搜档网
当前位置:搜档网 › 植物耐盐的分子机制及SOS信号转导详解

植物耐盐的分子机制及SOS信号转导详解

植物耐盐的分子机制及SOS信号转导详解
植物耐盐的分子机制及SOS信号转导详解

植物耐盐的分子机制及SOS信号转导详解

过量Na+对植物是有毒的,但可限制Na+吸收、增加Na+外排,同时保证K+的吸收,来维持细胞质较低的Na+/K+比值,从而提高耐盐性。近年来,人们对盐胁迫下的植物维持离子平衡的机制进行了深入研究,发现植物细胞膜中一些载体、通道和信号系统控制K+、Na+等离子进出细胞,维持细胞的离子平衡,如高亲和K+转运载体(high affinity K+transporter,HKT)、非选择性阳离子通道(nonselective cation channel,NSCC)和盐超敏感信号转导途径(salt overly sensitive,SOS)等,盐胁迫过程中介导了Na+、K+和Ca2+的转运。

目前已从拟南芥中定义了5个耐盐基因,其中SOS1、SOS2和SOS3三个基因参与介导了细胞内离子平衡的信号转导途径。SOS1基因编码质膜Na+/H+逆向转运因子(plasma membrane Na+/H+ antiporter);SOS2基因编码丝氨酸/苏氨酸蛋白激酶(serine/threonine kinase);SOS3基因编码钙结合蛋白(Ca2+ - binding protein)。研究表明,SOS信号系统是指调控细胞内外离子均衡的信号转导途径的系统,盐胁迫下介导细胞内Na+的外排及向液泡内的区域化分布,调节离子稳态和提高耐盐性。Na+ 通过SOS1 Na+-H+ 的反向运输体穿过质膜外排,在高NaCl情况下,SOS1被激活,并且通过Ca2+信号转导的SOS途径介导(图12-13)。

此外,还从冰草中分离到编码水通道蛋白(MIP))基因。在盐胁迫下,MIP的基因转录水平大大提高,提高水通道蛋白的表达量和细胞膜的透性,便于水分的摄入,在没有蒸腾作用下,将水分迅速吸收到根中,并长距离运输到地上组织器官。这将是耐盐基因工程的一条新途径。

图12-13 SOS信号转导途径、盐胁迫和钙浓度调节的离子平衡(改编自Taiz L & Zeiger E,

2006)

SOS1,质膜Na+-H+反向运输体;SOS2,Ser/Thr激酶;SOS3,Ca2+结合蛋白;HKT1,钠内流转运体;AKT1,内向校正K+通道;NSCC,非选择性阳离子通道;NHX1,2和5,内膜Na+-H+

反向运输体;橘黄色表示的是未鉴定的通道蛋白。盐胁迫激活钙通道,导致胞质溶胶中的钙增加,进而通过SOS3激活SOS级联反应。SOS级联反应负调控HKT1,HKT1再调控AKT1。同时SOS级联反应增加SOS1和AKT1的活性。SOS级联反应通过一个未鉴定的转录因子,提高了SOS1的转录而减少编码NHX基因的转录。在低钙浓度下,NSCC也可以作为选择性的钠内流系统,而在高钙条件下该转运体活性被抑制。跨质膜的膜电势差一般是120~200 mV,内侧(胞质溶胶)为负;跨液泡膜电势差是0~20 mV,内侧(液泡)为正。

植物对盐胁迫的反应

植物对盐胁迫的反应 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REVIEW ON PLANT RESPONSE AND RESISTANCE MECHANISM TO SALT STRESS YANG Xiao-hui1,2,JIANG Wei-jie1*,WEI Min2,YU Hong-jun1( 1.Institute of Vegetables and Flowers,Chinese Academy of Agricultural Science,Beijing100081,China;2.College of Horticulture Science and Engineering,Shandong Agriculture University,Taian 271018,China) Key words:Iron stress,Osmotic stress,Salt resistant mechanism,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)

