搜档网
当前位置:搜档网 › 单闭环可逆直流调速系统

单闭环可逆直流调速系统

单闭环可逆直流调速系统
单闭环可逆直流调速系统

运动控制系统课程设计课题:单闭环可逆直流调速系统

系别:电气与信息工程学院

专业:自动化

姓名:

学号:

成绩:

河南城建学院

2015年12月31日

目录

一、设计目的 (2)

二、设计任务及要求 (2)

三、总体方案设计 (2)

四、硬件电路设计 (3)

4.1.1 直流调速系统稳态性能分析 (3)

4.1.2静态性能指标 (4)

4.1.3 基于稳态性能指标闭环直流调速系统设计 (5)

4.1.4 直流调速系统动态性能分析 (6)

4.1.5基于动态性能指标及系统动态稳定性反馈控制闭环直流调速系统设计 (9)

4.2、控制系统动、静态数学模型的建立 (10)

4.2.1 双极性控制的桥式可逆PWM变换器的工作原理 (10)

4.2.2桥式可逆PWM变换器 (10)

五、计算机仿真 (13)

六、设计总结 (14)

参考文献 (16)

一、设计目的

在电力拖动系统中,调节电压的直流调速系统是应用最为广泛的一种调速方

法,除了利用晶闸管获得可控的直流电源外,还可以利用其他可控的电力电子器

件,采用脉冲调制的方法,直接将恒定的直流电压调制为极性可变、大小可调的

直流电压,用以实现直流电机电枢电压的平滑调节,构成脉宽直流调速系统。

本设计采用了PWM 脉宽调制的方法,完成了带转速负反馈的单闭环直流调

速系统的设计及实验。本设计重点介绍了单闭环可逆直流调速系统的总体结构、

设计原理及参数优化设计方法,提供了通过matlab 仿真进行实验效果预分析和

校正处理,得到较为理想结果后进行实际操作和调试的实验思路。

二、设计任务及要求

本次运动控制课程设计要求自拟控制系统性能指标的要求(调速范围、静差

率、超调量、动态速降、调节时间等)设计系统原理图,完成元器件的选择,选

择调节器并计算调节器参数,并进行仿真或实验验证系统合理性。

为了进行定量的计算,选一组电机参数:功率kw P N 18=,额度电压

v U N 220=,额定电流A I N 94=,额定转速min /1000r n N =,

电枢电阻Ω=15.0a R ,主电路总电阻Ω=45.0R ,40=s k 。最大给定电压V U nm 15*=,整定电流反馈电压

V U im 10=.要求系统调速范围20=D ,静差率%10≤,N dbt I I 5.1=,N dcr I I 1.1=。

三、总体方案设计

为了提高直流系统的动静态性能指标,通常采用单闭环控制系统。对调速系

统的要求不高的场合,采用单闭环系统,而对调速系统指标要求高的采用多闭环

系统。按反馈的方式不同可分为转速反馈、电流反馈、电压反馈等。在单闭环系

统中,转速单闭环运用较多。在本设计中,转速单闭环实验是将反应转速变化的

电压信号作为反馈信号,经“速度变换”后接到“速度调节器”的输入端,与“给

定”的电压相比较经放大后,得到移向控制电压ct U ,用作控制整流桥的“触发

电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整

流”的输出电压,这就构成了速度负反馈的闭环系统。电机的转速随给定的电压

变化,电机最高转速由速度调节器输出限幅所决定,速度调节器采用P (比例)

调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI (比例

积分)调节。这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当

电机负载或电源电压波动时,电机的转速能稳定在一定的范围变化。

四、硬件电路设计

4.1.1 直流调速系统稳态性能分析

直流电动机具有良好的起、制动性能,可在大范围内平滑调速。广泛应用于

需要调速和快速正反向变化的电力拖动领域中。

直流电动机的转速和其它参量之间的稳态关系可用(1—1)式表示

Φ-=e K IR U n (1—1) 式中:

U ——电枢供电电压;

e K ——由电机结构决定的电动势常数;

R ——电枢回路总电阻;

n ——电动机转速;

I ——电枢电流;

