易造成管道顶端有空隙; e对未及时使用而降低了流动性水泥浆,严禁采用增加水的办法来增加灰浆的流动性。 4、灌浆 a将水泥浆加到储浆罐中引到灌浆泵,灌浆泵高压橡胶管出口打出浆体,待这些浆体浓度与灌浆泵中的浓度一样时,关掉灌浆泵,将高压橡胶管此端接到孔道的灌浆管上,扎

管道压浆料及管道压浆剂技术要求

管道压浆料及管道压浆剂技术要求 根据设计院出具的《梁预应力砼连续梁技术交底条件》显示,管道压浆中的压浆材料及工艺应满足《铁路后张法预应力混凝土梁管道压浆技术条件》(TB/T 3192-2008)的各项规定。 管道压浆料 cable grouts 管道压浆料是由水泥、高效减水剂、微膨胀剂、矿物掺合料等多种材料干拌而成的混合料。它是在施工现场按一定比例与水混合均匀后,用于后张梁预压力管道充填的压浆材料。 管道压浆剂 cable grouting agents 管道压浆剂是由高效减水剂、微膨胀剂、矿物掺合料等多种材料干拌而成的混合剂。它是在施工现场按一定比例与水泥、水混合均匀后,用于后张梁预应力管道充填压浆材料。 根据以往施工经验,多数采用压浆剂,但压浆剂自行调配难以控制,且质量很难保证。为方便现场管理。建议采用压浆料。 1、技术要求 1.1 原材料要求 1.1.1 原材料应有供应商提供的出厂检验合格证书,并应按有关检验项目、批次规定,严格实施进场检验。 1.1.2 水泥应采用性能稳定、强度等级不应低于4 2.5级的低碱硅酸盐或低碱普通硅酸盐水泥(掺和粉仅为粉煤灰或矿渣),水泥熟料中C3A 含量不应大于8%;其余性能应符合GB 175-1999的规定,不应使用其他品种水泥。

1.1.3 矿物掺和料的品种宜为I级粉煤灰、矿渣粉或硅灰。I级粉煤灰的技术要求应满足表1的规定;矿渣粉的技术要求应满足表2的规定;硅灰的技术要求应满足表3的规定。 1.1.4 应采用高效减水剂,其性能应与所用水泥具有良好的适应性。高效减水剂的减水率不应小于20%,其他指标应符合GB 8076—1997中高效减水剂一等品的要求。其他外加剂应符合GB 8076 — 1997中

预应力孔道压浆讲义

目录 目录 一、术语 二、技术要求 (一)材料 (二)设备 (三)浆液性能 (四)配合比 (五)施工工艺 三、质量检查

一、术语 1、孔道压浆剂 孔道压浆剂是由高效减水剂、微膨胀剂、矿物掺合料等多种材料干拌而成的混合料,在施工现场按一定比例与水泥、水混合并搅拌均匀后,用于后张预应力孔道的压浆。 2、孔道压浆料 孔道压浆料是由水泥与孔道压浆剂干拌而成的压浆材料,在施工现场按一定比例加水并搅拌均匀后,用于后张预应力孔道的压浆。 3、高速制浆机 高速制浆机是指转速不低于1000r/min,可以将水泥、压浆剂(压浆料)与水混合制成压浆浆液的施工设备。 4、高速制浆试验机 高速制浆试验机是指转速不低于1000r/min,可以将水泥、压浆剂(压浆料)与水混合并制成压浆浆液的试验设备。 5、沉积率 沉积率是指将浆液静置一定时间后,上层浆液与下层浆液的流动度比与密度比。 6、竖向膨胀率 采用百分表检测规定体积的容器内浆液的竖向膨胀量。 7、压力充盈度试验 在室内采用小型透明管道、在压力状态下观测浆液充盈程度、泌水情况的试验方法。

