搜档网
当前位置:搜档网 › 红米手机原理图红米电路图原理图

红米手机原理图红米电路图原理图

教你学会看手机电路图轻松修手机

第一篇、教你学会看电路图轻松修手机 一、一套完整的主板电路图,是由主板原理图和主板元件位置图组成的。 1.主板原理图,如图: 2.主板元件位置图,如图:

主板元件位置图的作用:是方便用户找到相应元件所在主板的正确位置。而主板原理图是让用户对主板的电路原理有所了解,知道各个芯片的功能,及其线路的连接。 二、相关名词解释 电路图中会涉及到许多英文标识,这些标识主要起到了辅助解图的作用,如果不了解它们,根本不知道他们的作用,也就根本不可能看得懂原理图。所以在这里我们会将主要的英文标识进行解释。希望大家能够背熟记熟,同时希望大家多看电路图,对不懂的英文及时查找记熟。 如图:

以上英文标识在电路图上会灵活出现,比如“扬声器”是“SPEAKER” ,它的缩写就是“SPK”,“正极”是“positive” ,缩写是“P” ,那么如果在图中标记SPKP,那么就证明它是扬声器正极。所以当有英文不明白的时候,可以将它们拆开后再进行理解,请大家灵活运用。

第二节主板元件位置图 一、元件编号 每一个元件在主板元件位置图中,都有一个唯一的编号。这个编号由英文字母和数字共同组成。编号规则可以分成以下几类: 芯片类:以U 为开头,如CPU U101 接口类:以J 为开头,如键盘接口J1202 三极管类:以Q 为开头,如三极管Q1206 二级管类:以D 为开头,如二极管D1102 晶振类:以X 为开头,如26M 晶体X901 电阻类:以R 或VR(压敏电阻)为开头,如电阻R32 VR211 电容类:以C 为开头,如电容C101 电感类:以L 为开头,如电感L1104 侧键类:以S 为开头,如侧键S1201 电池类:以 B 为开头,如备用电池B201 屏蔽罩:以SH 为开头,如屏蔽罩SH1 振动器:以M 为开头,如振子M201 还有一部分标号是主板上的测试点,以TP 为开头。 二、查找元件功能 用户可以根据相应的元件编号去查找主板原理图,从而了解此元件的作用。随便拿块主板作为示例。 如果想了解某一个元件的主要功能(图中红圈内元件) 如图:

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

无线充电原理图文详解

无线充电原理图文详解 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。今后NTT DoCoMo 将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、

韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。

用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。

手机充电器原理与维修

手机通用充电器及诺基亚手机充电器原理与维修 图片: 这是一种脉宽调制型充电电路,220V交流电压经R1限流,D1~D4桥式整流,C1滤波得到300V 左右的直流电压,此电压经主绕组L1给开关管V1集电极供电,经R4给V1偏置。刚加电压时V1开始导通,L1产生感生电动势,反馈绕组L2的感生电动势经反馈回路C4、R6加到开关管V1的基极,构成正反馈,从而使V1迅速进入饱和导通状态。此时V1的发射极电流很大,电阻R2上压降很大,此电压经R3 加到控制管V2的基极,使其导通,V1基极电压降低,集电极电流减小,L2感生与前反向的负电压经C4、R6加到V1基极,使开关管V1迅速进入截止状态。就这样,开关管不断导通截止,变压器B次级绕组L3就可获得脉冲电压。改变R6、C4的值可改变脉冲宽度从而达到调节充电电流的目的。不充电时,无负载,没有电流经过R20,V6截止,变色发光二极管D8不亮。当接上负载时,绕组L3的电压经D13、D15整流,C7滤波给负载供电,R20产生左负右正的电压,使V6导通,发光管D8导通发红光,

指示开始充电,随着充电的进行,充电电流越来越小,当充满电时,流过R20的电流变小,其上压降变小,V6 导通程度降低,流过D8电流变小,发绿光,表示充满电。其常见故障为开关管因功率过载而损坏和限流电阻R1损坏。 图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升

手机充电器原理解析(

手机充电器原理详解 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE130 03),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名

端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF 电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