调节电动机的转速可以有三种方法:(1)调节电枢的供电电压U 来调节

转速;改变电枢回路电阻R 或减弱电机励磁磁通Φ调节。在自动控制的直流调

速系统往往以改变电压调速为主。

静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在某转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响。

4.1.2静态性能指标

1.调速范围

电动机在额定负载运行时,系统限定的最高转速max n 与最低转速min n 之比叫 做调速范围,用D 来表示

m i n m a x n n D =

(1—2)

2.静差率 系统在一转速下运转的时候,当负载由空载增加到额定值的时候对应的转速降 落ed n ?和理想空载转速0n 的比值,称作为静差率s ,表示为

(1—3) 显而易见,静差率它是用来衡量调速系统在负载发生变化的时候其转速的稳定度。同样情况下当机械特性硬度变大,ed n ?就会变小,从而静差率也就变小,最终转速的稳定度就提高了。

事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围,

反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。

4.1.3 基于稳态性能指标闭环直流调速系统设计

调速原理

根据自动控制原理,反馈控制闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。

调速系统的转速降落正是由负载引起的转速偏差,显然,引入转速闭环将使调速系统能减少转速降落。

图一 转速负反馈直流调速系统结构框图

在有反馈的闭环直流调速系统里,安装测速发电机 TG 与电动机同轴运转,这时可以引出负反馈电压n U ,它被调量转速成正比。n U 和给定电压*n U 比较后,就得出转速偏差电压ΔUn ,在经过放大器 A 的放大作用,最总控制电力电子变

图二闭环系统静特性和开环机械特性的关系

U得以产生,用它来控制电动机转速n。

换器UPE的电压c

图三转速闭环直流调速系统稳态结构框图由图看来,闭环系统能够减少稳态速降的实质在于它的自动调节作用,在于它能随着负载的变化而相应地改变电枢电压,以补偿电枢回路电阻压降。

带有比例放大器的反馈控制闭环调速系统是有静差系统,而积分控制可以使系统在无静差的条件下恒速运行,实现无静差调速。根据设计要求,要求稳态无静差,则要求调节器带有积分环节。

4.1.4 直流调速系统动态性能分析

动态性能指标是实际生产对控制系统的动态性能有一定的要求,经过折算和量化表示出来的。其动态性能指标包括了其对给定的跟随性能指标和其对扰动输入的抗扰性能指标。

1.跟随性能指标

在给定信号R(t)的作用下,系统输出量C(t)的变化规律可以通过跟随性能指标来描述。当给定信号不同时,输出的响应也就不一样。通常情况下输出量的初始值为零的时候,在给定信号阶跃变化的情况下的过渡过程来作为典型的跟随过

程,这时候的动态响应又我们又叫做阶跃响应。在一般的情况下我们希望阶跃响应中的输出量c(t)和其稳态值∞c 的尽可能的小,而达到∞c 的时间尽可能的快。通常用用来作为阶跃响应的跟随性能的指标有:上升时间r t ,超调量%σ和调节 时间s t 三个量。下面分别介绍:

1).上升时间r t

在典型的阶跃响应跟随的过程中,输出量从零开始起第一次上升到稳态值∞c 是所用的时间我们称之为上升时间,它可以表示系统动态响应的快速性,见下图

图四 输出量与时间关系

2).超调量%σ

在典型的阶跃响应跟随系统中,系统输出量超出了稳态值的最大偏离量在与 稳态值的比值,叫做超调量:

%100%max ?-=

∞∞c c c σ

%σ反映了系统的相对稳定性。系统的超调量越小,则表示系统的相对稳定性越好,即就是系统的动态响应比较平稳。

3).调节时间s t

调节时间是衡量系统的整个调节过程快慢的物理量。从原则上讲它是从给定量阶跃变化起到输出量完全稳定下来时的时间。但对于线性的控制系统而言,原则上要等到∞=t 才是真正的稳定下来了,可是在实际的系统中由于存在一些非线性的因素致使其不用这样。通常,我们一般在响应曲线的稳态值附近,取()%2%5±±或的范围作为允许的误差带并认为响应曲线达到了并且再也不超出 次范围的时候所需要的最短的时间定义为调节时间,如图1—2。

2.抗扰性能指标

抗扰过程是在系统的稳定运行中,突然加上负载阶跃扰动后输出的动态相应过程,并根据这个指标来定义抗扰动态的性能指标,见图1—3。同常我们用到 的抗扰性能指标分为动态降落%max c ?和恢复时间

f t : 1).动态降落%max c ?