植物耐盐性研究进展3

第5卷第3期北华大学学报(自然科学版)Vol.5No.3 2004年6月JOURNAL OF BEIHUA UN IV ERSIT Y(Natural Science)J un.2004 文章编号:100924822(2004)0320257207 植物耐盐性研究进展 于海武1,李 莹2 (1.北京林业大学生物科学与技术学院,北京 100083;2.北华大学林学院,吉林吉林 132013) 摘要:综述了植物的耐盐机理和植物耐盐育种的研究情况,讨论了耐盐基因工程研究中存在的一些问题,并重点对现有植物的耐盐性筛选和抗渗透胁迫基因工程中的诱导渗透调节剂合成做了论述. 关键词:耐盐性;耐盐机理;基因工程;渗透调节剂 中图分类号:S332.6 文献标识码:A  盐碱土是陆地上分布广泛的一种土壤类型,约占陆地总面积的25%.在我国,从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤[1],我国盐碱土的总面积约有3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1].此外,全国约有600多万hm2,约占耕地总面积10%的次生盐渍化土壤.盐碱土主要分布在平原地区,地形平坦,土层深厚,一般都有较丰富的地下水源,对发展农业生产,尤其对于实现农业机械化、水利化极为有利,是一类潜力很大的土壤资源.目前,人们主要通过2种方式来利用盐碱地:1是通过合理的排灌、淡水洗涤、施用化学改良药剂来改造土壤[2],为植物创造有利的生长环境.实践证明,这种方法成本高,效果也不理想;2是选育和培育耐盐植物品种来适应盐渍环境并最终达到改善环境的目的,此方法更加具有应用前景. 1 植物的耐盐机理 植物耐盐性差别很大.根据植物耐盐能力的不同,可将植物分成非盐生和盐生植物2类.赵可夫等又将盐生植物分为3类:真盐生植物、泌盐盐生植物和假盐生植物[1].目前大部分的耐盐性研究工作都是以真盐生植物为基础开展的,所以对它的耐盐机理也就研究得比较多.近年来,在筛选和培育耐盐细胞系、转移渗透调节剂合成基因、合理利用盐诱导基因等方面都开展了许多研究工作,并取得了一些成果.许多研究表明:植物要适应盐渍化的生境,必须具备克服盐离子毒害(离子胁迫)和抵抗低水势(渗透胁迫)的能力,否则就无法生存[3,4].马建华等认为:植物在高盐土壤中主要先受到水分胁迫,而后就是离子胁迫[5].所以在耐盐机理中人们对离子区隔化和渗透调节做了相对较多的研究. 1.1 离子区隔化 许多真盐生植物通过调节离子的吸收和区隔化来抵抗或减轻盐胁迫.在植物体内积累过多的盐离子就会给细胞内的酶类造成伤害,干扰细胞的正常代谢.研究表明,盐胁迫条件下,植物细胞中积累的大部分无机离子被运输并贮藏在液泡中,使得植物因为渗透势降低而吸收水分,同时,避免了过量的无机离子对代谢造成的伤害,这就是离子的区隔化.在耐盐植物和非耐盐植物中都存在离子区隔化,这说明离子区隔化可能是植物所普遍具有的能力[6].盐的区隔化作用主要是依赖位于膜上的“泵”实现离子跨膜运输完成的[7,8].这种运输系统需要A TP酶,A TP水解产生能量将H+“泵”到液泡膜外,造成质子电化学梯度,驱动钠离子的跨膜运输,从而实现盐离子的区隔化.Na+积累于液泡维持了细胞质中较低的Na+/K+比例也是植物耐盐的特点之一[9]. 收稿日期:2003212204 基金项目:国家“973”计划项目(G1999016005) 作者简介:于海武(1977-),男,在读硕士,主要从事杨树抗逆性育种研究.