8、材料抗分离试验 在室外采用5m透明管道制作具有仿真孔道的压浆设备,观测浆液在钢绞线和压力共同作用下的泌水性能。 9、压浆记录仪 测定和记录预应力孔道压浆施工的压力和流量的装置。 10、屏浆 预应力孔道压浆工作达到结束条件后,为使孔道内浆液饱满、密实,继续使用压浆泵对压浆孔段内施加压力的措施。 二、技术要求 (一)材料 1、水泥应采用性能稳定,强度等级不低于42.5级低碱硅酸盐水泥或低碱普通硅酸盐水泥。。 2、压浆剂应采用性能稳定的产品,与水泥、水拌合后,具备不离析、不泌水、微膨胀、高流动性的技术性能。 3、压浆料应采用性能稳定的产品,与水拌合后,具备不离析、不泌水、微膨胀、高流动性的技术性能。 4、水不应含有对预应力筋或水泥有害的成分,每升水中不得含有350mg以上的氯化物离子或任何一种其他有机物,宜采用符合国家卫生标准的清洁用水。 5、压浆料、压浆剂等材料应有制造商提供的出厂检验合格证书,并应按有关检验项目、批次规定,严格实施进场检验,压浆材料中不应含有高碱(总碱量不应超过0.75%)膨胀剂或以铝粉为膨胀源的膨

工艺管道对接焊缝超声波检测

摘要:本文针对工艺管道对接焊缝的特点,对焊接方法、焊接位置及易产生的缺陷进行了分析,由于工艺管道对接焊缝壁厚范围大,又多是直管与直管、直管与弯头、法兰、阀门等管件对接,采用单面焊接双面成型工艺,这种特殊结构型式和焊接工艺,使超声波检测只能进行单面双侧扫查或单面单侧扫查;为了提高缺陷的检出率,对不同规格、不同结构的焊缝选择扫查面、探头数量、探头型号和探头尺寸应有针对性;根部缺陷的判定对仪器扫描线调节精度提出了较高要求;通过对典型缺陷的回波特征进行了分析;通过以上分析和采取的措施,能有效提高工艺管道对接焊缝超声波检测质量。 关键词:工艺管道对接焊缝超声波检测 Ultrasonic Test for the Process Piping Butt Weld LI Zhao-tai, WANG Cheng-sen, HUANG Zhi Nanjing Jinling Inspection Engineering Co.,Ltd Abstract: Considering the characteristics of the process piping butt weld, this article analyses the welding methods, the welding positions and the defects which are easily produced. As the range of thickness of the process piping butt weld is large, furthermore, the joints are almost among pipe fittings, such as straight pipes, elbows, flanges and valves, so we choose one formation welding. Due to the special structure and welding craft, UT only conducts single-sided bilateral scanning or single-sided unilateral scanning; in order to raise the defect inspection rate, we should choose scanning surface, probe quantity, models and size for different scales and structures of welding joints with pertinence. It puts forward higher requirement for the linear adjustable accuracy of apparatus scanning to judge the root defect. We analyses the characteristics of the waves of typical defects. By the analyses and measures above, it improves the test quality of the process piping butt weld effectively. Keywords: Process piping butt weld; Ultrasonic test 0 前言 石化装置工艺管道对接焊缝超声波检测具有一定的难度。早期的模拟超声波探伤机由于定位精度不高,对于根部缺陷的识别和判定存在较大难度,每次更换不同角度的探头,时间基线都要重新调节,非常不便,这为工艺管道对接焊缝推广超声波检测造成了很大的困难。近些年,超声波检测设备发生了巨大改变,且更新很快,数字式探伤机代替了模拟机,数字式探伤机较原先使用的模拟机具有显著的优点,首先,其定位精度高,定位精度可达0.1mm,为管道焊缝根部信号的判定提供了可靠依据;第二,可存贮多种探头参数及其距离波幅曲线,为现场采用多种角度的探头进行检测提供了方便,提高了不同角度缺陷的检测灵敏度,可方便的变换探头(角度),为辨识真、伪信号提供了方便;第三,可以存贮动态波形和缺陷包络线,并可作为电子文件存档备查。数字式超声波探伤机较好地解决了管道焊缝超声波探伤的难题。本文推荐管道焊缝探伤采用数字式超声波探伤仪。通过专业培训和严格考核,可以筛选出合格的管道对接焊缝超声波检测人员,完全能保证管道焊缝的超声波检测质量。 本文通过对超声波检测方法、扫查面、探头数量、探头型号和探头尺寸的控制、通过理论分析和实际验证,表明超声波检测能有效保证管道焊缝的检测质量。 超声波检测操作灵活方便,对厚壁管道检测灵敏度和检测效率均高于射线检测,成本低于射线检测,且对人体无害,是一种科学、环保的检测方法。 1 管道对接焊缝与容器对接焊缝的不同点