动态降落:在系统稳定运行时,突然给其加一定的扰动而后引起的转速的最大降落值%max c ?。用输出量原稳态值1∞c 的百分数来表示。输出量在动态降落后慢慢的恢复最后达到新的稳态值()212,∞∞∞-c c c 是该系统在此次扰动下的稳态降 落。

2).恢复时间f t

系统从阶跃扰动的作用开始计时直到系统的输出量基本上恢复到稳态时,即距离新的稳态值2∞c 的差进入了某一基准量

b c 的()%2%5±±或范时总共花费的 时间,我们定义其为恢复时间f t ,其中b c 叫做抗扰指标中输出量的基准值。

在实际系统中由于对于各种动态指标的要求不同工程各有不同,所以通常要根据生产机械的具体要求而设定。不过一般来说,调速系统的动态指标以抗扰性 能为主。

4.1.5基于动态性能指标及系统动态稳定性反馈控制闭环直流调速系统设计 反馈控制系统对被反馈环包围的前向通道上的扰动都有抑制功能。

扰动——除给定信号外,作用在控制系统各环节上的一切会引起输出量变化的因素都叫做“扰动作用”。 这里调速系统的扰动源有以下几种:

(1)负载变化的扰动(使d I 变化);

(2)交流电源电压波动的扰动(使s K 变化);

(3)电动机励磁的变化的扰动(造成e C 变化 );

(4)放大器输出电压漂移的扰动(使p

K 变化); (5)温升引起主电路电阻增大的扰动(使R 变化);

(6)检测误差的扰动(使 变化)。

图五 闭环调速系统的给定作用和扰动作用

在设计闭环调速系统,常常会遇到动态稳定性和稳态性能指标发生矛盾的情况,这是可以设计动态校正环节,来同时满足动态稳定性和稳态性能指标。由静态设计要求得,调节器要包含积分环节,所以可以选择比例积分调节器或者比例积分微分调节器。本设计中选择了后者,原因在后面的内容中加以详述。

4.2、控制系统动、静态数学模型的建立

4.2.1 双极性控制的桥式可逆PWM变换器的工作原理

PWM系统在许许多多的方面都有很大的优点例如:

(1) PWM系统的主电路线路简单,需用的功率器件少;

(2)由于其功率开关器件工作在开关状态,以致其导通损耗小,而开关频率适当时,开关损耗也不是很大,从而装置效率较高;

(3)系统的开关频率高,因此其电流容易连续,谐波少,电机损耗及发热都比较小;

(4)直流电源采用不控整流时,电网效率因数比相控整流器高。

(5)低速性能好,稳速精度高,调速范围宽,可达1:10000左右;

(6)若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗干扰能力强。

4.2.2桥式可逆PWM变换器

桥式(亦称H型)电路如图所示。

桥式可逆PWM变换器

双极式控制可逆PWM变换器的4个驱动电压波形如下图所示。

双极式控制可逆PWM变换器的驱动电压、输出电压和电流波形它们之间的关系是:Ug1=Ug4=-Ug2=-Ug3。当变换器在一个开关周期内时,在0≤t

路2在经二极管续流,Uab=-Us 。所以,Uab 在一个周期内具有正负相间的脉 冲波形,这就是所谓的双极式的由来。

图中同样画出了其输出电压和电流波形。1d I 是一般负载状况,它的脉动电流的方向一直都为正;2d I 是轻载时候的电流,可是其电流在正负方向之间变化,但平均值却是正值,就等于其负载电流。由图分析可见电动机的正反转就表现在其驱动电压的正脉冲和负脉冲的宽度上面。如果正脉冲比负的宽时,即ton>T/2,则Uab 的平均值就为正,电动机就正转,反之,则反转;当正、负脉冲相等是,即t=T/2,平均输出电压就为零,这时电动机就停止。