三星手机充电器原理与维修

星手机充电器原理与维修 图片: 这是一种脉宽调制型充电电路,220V交流电压经R1限流,D1~D4桥式整流,C1滤波得到300V 左右的直流电压,此电压经主绕组L1给开关管V1集电极供电,经R4给V1偏置。刚加电压时V1开始导通,L1产生感生电动势,反馈绕组L2的感生电动势经反馈回路C4、R6加到开关管V1的基极,构成正反馈,从而使V1迅速进入饱和导通状态。此时V1的发射极电流很大,电阻R2上压降很大,此电压经R3 加到控制管V2的基极,使其导通,V1基极电压降低,集电极电流减小,L2感生与前反向的负电压经C4、R6加到V1基极,使开关管V1迅速进入截止状态。就这样,开关管不断导通截止,变压器B次级绕组L3就可获得脉冲电压。改变R6、C4的值可改变脉冲宽度从而达到调节充电电流的目的。不充电时,无负载,没有电流经过R20,V6截止,变色发光二极管D8不亮。当接上负载时,绕组L3的电压经D13、D15整流,C7滤波给负载供电,R20产生左负右正的电压,使V6导通,发光管D8导通发红光,

指示开始充电,随着充电的进行,充电电流越来越小,当充满电时,流过R20的电流变小,其上压降变小,V6 导通程度降低,流过D8电流变小,发绿光,表示充满电。其常见故障为开关管因功率过载而损坏和限流电阻R1损坏。 图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升

手机万能充电器电路原理与维修

手机万能充电器电路原 理与维修 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

手机万能充电器电路原理与维修 由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维 修时参考。 四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键) 才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。 2.充电电路

怎样看手机电路图

一,手机原理图的种类: 手机电路图共分四类:1,方框图;2,整机电原理图;3,元件排列图;4,彩图。 1,方框图: 利用方块形式粗略概述手机的结构与工作原理,方便初学者掌握手机的结构与工作原理,为初学者读懂电原理图打下基础。 2,整机电原理图: 利用电子原件符号清楚表示手机中各元器件的连接和工作原理,方便维修时分析电路原理及故障分析。 3,元件排列图: 利用元件编号在板位图上标明元件所在位置,方便维修时寻找元件在板上的位置。 4,彩图: 即手机照片,方便维修时对照板元件缺损,错位,元件方向。 二,手机电路图的读解原则: 1,读图前要打好电子基础,熟悉各种电子元器件符号,特性和用途;电子元器件在电路中的接法;电路中的电流,电压,电阳之间的关系(欧姆定律)。 2,先读懂方框图,大根了解本机的结构(如那种电源结构,那种时钟结构);然后按所学的原理去分析原理图。 3,读图时先弄懂直流供电电路,后弄懂交流信号通路。 4,手机电路图是有规律的,一般电源居左下;控制居右下。左射频右逻辑;上收下发中本振。三,手机电路图的读解方法: 1,电源电路读图要点: 1),先了解本机属那种电源结构(分三种)以电源集成为核心。 2),从尾插或电池脚开始,找出电池电压(VBATT,B+)输入线;电池电压一般直接供到电源集成块,充电集成块,功放,背光灯,振铃,振动等电路;也可从上述电路回找。 3),在电源集成块,键盘,内联座处找到开机触发线(ON/OFF或标有开关符号)。 4),在电源集成块上找出各路电压输出线(包括电压走向,电压值多少,是恒定的还是跳变的,在那个单元上可以测到该电压)。 1)VDD--逻辑电压给CPU,字库,暂存等电路(1。8V/2。8V) 2)SYN-VCC(XVCC)时钟电压,使13M电路工作(2。8V) 3)AVCC--音频电压(2。8V) 4)VREF--中频电压(2。8V跳变) 5)3VTX--发射电压(3V跳变) 6)SYN-VCC---频合电压(2。8V) 7)VRTC--实时时钟电压(3V) 8)SIM-VCC--SIM卡电路电压(3V/5V跳变) 9)RST(PURX)--复位信号(0-2。8V) 4),在CPU与电源集成块间找到开机维持线(WD-CP,WATCCH DOG)。 5),从键盘,电源集成块旁边的开关符号到CPU找到关机检测线。 2),充电电路读图要点: 1),以电源集成块或充电集成为核心,找到充电电路。 2),从充电接口(尾插)到电源集成块或充电集成块找出外电输入线

手机供电电路与工作原理

手机供电电路结构和工作原理 一、电池脚的结构和功能。 目前手机电池脚有四脚和三脚两种:(如下图) 正温类负正温负 极度型极极度极 脚脚脚 (图一)(图二) 1、电池正极(VBATT)负责供电。 2、TEMP:电池温度检测该脚检测电池温度;有些机还参与开机,当用电池能开机,夹正负极不能开机时,应把该脚与负极相接。 3、电池类型检测脚(BSI)该脚检测电池是氢电或锂电,有些手机只 认一种电池就是因为该电路,但目前手机电池多为锂电,因此,该脚省去便为三脚。 4、电池负极(GND)即手机公共地。 二、开关机键: 开机触发电压约为2.8-3V(如下图)。 内圆接电池正极外圆接地;电压为0V。 电压为2.8-3V。 触发方式 ①高电平触发:开机键一端接VBAT,另一端接电源触发 脚。 (常用于:展讯、英飞凌、科胜讯芯片平台) ①低电平触发:开机键一端接地,另一端接电源触发脚。 (除以上三种芯片平台以外,基本上都采用低电平触发。如:MTK、AD、TI、飞利浦、杰尔等。) 三星、诺基亚、moto、索爱等都采用低电平触发。