06管道超声波检测工艺标准讲解

1.一般要求: 1.1.主题内容与适用范围 1.1.1.本规程规定了超声波检测人员的资格、所使用的仪器探头试块、检测范围、方法和质量分级,检测工艺和验收标准。 1.1. 2.本规程采用A型脉冲反射式超声波探伤仪对钢板、全焊透熔化焊对接接头和管座角接接头及锻件的超声波检测。 1.1.3.本规程依据JB/T4730.3-2005标准的要求编写。符合《压力管道安全管理与监察规定》的要求。 1.1.4.检测工艺卡是本规程的补充。检测时由UTII级人员按图样规定、依据委托单和本规程的要求编写。其参数规定的更具体。 2.检测人员资格: 2.1.无损检测人员必须经过技术培训,并按《特种设备无损检测人员考核与监督管理规则》的要求取得相应的无损检测资格。 2.2.从事超声波检测的人员,须持有UTII级以上的资格证书,并负相应的技术责任。 3.引用标准: 下列文件中的条款通过JB/T4730的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分。然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。 JB/T4730.1 承压设备无损检测第一部分:通用要求 JB/T7913-1995 超声波检测用钢制对比试块的制作与校验方法 JB/T9214-1999 A型脉冲反射式超声波探伤系统工作性能测试方法 JB/T10061-1999 A型脉冲反射式超声波探伤仪通用技术条件 JB/T10062-1999 超声波探伤用探头性能测试方法 JB/T10063-1999 超声波探伤用1号标准试块技术条件 4.探伤仪、探头和系统性能

简述桥梁预应力压浆施工工艺

简述桥梁预应力压浆施工工艺 摘要:本文结合某分离式立体交叉跨线桥连续箱梁和盖梁预应力混凝土施工,介绍真空压浆的施工工艺及技术要求。 关键词:公路桥梁,预应力施工,真空辅助压浆 Abstract: combining with a separate interchange continuous box-girder deck and capping beam of prestressed concrete construction, this paper introduces the construction technology of the vacuum pressure grouting and technical requirements. Key words: the highway bridge, prestressed construction, vacuum auxiliary pressure grouting 前言 真空压浆是后张预应力混凝土结构施工中的一项新枝术,近几年在桥梁施工中的应用日渐增多。真空压浆可以弥补普通压力压浆的缺点,更有效地保证并提高了后张预应力混凝土构件的安全性及耐久性,确保工程质量。本文结合分离式立体交叉跨线桥连续箱梁和盖梁预应力混凝土施工情况,介绍真空压浆的施工工艺及技术要求。 一、工程概况 分离式立体交叉跨线桥主桥上部结构采用42m+65m+42m的预应力混凝土连续刚构,下部结构为薄壁墩,基础为钻孔灌注桩;引桥采用20m预应力混凝土空心板,下部结构为双柱式桥墩预应力混凝土盖梁,肋板式桥台,基础为钻孔灌注桩。上部结构采用预制先张预应力混凝土空心板梁和连续刚构挂篮悬浇施工。连续箱梁和盖梁预应力管道压浆全部采用真空压浆。 二、真空压浆的必要性 后张预应力构件压浆的目的:一是防止预应力束被锈蚀,增强预应力构件的耐久性;二是填充预应力束的孔道,将构件形成整体,传递预应力并防止预应力筋松弛。因此要求孔道压浆一定要饱满,凝固后的水泥浆密、收缩少(甚至不收缩),并具有一定的强度。 传统的做法是采用压浆法来灌浆,即在0.4—0.45的稀水泥浆压入管道。采