双极式控制可逆PWM 变换器的输出平均电压为:

s on s on s on d U )1T t 2(U T t T U T t U -=--= (1—5) 双极式控制的桥式可逆PWM 变换器有很多优点,列举如下几点:

(1)电流一定是连续的;

(2)当电动机停止时会有微振电流,这样能消除静摩擦死区;

(3)在四个象限中电动机均可运行;

(4)即使在低速的时候,每个开关器件仍有骄狂的的驱动脉冲,这样就有利于使器件可靠的导通

(5)低速时平稳性好,并且系统调速范围能够达到1:20000附近;但是双极式控制方式也不是十全十美的:例如在工作中,4个开关器件很可能均处在开关的状态,这时开关损耗就会大,因此在切换的时候就或许发生上、下桥臂直通的现象,所以防止直通的方法是在上、下桥臂的驱动脉冲之间应设置逻辑延时。或者是用单极式来控制,这样就使一部分器件总是处在常通或着常断的状态,从而来减少开关的次数和开关的损耗,进而提高可靠性,但是这时系统的静、动态性能可能会略有下降。

五、计算机仿真

仿真结构图

单闭环调速系统校正后启动过程中转速波形

单闭环调速系统校正后启动过程中电流波形

六、设计总结

参加《H桥可逆直流调速系统设计和实验》课程研究项目,帮助我更好地学习了专业课程《电力拖动自动控制系统——运动控制系统》,为我提供了实践经验。在加深了对所学专业知识的了解的同时,还掌握了其它的课外知识,如SG3525、IR2110等芯片的功能,死区时间设计等等。从一开始的一无所知到现在成功地将设计展示出来,我们小组的每个成员都付出了努力,而且良好的团队合作能力也是成功的关键。在此次项目中,我完成了方案一——将转速环设计为典型Ⅰ型系统的参数设计,并且参与仿真,进行参数测试,修改设计方案。此外,撰写了研究报告的部分内容。

在总体设计方案问题上,我们小组选择了与其他小组不同的方案——《单闭环H桥可逆直流调速系统设计》。尽管在性能上与双闭环有些不同,但基本

上可完成设计要求。我们利用其它时间也进行了双闭环的设计研究,并与其它

小组积极讨论,理论上对两种设计思路都有了明确地了解。参数设计过程中,我先后设计了3套方案,经过仿真和不断地参数试凑,从中选择最优设计。在仿真过程中也先后遇到了很多问题,比如限幅的添加及设定,波形与理论相差甚远等等,通过学习和交流,最终对matlab仿真软件有了一定的了解,能够通过其进行辅助学习。在实体制作及性能测试过程中,我又了解了一些器件和仪器的结构及作用,如电容滤波、示波器的使用、吸收电路结构等。由于时间问题,各小组仅进行了开环实验,我学到了实验过程的先后步骤及检测方法,如通过示波器检测SG3525是否能够并且顺利发出互补脉冲,使用万用表测量滤波电容两端电压就可以知道整流电压的数值等等,顺利完成了开环实验。这是将理论联系实践的过程,更加提高了我们的动手能力和学习热情。

参与此次研究项目,在提高自己理论知识的同时,提高了自己的创新能力,如参数设计时,与其它设计单环的小组采用不同的设计方法。同时提高的自己的动手能力和团队合作能力。在撰写报告时培养了自己认真严谨的态度,对以后处理问题的态度有了积极地引导作用。综上所述,此次项目的参与,让我收获很多。

参考文献

[1]陈伯时,电力拖动自动控制系统[M].北京:机械工业出版社,2004

[2]唐树深,运动控制讲义[J].华中科技大出版社,2004

[3]胡寿松,自动控制原理[M].科学出版社,2004

[4]黄忠林,自动控制原理的MATLAB实现[M].国防工业出版社,2006

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

转速电流双闭环的数字式可逆直流调速系统的仿真与设计(课程设计完整版)

湖南科技大学 信息与电气工程学院 《课程设计报告》 题目:转速电流双闭环的数字式可逆直流调速系统的仿真与设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