三、手机由电池直接供电的电路。 电池电压一般直接供到电源集成块、充电集成块、功放、背光灯、振铃、振动等电路。在电池线上会并接有滤波电容、电感等元件。该电路常引起发射关机和漏电故障。 四、手机电源供电结构和工作原理。 目前市场上手机电源供电电路结构模式有三种; 1、 使用电源集成块(电源管理器)供电;(目前大部分手机都使用该电路供电) 2、 使用电源集成块(电源管理器)供电电路结构和工作原理:(如下图) 电池电压 逻辑电压(VDD) 复位信号(RST) 射频电压(VREF) VTCXO 26M 13M ON/OFF AFC 开机维持 关机检测 (电源管理器供电开机方框图) 1)该电路特点: 低电平触发电源集成块工作; 把若干个稳压器集为一个整体,使电路更加简单; 把音频集成块和电源集成块为一体。 2)该电路掌握重点: 电 源 管 理 器 CPU 26M 中频 分频 字库 暂存

两小时学会看懂手机电路图

两小时学会看懂手机电路图 电路图的种类 常见手机维修中的电子电路图有原理图、方框图、元件分布图、装配图和机板图等 (1)原理图 原理图就是用来体现电子电路的工作原理的一种电路图,又被叫做"电原理图"。这种图,由于它直接体现了电子电路的结构和工作原理,所以一般用在设计、分析电路中。分析电路时,通过识别图纸上所画的各种电路元件符号,以及它们之间的连接方式,就可以了解电路的实际工作时情况。原理图又可分为整机原理图,单元部分电路原理图,整机原理图是指手机所有电路集合在一起的分部电路图。 (2)方框图(框图) 方框图是一种用方框和连线来表示电路工作原理和构成概况的电路图。从根本上说,这也是一种原理图,不过在这种图纸中,除了方框和连线,几乎就没有别的符号了。它和上面的原理图主要的区别就在于原理图上详细地绘制了电路的全部的元器件和它们的连接方式,而方框图只是简单地将电路 (3)元件分布图 它是为了进行电路装配而采用的一种图纸,图上的符号往往是电路元件的实物的外形图。我们只要照着图上画的样子,这种电路图一般是供原理和实物对照时使用的。 (4)机板图 机板图的是"印刷电路板图"或"印刷线路板图",它和元件分布图其实属于同一类的电路图,都是供原理图联系实际电路使用的。 印刷电路板是在一块绝缘板上先覆上一层金属箔,再将电路不需要的金属箔腐蚀掉,剩下的部分金属箔作为电路元器件之间的连接线,然后将电路中的元器件安装在这块绝缘板上,利用板上剩余的金属箔作为元器件之间导电的连线,完成电路的连接。由于铜的导电性能不错,加上相关技术很成熟,所以在制作电路板时,大多用铜。所以,印刷电路板又叫"覆铜板"。但是大家也要注意到:机板图的元件分布往往和原理图中大不一样。这主要是因为,在印刷电路板的设计中,主要考虑所有元件的分布和连接是否合理,要考虑元件体积、散热、抗干扰、抗耦合等等诸多因素,综合这些因素设计出来的印刷电路板,从外观看很难和原理图完全一致;而实际上却能更好地实现电路的功能。 随着科技发展,现在印刷线路板的制作技术已经有了很大的发展;除了单面板、双面板外,还有多面板,

手机充电器电路图讲解(DOC)

手机充电器电路图讲解 时间:2012-12-18 来源:作者: 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容

滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关 13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能 量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。 而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。右边的次级绕组就没有太多好说的了,经二极管RF93整流,220uF电容滤波后输出6V的电压。没找到二极管RF93 的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。这里可以用常见的1N5816、1N5817等肖特基二极管代替。 同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。 霓虹灯灯管要求很高的启动电压,需用一个漏磁变压器作启动和整流用。漏磁变压器的空载二次电压不小于15kV、容量为450V·A、电流为24mA、短路电流为30mA。这样的漏磁变压器能点亮管径为12mm、展开长度约为12m的灯管。霓虹灯控制电路:

手机充电器原理图详解

手机充电器原理图详解 该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输出电压取样进行控制。因此这种电源也称非周期性开关电源。 220V市电经V D1~V D4桥式整流后在V2的集电极上形成一个300V左右的直流电压。由V2和开关变压器组成间歇振荡器。开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。由于正反馈作用,V2 Ic迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使V D7导通,向负载输出一个9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经V D5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管V D17的稳压值,V D17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。V2的截止时间与其输出电压呈反比。V D17的导通/截止直接受电网电压和负载的影响。电网电压越低或负载电流越大,V D17的导通时间越短,V2的导通时间越长,反之,电网电压越高或负载电流越小,V D5的整流电压越高,V D17的导通时间越长,V2的导通时间越短。V1是过流保护管,R5是V2 Ie的取样电阻。当V2 Ie过大时,R5上的电压降使V1导通,V2截止,可有效消除开机瞬间的冲击电流,同时对V D17的控制功能也是一种补偿。V D17以电压取样来控制V2的振荡时间,而V1是以电流取样来控制V2振荡时间的。 如果是为镍镉、镍氢电池充电,由于这类电池存在一定的记忆效应,需不定时对其进行放电。SW1是镍镉、镍氢、锂离子电池充电转换开关。SW1与精密基准电源SL431为运放LM324⑨提供两个不同的精密基准源,由SW1切换。在给镍镉、镍氢电池充电时,LM324⑨脚的基准电压约0。09V(空载);在给锂离子电池充电时,LM324⑨脚的基准电压约为0。08V(空载),

红米手机2原理图-红米2电路图原理图

EXPRESS WRITTEN PERMISSION OF QUALCOMM. ITS CONTENTS REVEALED IN ANY MANNER TO OTHERS WITHOUT THE NOT TO BE USED, COPIED, REPRODUCED IN WHOLE OR IN PART, NOR U.S.A. San Diego, CA 92121-17145775 Morehouse Drive QUALCOMM Incorporated Sheet # Content 01A. Table of Content 01B. Revision History 01C. Block Diagram 01D. GPIO Map 02. PM8916 Control and MPP/Clock 03. PM8916 Charging 04. PM8916 GPIO/MPP 05. PM8916 Buck converter 06. PM8916 LDO circuits 07. PM8916 CODEC 08. MSM8916 Control 09. MSM8916: EBI 10. MSM8916: GPIO 11. MSM8916: MIPI and RF Control 12. MSM8916: POWER113. MSM8916: POWER214. MSM8916:GND 15. MEMORY:LPDDR3+EMMC 16. Battery Connector 17. Subboard Connector 18. Mic and Receiver 19. EARPHONE 20. LCD interface and backlight 21. Main/Slave Camera and Flash 22. Sensors 23. SIM/TF card 27. WTR1605L TX 28. WTR1605L RX 29. WTR1605L POWER 30. WTR1605L POWER DISTRIBUTION 31. LTE/W/TD/GSM Antenna Switch 32. TRX_Front-High Band QFE234033. TRX_Front-Low Band QFE232034. RESERVED 35. TRX_UMTS_B1/2/5/836. PRX_B34/39/337. PRX_LTE_HB 38. DRX_Antenna Switch 39. QFE1550 DRX Tunner 40. B7/40/41 DRX Switch 41. B39/B1/B3 DRX Switch 42. WTR2605_SECONDARY PATH 43. WTR2605_POWER DISTRIBUTION 44. Antenna_SECONDARY PATH 45. RESERVED 46. RESERVED 47. CDMA BC0(Voice) TRX 48. ET_APT 50. WIFI FEM Sheet # Content 51. GPS/XO DISTRIBUTOR 52. NFC 49. WCN362024. Keypad/LED/Status indicator 25. Touch Interface 26. Test Point/GND/Shields A B C D D C B A

手机充电器的原理及故障维修

手机充电器的原理及故 障维修 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输出电压取样进行控制。因此这种电源也称非周期性开关电源。