预应力箱梁压浆工艺及现场图片

预应力箱梁压浆工艺及现场图片 孔道压浆采用真空压浆工艺,真空压浆是后张预应力混凝土结构施工中的一项新技术,其原理是在孔道的一端采用真空泵对孔道进行抽真空,使之产生-0.06~-0.08MPa左右的真空度,然后用压浆泵将优化后的水泥浆从孔道的另一端压入,直至充满整条孔道,并加以0.5~0.6MPa的正压力,以提高预应力孔道压浆的饱满度和密实度。其生产工艺如下所示。 密封孔道→设备检查→试抽真空→搅拌水泥浆→抽真空压浆→清洗→结束 张拉施工完成后,切除外露的钢绞线(钢绞线外露量 40~50mm),进行封锚。封锚采用无收缩水泥砂浆封锚,封锚时必须将锚下垫板及夹片、外露钢绞线全部包裹,覆盖层厚度大于15mm,砂浆封锚完成24小时后,且终拉完成后48小时内进行管道真空辅助压浆。 清理锚垫板的压浆孔,保证压浆通道畅通。 确定抽真空端和压浆端,安装引出管、球阀和接头,并检查其功能。 压入管道内的浆不得含未搅拌的水泥团块,初凝时间不小于4h,终凝时间不大于24小时,出机流动度14~22s,30min出机流动

度不大于30s,压浆时浆体温度不超过35℃,压浆时及压浆后3天内,梁体及环境温度不得低于5℃。抗压强度7天不小于35 MPa,28天不小于50MPa;抗折强度7天不小于6.5MPa,28天不小于10MPa;24h 浆体自由膨胀率为0~3%。浆体对钢绞线无腐蚀作用。 浆体拌合操作顺序:首先在搅拌机中加入实际拌合用水量的80-90%,开动搅拌机,均匀加入全部压浆剂,边加入边搅拌,然后均匀加入全部水泥。全部粉料加入后再搅拌2min;然后加入剩余的10%-20%的拌合水,继续搅拌2min。然后通过过滤器(网孔格不大于3×3mm的过滤网)进入储料罐,并不断搅拌,以防止水泥浆泌水沉淀。水泥浆搅拌结束至压入管道时间间隔不得超过40min。 启动真空泵抽真空,使真空度达到-0.06~-0.08Mpa并保持稳定。 启动压浆泵,当压浆泵输出的浆体达到要求的稠度时,将泵上的输送管阀门打开,开始压浆。 压浆泵须采用连续式泵,同一管道压浆须连续进行,一次完成。压浆过程中,真空泵保持连续工作。 待真空泵端的空气滤清器中有浆体经过时,关闭空气滤清器前端的阀门,稍后打开排气阀,当水泥浆从排气阀顺畅流出,且稠度与灌入的浆体相当时关闭抽真空端所有的阀门。 压浆泵继续工作,压力达到0.5~0.6Mpa,持压3分钟。 关闭压浆及压浆端所有阀门,完成压浆。 拆卸外接管路、附件,清洗空气滤清器及阀等。完成当日压

预应力压浆料的详解与计算方法

预应力管道压浆料用量的计算方法: 1.什么是预应力管道压浆料 压浆料一种专用于后张法预应力管(孔)压浆施工的产品由多种优质水泥基材料和高性能外加剂优化配制而成,具有优异的流动性,浆体稳定,充盈度好,凝结时间可调,无收缩、微膨胀,强度高,不含对钢筋有害物质等特点。 压浆料状态 2.压浆料用在什么地方 用在孔道里填满波纹管的地方。