任务书 题 目 转速电流双闭环的数字式可逆直流调速系统的仿真与设计 时 间安排 2013年下学期17,18周 目 的: 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB 软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL 进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 要 求:电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%30%≤n σ。 总体方案实现:主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT 构成H 型双极式控制可逆PWM 变换器。其中属于脉宽调速系统特有的部分主要是UPM 、逻辑延时环节DLD 、全控型绝缘栅双极性晶体管驱动器GD 和PWM 变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差。 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 指导教师评语: 评分等级:( ) 指导教师签名:

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

直流电动机可逆调速系统设计 (1)要点

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

直流PWMM可逆调速系统的设计与仿真

基础课程设计(论文) 直流PWM-M可逆调速系统的设计与仿真 专业:电气工程及其自动化 指导教师:刘雨楠 小组成员:陈慧婷(20114073166) 石文强(20114073113) 刘志鹏(20114073134) 张华国(20114073151) 信息技术学院电气工程系 2014年10月20日

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:直流可逆调速数字触发PWM 数字控制器

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

原版单闭环直流调速系统

单闭环直流调速系统的设计与仿真 单回路的直流调速系统的设计和仿真 内容摘要:在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性 能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。 通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型。然后用此理论去设计一个实际的调速系统,并用MATLAB仿真进行正确性的验证。 关键词:稳态性能稳定性开环闭环负反馈静差 The design and simulation of Single loop dc speed control system Abstract :In the higher demand for performance of speed, if the open loop dc system's steady performance does not meet the requirements, can use speed inverse feedback to improve steadystate precision, but although the speed inverse feedback system adopts proportion regulator,it still have off, in order to eliminate static, can use integral regulator to replace proportion regulator. Based on the theoretical analysis of the single closed loop system which is made up of controllable power, the regulator which is made up of operational amplifier, a rectifier triggered by thyristor , motor model and tachogenerators module, compare the difference of the open loop system and the closed loop system,the original system and the this paper compares the theory of open loop system and the closed-loop system, the difference of primitive system and calibrated system, conclude the optimal model of the dc motor speed control system. Then use this theory to design a practical control system, and verify the validity with MATLAB simulation. Key words: steady-statebehaviour stability open loop Close-loop feedback offset

H桥可逆直流调速系统设计与实验

CDIO课程项目研究报告 项目名称:H桥可逆直流调速系统设计与实验 姓名; 指导老师: 日期:

摘要 本设计的题目是基于SG3525的双闭环直流电机调速系统的设计。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。所以双闭环直流调速是性能很好、应用最广的直流调速系统。本设计选用了转速、电流双闭环调速控制电路,本课题内容重点包括调速控制器的原理,并且根据原理对转速调节器和电流调节器进行了详细地设计。概括了整个电路的动静态性能,最后将整个控制器的电路图设计完成,并且进行仿真。 关键词:双闭环直流可逆调速系统、H桥驱动电路、SG3525信号产生电路、PI调节器、MATLAB仿真

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流无静差调速系统,其稳态性能指标实现要求如下:电流超调量S≤5%调速范围 D=20;其动态性能指标:转速超调量δn=10%;调整时间时间ts=2s;电流超调量δi≤5% 。

不可逆单闭环直流调速系统静特性的研究

实验三不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图1-7。 四.实验设备及仪表 1.教学实验台主控制屏。 2.NMCL—31A组件 3.NMCL—33组件 4.NMEL—03组件 5.NMCL—18组件 6.电机导轨及测速发电机(或光电编码器)、直流发电机M01 7.直流电动机M03 8.双踪示波器 9.万用表 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

4.三相主电源连线时需注意,不可换错相序。 5.系统开环连接时,不允许突加给定信号U g起动电机。 6.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的 调试(主电路未通电) (a)用示波器观察 NMCL—33的双脉冲观 察孔,应有双脉冲,且间 隔均匀,幅值相同;观察 每个晶闸管的控制极、阴 极电压波形,应有幅值为 1V~2V的双脉冲。 (b)触发电路输出 脉冲应在30°~90°范围 内可调。可通过对偏移电 压调节单位器及ASR输 出电压的调整实现。例 如:使ASR输出为0V, 调节偏移电压,实现 α=90°;再保持偏移电压 不变,调节ASR的限幅 电位器RP1,使α=30°。 2.求取调速系统在 无转速负反馈时的开环 工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且U g调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节直流发电机负载电阻,在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d,输出电流i d以及被测