220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。由V2和开关变压器组成间歇振荡器。开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。由于正反馈作用,V2Ic迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。V2的截止时间与其输出电压呈反比。VD17的导通/截止直接受电网电压和负载的影响。电网电压越低或负载电流越大,VD17的导通时间越短,V2的导通时间越长,反之,电网电压越高或负载电流越小,VD5的整流电压越高,VD17的导通时间越长,V2的导通时间越短。V1是过流保护管,R5是V2Ie的取样电阻。当V2Ie过大时,R5上的电压降使V1导通,V2截止,可有效消除开机瞬间的冲击电流,同时对VD17的控制功能也是一种补偿。VD17以电压取样来控制V2的振荡时间,而V1是以电流取样来控制V2振荡时间的。 如果是为镍镉、镍氢电池充电,由于这类电池存在一定的记忆效应,需不定时对其进行放电。SW1是镍镉、镍氢、锂离子电池充电转换开关。SW1与精密基准电源SL431为运放LM324⑨提供两个不同的精密基准源,由SW1切换。在给镍镉、镍氢电池充电时,LM324⑨脚的基准电压约0.09V(空载);在给锂离子电池充电时,LM324⑨脚的基准电压约为0.08V(空载),这种设计是由这两种类型电池特有的化学特性决定的。按下SW2,V5基极瞬间得一低电平而导通,可充电池上的残余电压通过V5的ec极在R17上放电,同时放电指示灯

详解手机电路

第一篇、教你学会看电路图轻松修手机My id:42409 My name:Aerlant 既然是教程就不能保证100%是原创,难免会引用老师们的宝贵经验,请您别介意哦! 只要您认真学习完这些教程,就可以正式步入“专业手机维修”行业成为一名优秀的维修员喽!目的很简单,就是让新会员们、新手们,您加入帅虎论坛是正确的。在这里你可以学习到一些实实在在的维修知识,向更高的一个层次迈进、稳步成长。。。 言归正传!有兴趣的朋友往下看,学习一下: 第一节了解电路图 一、一套完整的主板电路图,是由主板原理图和主板元件位置图组成的。 1.主板原理图,如图:

2.主板元件位置图,如图: 主板元件位置图的作用:是方便用户找到相应元件所在主板的正确位置。而主板原理图是让用户对主板的电路原理有所了解,知道各个芯片的功能,及其线路的连接。

二、相关名词解释 电路图中会涉及到许多英文标识,这些标识主要起到了辅助解图的作用,如果不了解它们,根本不知道他们的作用,也就根本不可能看得懂原理图。所以在这里我们会将主要的英文标识进行解释。希望大家能够背熟记熟,同时希望大家多看电路图,对不懂的英文及时查找记熟。 如图:

以上英文标识在电路图上会灵活出现,比如“扬声器”是“SPEAKER” ,它的缩写就是“SPK”,“正极”是“positive” ,缩写是“P” ,那么如果在图中标记SPKP,那么就证明它是扬声器正极。所

以当有英文不明白的时候,可以将它们拆开后再进行理解,请大家灵活运用。 第二节主板元件位置图 一、元件编号 每一个元件在主板元件位置图中,都有一个唯一的编号。这个编号由英文字母和数字共同组成。编号规则可以分成以下几类: 芯片类:以U 为开头,如CPU U101 接口类:以J 为开头,如键盘接口J1202 三极管类:以Q 为开头,如三极管Q1206 二级管类:以D 为开头,如二极管D1102 晶振类:以X 为开头,如26M 晶体X901 电阻类:以R 或VR(压敏电阻)为开头,如电阻R32 VR211 电容类:以C 为开头,如电容C101 电感类:以L 为开头,如电感L1104 侧键类:以S 为开头,如侧键S1201 电池类:以 B 为开头,如备用电池B201 屏蔽罩:以SH 为开头,如屏蔽罩SH1 振动器:以M 为开头,如振子M201 还有一部分标号是主板上的测试点,以TP 为开头。 二、查找元件功能 用户可以根据相应的元件编号去查找主板原理图,从而了解此元件的作用。随便拿块主板作为示例。

手机充电器工作原理

手机旅行充电器的工作原理图 本文详细介绍了一种开关型手机充电器的工作原理,对初学者了解具体的开关电源电路及充电控制电路很有意义,这类文章,一般都较受读者欢迎,所以恳请喜欢动手制作、改造的朋友,能够记录下你们的心得,多赐良稿。超力通手机旅行充电器适合给摩托罗拉308、328、338及368等系列手机电池充电。该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。在150~250V、40mA的交流市电输入时,可输出300±50mA 的直流电流 本文详细介绍了一种开关型手机充电器的工作原理,对初学者了解具体的开关电源电路及充电控制电路很有意义,这类文章,一般都较受读者欢迎,所以恳请喜欢动手制作、改造的朋友,能够记录下你们的心得,多赐良稿。 超力通手机旅行充电器适合给摩托罗拉308、328、338及368等系列手机电池充电。该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。笔者根据实物绘出了工作原理图,供读者参考。

手机旅行充电器的工作原理图 该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输 出电压取样进行控制。因此这种电源也称非周期性开关电源。

相关主题