3.压浆料跟压浆剂一样吗 它们是不一样的产品,压浆剂需按一定比例和相应水泥混合搅拌均与了才成为相应的压浆料。 压浆剂和压浆料都可分为公路和铁路两种。公路压浆料(剂)执行的标准是《JT/T946-2014》【1】,铁路压浆料(剂)执行标准是《TB/T3192-2008》。 压浆料是以优质水泥与多种有机和无机材料复合而成的压浆材料,在施工现场按一定比例加水并搅拌均与后,用于后张预应力孔道压浆。产品浆体密实,保护预应力筋不受腐蚀;粘结牢固,使预应力有效传递。压浆剂在施工时按一定配合比和适配水泥混合搅拌均变为相应的压浆料产品,再按比例加水混合搅拌均匀后才能进行孔道压浆。 通俗的说,压浆剂配合水泥才是压浆料,需要现场的实验室做具体的适配,保证施工的进行。 4.怎么计算压浆料的用量 1.通过实践总结,预应力孔道压浆水泥实际用量=预应力孔道净空体积(波纹管截面面积减去钢铰线截面面积×管道长)×。预应力孔道压浆水泥用量与其它的掺料无关。 孔道压浆:通常是指用水泥净浆,掺入外添加剂,压浆前先用压力清水冲洗将要压浆的孔道,再将水泥净浆从孔的一端压入,另一端排出浓浆后封闭。加大压力至兆帕,持续3-5分钟后结束。

例如:

5.关于压浆料的其他 压浆料使用寿命 为了研究修复板底空隙灌浆材料的使用寿命,选择了有机和无机压浆料。应力比控制在,固化寿命为28天。研究了不同环境条件下不同类型压浆料使用寿命的变化规律。结果表明,盐损伤后,无机材料的使用寿命降低了50%,有机材料的使用寿命降低了70%。 这说明无机材料在盐渍地区的使用寿命比有机材料更稳定,每降低1℃,有机材料寿命损失%,无机材料寿命损失%。目前比较正常稳定,宜采用有机材料,如局部环境冻融盐较为常见,宜采用无机材料。 压浆料用量计算公式 说道压浆料的用量,这个就需要计算张拉孔大小了,根据计算出来的压浆体积然后与相乘,这样我们就得到了压浆料的具体用量。(在这里是每平方米的压浆料为吨重,所以压浆料体积的倍就是所需的量) 压浆料流动度测试办法 1步准备器材 标准为:1 725mL±5mL水流出的时间应为± 第二步测试方法 检测:需要先将漏斗调平,然后封口,将配比好的压浆料均匀倒入漏斗内(大概为1 725mL ±5mL的压浆料);打开封口,观察并记录压浆料流出时间(这里是以每秒计算) 第三步测试标准 铁路管道压浆料测定器材为——流动锥 流动速度测试为——流动锥 压浆料标准流速——<35秒 接收容器:1小容量为——2000毫升 1小读数——<秒 流动锥的校准——1725±5毫升水流出的时间为——8±秒 流动锥几何尺寸——上口径178毫米,下口径——13毫米,装料容积——1725±5毫升

预应力孔道压浆作业指导书

1.目的 编制钢筋加工及焊接作业指导书的目的就是为了更好的指导施工生产,使现场作业人员能够规范施工。 2.编制依据 《铁路混凝土工程施工质量验收补充标准》 《铁路桥涵工程施工技术规范》 3.适用范围 本作业指导书适用于客运专线桥梁、涵洞及附属结构物的钢筋加工及焊接施工。 4.钢筋材料质量检验 钢筋到达现场后,必须检查产品合格证、附件清单和有关材质报告单或检查报告,并进行外观检查,按60吨为验收批进行力学性能抽验。 热轧圆盘条、热轧光圆钢筋、热轧带肋钢筋和余热处理钢筋的检验应符合下列规定: 4.1每批钢筋应由同一牌号,同一炉罐号、同一规格、同一交货状态组成,并不得大于60吨。 4.2检查每批钢筋的外观质量。钢筋表面不得有裂纹、结疤和拆叠;表面的突块和其它缺陷的深度和高度不得大于所在部位尺寸的允许偏差(带肋钢筋为横肋的高度)。测量本批钢筋的直径偏差。 4.3在经外观检查合格的每批钢筋中任选两根钢筋,在其上各截取1组试样,每组试样各制2根试件,分别做拉伸(含抗拉强度\屈服点\伸长率)和冷弯试验。 4.4当试样中有1个试验项目不符合要求时,应另取2倍数量的试件对不合格项目做第2次试验。当仍有1根试件不合格时,则该批钢筋应判为不合格。