H桥可逆直流调速系统设计与实验(1)

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 日期: 2014年6月3日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (3) 1.1 转速、电流双闭环调速系统的组成 (3) 1.2.稳态结构图和静特 (4) 1.2.1各变量的稳态工作点和稳态参数计算 (6) 1.3双闭环脉宽调速系统的动态性能 (7) 1.3.1动态数学模型 (7) 1.3.2起动过程分析 (7) 1.3.3 动态性能和两个调节器的作用 (8) 第二章 H桥可逆直流调速电源及保护系统设计 (11) 第三章调节器的选型及参数设计 (13) 3.1电流环的设计 (13) 3.2速度环的设计 (15) 第四章Matlab/Simulink仿真 (17) 第五章实物制作 (20) 第六章性能测试 (22) 6.1 SG3525性能测试 (22) 6.2 开环系统调试 (23) 总结 (26) 参考文献 (26)

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。 项目分工:参数计算: 仿真: 电路设计: 电路焊接: PPT答辩: 摘要

实验1:不可逆单闭环直流调速系统静特性的研究(B5参考格式)

《运动控制系统》实验报告 姓名: 专业班级: 学号: 同组人: 实验一 不可逆单闭环直流调速系统静特性的研究 一、实验目的 1、了解转速单闭环直流调速系统的组成。 2、加深理解转速负反馈在系统中的作用。 3、研究直流调速系统中速度调节器ASR 的工作原理及其对系统静特性的影响。 4、测定晶闸管--电动机调速系统的机械特性和转速单闭环调速系统的静特性。 二、实验系统组成及工作原理 采用闭环调速系统,可以提高系统的动静态性能指标。转速单闭环直流调速系统是常用的一种形式。图1-1所示是不可逆转速单闭环直流调速系统的实验原理图。 图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V 供电,通过与电动机同轴刚性联接的测速发电机TG 检测电动机的转速,并经转速反馈环节FBS 分压后取出合适的转速反馈信号U n ,此电压与转速给定信号U n *经速度调节器ASR 综合调节,ASR 的输出作为移相触发器GT 的控制电压U ct ,由此组成转速单闭环直流调速系统。 在本系统中ASR 采用比例—积分调节器,属于无静差调速系统。 图中DZS 为零速封锁器,当转速给定电压U n *和转速反馈电压U n 均为零时,DZS 的输出信号使转速调节器ASR 锁零,以防止调节器零漂而使电动机产生爬行。 RP 给定 图1-1 不可逆转速单闭环直流调速系统

三、实验注意事项 1. 直流电动机M03参数为:P N =185W ,U N =220V ,I N =1.1A ,n =1500r/min 。 2. 直流电动机工作前,必须先加上直流激励。 3. 系统开环以及单闭环起动时,必须空载,且不允许突加给定信号U g 起动电机,每次起动时必须慢慢增加给定,以免产生过大的冲击电流,更不允许通过突合主回路电源开关SW 起动电机。 4. 测定系统开环机械特性和闭环静特性时,须注意电枢电流不能超过电机额定值1A 。 5. 单闭环连接时,一定要注意给定和反馈电压极性。 四、实验内容 1、晶闸管--电动机系统开环机械特性及控制特性的测定 (1)连接晶闸管—电动机系统为开环控制,不必使用转速调节器ASR ,可将给定电压U g (开环时给定电压称为U g ,闭环后给定电压称为U n *)直接接到触发单元GT 的输入端(U ct ),电动机和测功机分别加额定励磁。 (2)测定开环系统控制特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,在0~1500r/min 之间记录几组 (3)测定开环机械特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,然后合上负载开关SL ,改变负载变阻器R g 的阻值,使主回路电流达到额定电流I N ,此时即为额定工作点(n =n N =1500r/min ,I d =I N =1A )。然后减小负载变阻器R g 阻值,使主回路负载从额定负载减少至空载,记录几组转速 n 和负载转矩T 的数据,并在图1-3所示坐标系中画出开环机械特性曲线。 U g e 图1-2 开环控制特性曲线 图1-3 开环机械特性曲线