植物信号分子机制

一、NO信号分子在国内外的研究 一氧化氮(NO)是一种生物活性分子,越来越多的证据表明它是生物体内分布最为广泛的 信号分子之一.NO作为植物生长发育的一个关键调节因子,能对各种生物或非生物胁迫产生应答,在植物生长发育与环境互作的协调过程中起着中枢性的作用.近年来,对于一氧化氮在植物中分子功能的研究取得了较大进展,特别是其信号转导功能、对基因表达的调控和植物体内NO稳态平衡的维持等方面.文中较全面地介绍了植物体内NO的合成、功能、信号转导、对基因表达的调控以及植物体内NO动态平衡的维持等方面研究的进展,并对该领域今后的研究进行了展望。 1、在调节植物重金属胁迫抗性方面上起着非常重要的作用 夏海威,施国新,黄敏,吴娟 摘要:一氧化氮(NO)作为一种重要的信号分子,在调节植物重金属胁迫抗性方面上起着非常重要的作用。综述了NO在植物体内的产生途径,重金属胁迫下植物体内内源NO含量的变化以及外源NO 与内源NO对植物重金属胁迫抗性的影响。大量研究表明外源NO能够增强植物对重金属胁迫的抗性,一方面是通过增强植物细胞的抗氧化系统或直接清除活性氧, 另一方面是通过影响植物对重金属的吸收以及重金属在植物细胞内的分布。然而内源NO在调节植物重金属胁迫抗性上的功能角色仍存在争议。有些研究表明内源NO是有益的,能够缓解重金属胁迫诱导的毒性;但是也有证据表明内源NO是有害的,能够通过促进植物对重金属的吸收以及对植物螯合素进行S-亚硝基化弱化其解毒功能,从而参与重金属诱导的毒害反应和细胞凋亡过程。 2、利用基因芯片技术解析NO调节拟南芥生理反应的分子机制作者:赵亚锦 摘要:一氧化氮(NO)是植物体内重要的信号分子之一,在植物对生物和非生物胁迫(如干旱、UV-B、盐害、高温等)的反应、细胞程序性死亡(PCD)、呼吸作用、光形态建成、果实成熟、叶片伸展、气孔关闭、衰老、种子萌发、开花调控、根发育和激素反应等植物生长发育过程中起着重要的调节作用。因此研究NO在植物中起作用的遗传和分子机制有着重要的理论意义和潜在的应用价值,是目前植物分子生物学研究领域的热点问题之一。要搞清NO调节植物生理过程和功能的分子机制,关键是要解析NO调节基因表达的机制。而在植物体内NO含量变化的情况下对其全基因组转录物的分析又是解析NO调节基因表达机制的一种有效方法。本研究以模式植物拟南芥(Arabidopsis thaliana)为研究对象。用于实验的材料有野生型拟南芥(WT)、内源NO含量升高的拟南芥突变体nox1和内源NO含量降低的突变体noa1。利用Affymetrix公司的拟南芥ATH1全基因组芯片(ArabidopsisATH1-121501GenomeArray)进行芯片杂交实验,得到WT、nox1和noa1的基因表达谱,并筛选出差异表达基因。本文利用基因芯片技术全面的研究了内源NO含量的升高以及内源NO含量的降低对植物表达谱的影响,并根据对表达谱数据的分析初步探讨了NO和乙烯、赤霉素、脱落酸等植物激素相互作用的分子机制,进一步研究将有望揭开NO 在植物中的作用机理。 3、细胞信号分子对非生物胁迫下植物脯氨酸代谢的调控作者:邓凤飞,杨双龙,龚明摘要:大量研究表明脯氨酸积累在植物响应与适应非生物胁迫中起重要作用,但如何调节脯氨酸合成和降解仍有许多疑问。已知植物对逆境胁迫的响应与适应过程涉及复杂的细胞信号发生与转导事件,也有研究表明细胞信号分子参与了植物体内脯氨酸代谢的调控过程,但不 清楚其具体机理。本文综述了脯氨酸代谢的合成与降解途径,以及脱落酸(ABA)、Ca2+、一氧化氮(NO)、过氧化氢(H2O2)、水杨酸(SA)等细胞信号分子在脯氨酸代谢调控

作物耐盐性研究

作物耐盐性研究 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼

苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究

植物相关细菌群体感应信号分子的检测

植物相关细菌群体感应信号分子的检测 *刘晓光1, 2, 高克祥2, 高吉刚3 1江苏大学生命科学研究院镇江(212013) 2山东农业大学植保学院泰安(271018) 3 山东农业大学化学与材料科学学院泰安(271018) E-mail:xgliu66@https://www.sodocs.net/doc/348584841.html, 摘要:许多革蓝氏阴性细菌以种群密度依赖的方式调控基因的表达,这种称为群体感应的调控机制主要基于细菌产生的可扩散的小分子信号物质——酰基高丝氨酸内酯(AHLs)。通过组合使用灵敏度不同的系列报告菌株,基于琼脂平板的生物检测及反相C18薄层层析(TLC)分析,比较研究了3株植物固氮内生菌Herbaspirillum spp.和2株植物根际促生菌Serratia plymuthica产生AHLs的模式。结果显示了植物细菌AHLs的多样性。3株固氮内生菌Herbaspirillum spp.和S. plymuthica菌株IC1270都与小麦根际生防细菌Pseudomonas fluorescens 2-79具有相似的模式,产生OH-取代基的AHLs。而2个S. plymuthica 菌株,从葡萄根际分离的IC1270和从油菜根际分离的菌株HRO-C48则产生完全不同类型的AHLs。菌株IC1270主要产生OH-取代基的HHHL,HOHL, HRO-C48却产生无取代基的BHL , HHL 和优势种O-取代基的OHHL。由此说明不同属的植物细菌可能具有相似的AHLs模式;相反,即使生态位相似的同种植物根际细菌S. plymuthica的不同菌株间,却可能产生完全不同类型的AHLs,似乎与亲缘关系无关。 关键词:Serratia plymuthica;Herbaspirillum spp.; 群体感应系统;酰基高丝氨酸内酯 中图分类号:Q933 1.引言 在革蓝氏阴性细菌中,有3个重要的基因表达的全局调控系统,即GacA/GacS双因子信号转导系统(GacA/GacS two-component system),胁迫和稳定期的δ因子RpoS,以及细胞种群密度依赖的Quorum-sensing(QS)系统。它们控制植物相关细菌的许多表型,如植物生长促进能力、致病性、次生代谢物的产生、生物膜形成以及蛋白和酶的分泌等[1]。酰基高丝氨酸内脂N-acyl homoserine lactones(AHLs/acyl-HSLs)是许多革兰氏阴性细菌都产生的群体感应信号分子,它作为自身诱导物(autoinducer)在革蓝氏阴性细菌中介导以种群密度依赖和生长发育阶段(指数生长后期和稳定期)依赖方式的基因表达调控。植物相关细菌的QS系统调控微生物种群之间以及与寄主植物之间的相互作用,包括共生、致病性、抗生素及胞外酶的产生等特性,因此在农业、医学、环境保护等领域具有广阔的应用前景。而且AHLs在自然界中作为全局调控的信号分子,通常是在GacA/GacS两组分信号转导系统的控制之下。许多研究已证实这3个全局调控系统之间存在着密切联系,交互作用(cross-talk)。尽管有些结果相互矛盾,依然可以推测这种调控的级联反应在细菌中可能是一个普遍的现象[2, 3]。 本文通过组合使用多种系列灵敏度不同的AHLs信号分子的报告菌株或质粒,以植物根基金项目:本课题受国家自然科学基金(项目编号:30370954,30670030)资助