4.5钢筋机械接头的检验应符合《钢筋机械连接通用技术规程》(JGJ107)的规定。 5.钢筋的加工方法及注意事项 5.1钢筋的除锈 5.1.1加工方法 钢筋均应清除油污和锤打能剥落的浮皮、铁锈。大量除锈,可通过钢筋冷拉或钢筋调直机调直过程中完成;少量的钢筋除锈,可采用电动除锈机或喷砂方法除锈,钢筋局部除锈可采取人工用钢丝刷或砂轮等方法进行。 5.1.2注意事项及质量要求 如除锈后钢筋表面有严重的麻坑、斑点等,已伤蚀截面时,应降级使用或剔除不用,带有蜂窝状锈迹钢筋,不得使用。 5.2钢筋的调直 5.2.1加工方法 对局部曲折、弯曲或成盘的钢筋应加以调直。钢筋调直普遍使用卷扬机拉直和用调直机调直。在缺乏设备时,可采用弯曲机、平直锤或人工锤击矫直粗钢筋和用绞磨拉直细钢筋。 5.2.2注意事项及质量要求 用卷扬机拉直钢筋时,应注意控制冷拉率:Ⅰ级钢筋不宜大于4%;Ⅱ~Ⅲ级钢筋及不准采用冷拉钢筋的结构不宜大于1%。用调直机调直钢筋和用锤击法平直粗钢筋时,表面伤痕不应使截面面积减少5%以上。调直后的钢筋应平直、无局部曲折,冷拔低碳钢筋表面不得有明显擦伤。应当注意:冷拔低碳钢丝经调直机调直后,其抗拉强度一般要降低10~15%,使用前要加强检查,按调直后的抗拉强度选用。 5.3钢筋的切割 5.3.1加工方法 钢筋弯曲成型前,应根据配料表要求长度分别截断,通常宜用钢

管道对接焊缝的超声波检测..

管道对接焊缝的超声波检测 摘要:针对工艺管道对接焊缝的特点,对焊接方法、焊接位置及易产生的缺陷进行了分析由于工艺管道对接焊缝壁厚范围大,多是直管与直管、直管与弯头、法兰、阀门等管件对接,采用单面焊接双面成型工艺,这种特殊结构型式和焊接工艺,使超声波检测只能进行单面双侧扫查或单面单侧扫查"为了提高缺陷的检出率,对不同规格!不同结构的焊缝在选择扫查面、探头数量、探头型号和探头尺寸时应有针对性"根部缺陷的判定对仪器扫描线调节精度提出了较高要求,对典型缺陷的回波特征进行了分析"通过以上分析和采取的措施,能有效提高工艺管道对接焊缝超声波检测的质量。 石化装置工艺管道对接焊缝超声波检测具有一定的难度"早期的模拟超声波探伤仪由于定位精度不高,对于根部缺陷的识别和判定存在较大难度,每次更换不同角度的探头后时间基线都要重新调节,非常不便,这为在工艺管道对接焊缝领域推广超声波检测技术造成了很大的困难"近些年,超声波检测灵敏测设备发生了巨大改变,且更新很快,数字式探伤仪代替了模拟仪"数字式探伤仪较原先使用的模拟式超声波探伤仪具有显著的优点"首先,其定位精度高,定位精度可达0.1mm,为管道焊缝根部信号的判定提供了可靠依据;第二,可存储多种探头参数及其距离一波幅曲线,为现场采用多种角度的探头进行检测提供了方便,提高了不同角度缺陷的检度,也可方便地变换探头(角度),为辨识真、伪信号提供了方便;第三,可以存储动态波形和缺陷包络线,并可作为电子文件存档备查"数字式超声波探的难题"。 笔者推荐管道焊缝探伤采用数字式超声波探伤仪。通过专业培训和严格考核,可以筛选出合格的管道对接焊缝超声波检测人员,完全能保证管道焊缝的超声波检测质量。 通过对超声波检测方法、扫查面、探头数量、探头型号和探头尺寸的控制、以及理论分析和实际验证, 表明超声波检测能有效保证管道焊缝的检测质量。 超声波检测操作灵活方便,对厚壁管道检测灵敏度和检测效率均高于射线检测,成本低于射线检测,且对人体无害,是一种科学!环保的检测方法。 1 管道对接焊缝与容器对接焊缝的不同点 管道对接焊缝较容器对接焊缝从焊接工艺、结构型式!主要缺陷产生的部位、缺陷信号判别、探头扫查面、探头折射角度的选择以及祸合面曲率等都有较大区别"因此从事管道对接焊缝超声波检测的人员必须对比有一定的了解"表1是管道对接焊缝与容器对接焊缝超声波检测不同点的比较。