单闭环直流调速系统的设计与仿真实验报告

比例积分控制的单闭环直流调速系统仿真 一、实验目的 1.熟练使用MATLAB 下的SIMULINK 仿真软件。 2.通过改变比例系数K P 以及积分时间常数τ的值来研究K P 和τ对比例积分控制的直流调速系统的影响。 二、实验内容 1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 三、实验要求 建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。 四、实验原理 图4-1 带转速反馈的闭环直流调速系统原理图 调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控

制,可以有效的抑制甚至消除扰动造成的影响。 当t=0时突加输入U in时,由于比例部分的作用,输出量立即响应,突跳到U ex(t)=K P U in,实现了快速响应;随后U ex(t)按积分规律增长,U ex(t)=K P U in+ (t/τ)U in。在t=t1时,输入突降为0,U in=0,U ex(t)=(t1/τ)U in,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。 五、实验各环节的参数及K P和1/τ的参数的确定 各环节的参数: 直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速n N=1000r/min,电动机电动势系数C e= min/r。 假定晶闸管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数T s=。 电枢回路总电阻R=Ω,电枢回路电磁时间常数T l=电力拖动系统机电时间常数 T m=。 转速反馈系数α= min/r。 对应额定转速时的给定电压U n?=10V。 稳态性能指标D=20,s 5% 。 K P和1/τ的参数的确定: PI调节器的传递函数为 W PI(s)=K Pτs+1 τs =K P τ1s+1 τ1s 其中,τ1=K Pτ。 (1)确定时间常数 1)整流装置滞后时间常数T s=0.00167s;2)转速滤波时间常数T on=0.001s;

逻辑无环流直流可逆调速系统设计

; 课程设计任务书 学生姓名:苌城专业班级:自动化0706 指导教师:饶浩彬工作单位:自动化学院 题目: 逻辑无环流直流可逆调速系统设计 初始条件: 1.技术数据: 晶闸管整流装置:R rec=Ω,K s=40。 / 负载电机额定数据:P N=,U N=230V,I N=37A,n N=1450r/min,R a=Ω,I fn=1.14A, GD2= 系统主电路:T m=,T l= 2.技术指标 稳态指标:无静差(静差率s≤2, 调速范围D≥10) 动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算) 要求完成的主要任务: ? 1.技术要求: (1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作 (2) 系统静特性良好,无静差(静差率s≤2) (3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s (4) 系统在5%负载以上变化的运行范围内电流连续 (5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2.设计内容: ! (1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图 (2) 调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等) (3) 动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求 (4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图) (5) 整理设计数据资料,课程设计总结,撰写设计计算说明书 时间安排: 课程设计时间为一周半,共分为三个阶段: (1): (2)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (3)根据技术指标及技术要求,完成设计计算。约占总时间的40% (4)完成设计和文档整理。约占总时间的40% 指导教师签名:年月日 系主任(或责任教师)签名:年月日 】

题目:单闭环不可逆直流调速系统设计

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ·························································································································- 1 -第二章英文摘要 ·····························································································错误!未定义书签。第三章课程设计的目的和意义 ··································································································- 1 -1.电力拖动简介····················································································································- 1 - 2.课程设计的目的和意义 ·······································································································- 2 -第四章课程设计内容··················································································································- 2 -第五章方案确定 ·························································································································- 3 - 5.1方案比较的论证·············································································································- 3 - 5.1.1总体方案的论证比较···························································································- 3 - 5.1.2主电路方案的论证比较·······················································································- 4 - 5.1.3控制电路方案的论证比较 ···················································································- 6 -第六章主电路设计 ·····················································································································- 7 - 6.1主电路工作设备选择 ·····································································································- 7 -第七章控制电路设计··················································································································- 8 -第八章结论······························································································································· - 11 -第九章参考文献 ······················································································································· - 11 -

相关主题