预应力管道真空压浆法

预应力管道真空压浆法 本桥横梁预应力管道采用真空吸浆法进行压浆。真空压浆法:采用真空泵抽取预应力管道中的空气,使管道达到负压0.1MPa左右的真空度,然后在另外一端用压浆机以不大于0.7MPa的正压力将水泥浆压入管道中。 ⑴.水泥浆设计: 压浆水泥采用与塔柱同强度等级的硅酸盐水泥,要求水泥浆的泌水率小于水泥浆初始体积的2%;四次连续测试结果的平均值小于1%;拌和后24h水泥浆的泌水应能被吸收。另外水泥浆的流动度应控制在20S以内,现场控制在14s~18s之间。水灰比:0.3~0.4,为满足可灌性要求,一般选用水泥浆的水灰比最好在0.3~0.38之间。缓凝时间:初凝时间为6小时,终凝时间在24小时以内。抗压强度:28天龄期达到50MPa。达到28天强度后时,体积变化率(胀率)为2%左右。 ⑵.施工工艺: ①.张拉施工完成之后,切除外露的钢绞线(注意钢绞线的外露量宜在30mm~50mm之间)。 ②. 湿润孔道需用清水冲洗,确保孔道畅通无阻,然后采用无收缩水泥砂浆封闭外露的钢绞线。同时,清理锚垫板上的注浆孔,保证注浆通道通畅。 ③.确定抽真空端及注浆端,安装引出管,球阀和接头,并检查其功能。搅拌水泥浆使水灰比、流动度、泌水达到技术要求指标。 ④.启动真空汞抽真空,使真空度达到-0.08~–0.1MPa并保持稳定。 ⑤.启动灌浆泵,当灌浆泵输出的浆体达到要求稠度时,将泵上的输送管接到锚垫板上的引出管上,开始注浆。 ⑥.注浆过程中,真空泵保持连续工作。 ⑦.当真空端的透明软管有浆体经过并进入储浆罐时,关闭阀4,然后关闭真空泵,打开排气阀3,当水泥浆从排气阀顺畅流出,且稠度与注入的浆体一样时,关闭阀2。 ⑧.注浆泵连续工作,保持在0.5~0.7MPa,稳压1~2分钟。 ⑨.关闭注浆泵及注浆端阀门1,完成注浆。 ⑩.转入下一孔道压浆。

预应力管道压浆料

预应力管道压浆料 百强牌BY-2004型预应力混凝土管道压浆料有特种水泥,膨胀成份、早强成份、塑化成份等材料组成、特点是强度发展快、流动速度快、不收缩、防腐阻锈、低水胶比、不沉底、和易好、粘结力强,本品适用于各种铁路、公路后张法预应力桥梁孔道压浆,大型预应力结构孔道压浆各种砼结构接头处止漏灌浆,帷幕灌浆,锚固灌浆,空隙填补或修复等工程。 产品分为二个型号: BY-2005型压浆剂需在施工现场与水泥1:9混合后加水搅拌即可施工。 BY-2004型压浆料1:0.26-0.28水加入搅拌即可使用。 1、主要技术参数:预应力管道压浆剂.JTG/TF50-2011<公路桥涵施工技术规范> 2、使用方法及注意事项: 本产品压浆前,孔道内清理干净,并预湿12h,压浆压力小于0.6Mpa,稳压期不少于3分钟;搅拌好的料浆应在半小时内用完;压浆完毕后,3天内环境温度不低于5℃;张拉完毕应在48小时内进行管道压浆。 水料水比为0.26~0.28,可根据灌浆部气温情况进行调整,首先在搅拌机中加入实际拌合水的80%-90%,开动搅拌机,均匀加入全部压浆料,边加入边搅拌,全部粉料加入完毕,然后快速搅拌3min,加入剩下的10%-20%的拌合水,继续搅拌2min。压力泵或真空泵压力需大于0.7MPa。压浆时浆体温度应保持在5℃-30℃之间,否则应采取措施满足条件。 3、注意事项: 搅拌机转速不低于1000r/min。因迟所致的流动度降低的水泥浆,不得通过加水来增加其流动度:施工时在高温条件下应选择温度较低的时间,如夜间施工;在低温条件下,应按冬季施工标准进行。 4、储存与包装 保质期为6个月,超期使用应经试验验证后合格方可使用,双层复合袋包装,净重25-50±1公斤/袋,

预应力混凝土管道压浆工艺

预应力混凝土管道压浆工艺 1概况 大桥重建部分长93m,斜拉桥悬浇15~25号块件8m×11=88m,协作孔伸臂悬浇过渡段3.5m,主跨合拢段1.5m。重建部分为预应力混凝土箱板式结构。纵向预应力有高强精轧螺纹粗钢筋和钢绞线束两种:横向在横隔梁内有2束19φ15.24的预应力钢绞线束,竖向斜腹板内有预应力高强精轧螺纹粗钢筋24根/块。 2编制依据 本预应力管道的压浆工艺编制依据如下: 《公路钢筋混凝土和预应力混凝土桥涵设计规范》JTJ023-85 《公路桥涵施工技术规范》JTJ041-89 《公路工程质量评定标准》JTJ071-94 《铁路桥涵施工技术规范》TBJ203-96 FIP工程实践指南《预应力混凝土管道灌浆》1989年10月颁布 FIP-RILEM联合委员会《关于压浆的建议》 3波纹管的合格性检验 重建部分预应力管道有φ100、φ90、φ80、φ55、φ50等五种直径(均指内径,以下同)的波纹管,这五种直径的管道均由厚0.3mm、宽36mm的钢带在工地卷制。为了使波纹管在灌注混凝土和搬运等荷载作用下有抵抗变形的能力,在灌注混凝土过程中不渗浆,工地在验

收厂家加工的波纹管时,必须进行合格性检验。 检验内容分五项:在集中荷载和分布荷载作用下的变形量,在竖向和弯曲状态下不渗漏水泥浆(水灰比0.5);在5KN轴向力拉伸作用下钢带咬边不松脱。 4预应力管道 4.1 纵向预应力管道 4.1.1 预应力高强精轧螺纹粗钢筋管道 预应力粗钢筋管道用φ50mm的波纹管。波纹管接长时用大1号即φ55mm的波纹管旋转套接,两端各搭接长100mm,用胶带将两种型号的接口处缠包严密。 在粗钢筋的连接器处,用φ80的波纹管。将φ80波纹管剪口后捏合,按1:4的坡度过渡到与φ50搭接,然后用胶带将过渡段全部并超出30mm缠包严密,以防灌注混凝土时水泥浆渗入管内,见图一。 在粗钢筋锚固和连接处(见图二),先在车间于锚垫板下焊外径φ48mm,δ=1.5mm的高频焊接薄壁钢管长300mm,并在其上距垫板25mm处上焊外径φ25(内径φ≥20mm)钢管做压浆孔,长度以露出混凝土底板和顶板面外100mm为宜。然后在现场用内径φ50mm 的波纹管与φ48钢管套接,并用胶带缠包严密。垫板锚固侧焊高20mm φ89mm δ=1.5mm园环,用φ80mm波纹管外包YGM锚固螺母,并套进φ89园环内与垫板顶紧,用胶带将两者牢固地缠包在一起。在垫块两侧焊钢管和钢环的中心要与锚板孔中心轴一致。在φ80mm波纹管上距垫板100mm处设置排气孔,φ80波纹管剪口后捏

相关主题