植物对盐胁迫的反应及其抗盐机理研究进展

山东农业大学学报(自然科学版),2006,37(2):302~305 Journa l of Shandong Agricu lt ura lUn i versity(Natura l Sc i ence) 文#献#综#述 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REV IE W ON PLANT RESPONSE AND RE SISTANCE M ECHAN IS M TO S ALT STRESS YANG X i a o-hu i1,2,JI A NG We i-jie1*,WE IM i n2,Y U H ong-jun1 (1.I n stitute ofV egetab l es and Flo wers,Ch inese A cade m y ofAgricu l tural Sci ence,Beijing100081,Ch i na; 2.Coll ege ofH orti cu lt u re Science and Engi n eeri ng,Shandong Agricu l tureU n i versit y,Ta i an271018,Ch i na) K ey words:Iron stress,Os motic stress,Salt resistantm echan i s m,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)02-0302-04 1植物对盐胁迫的反应 1.1盐胁迫对植物形态发育的影响 盐胁迫对植物个体形态发育的整体表现为抑制组织和器官的生长,加速发育过程,缩短营养生长和开花期。P laut等(1985)研究发现,90mmol/L NaC l胁迫抑制甜菜块根的干物质积累,但低浓度NaC l可增加叶面积。Nunes(1984)认为这主要是细胞体积增加而不是细胞分裂的结果。盐分对佛手瓜的生长及腋芽的萌动均有抑制作用,幼苗的生长速度与中期细胞指数的变化具有一致性,说明盐分影响植物生长的途径是通过细胞的有丝分裂来完成的[2]。在NaC l胁迫(0.1%、0. 2%、0.3%、0.4%)条件下,马铃薯试管苗生长受到显著抑制,且随着盐浓度的增加,各处理间差异加大[3]。戴伟民等[4]研究发现,随盐浓度的增加,番茄幼苗的下胚轴粗度、侧根数逐渐减少,根干重逐渐降低。根据牟永花的研究,50、100mm ol/L NaC l使番茄株高和干物质积累均有不同程度的降低,但对根冠比无影响[5]。用25、50mmol/L NaC l处理黄瓜幼苗,发现植株株高、鲜重和干重均降低[6]。杨秀玲等[7]也发现,随着N aC l浓度(75、100、125、150mm ol/L)的增高,黄瓜幼苗地上和地下部鲜重以及根冠比(R/T)也均表现为下降。 1.2盐胁迫对植物生理生化代谢的影响 1.2.1水分平衡与质膜透性Levltt在1980年即指出,不同环境胁迫作用于植物时都会发生水胁迫。在盐胁迫下,植物细胞脱水,膜系统破坏,位于膜上的酶功能紊乱,各种代谢无序进行,导致质膜透性的改变。而且,高浓度NaC l可置换细胞膜结合的Ca2+,使膜结合Na+增加,膜结构和功能破坏,细胞内的K+、磷和有机溶质外渗。 1.2.2光合作用盐胁迫下,植物组织因缺水而引起气孔关闭,叶绿体受损,光合相关酶失活或变性,光合速率下降,同化产物合成减少。叶绿体是植物光合作用的主要场所,而类囊体膜是光能吸收、传递和转换的结构基础,植物进行光能吸收、传递和转换的各种色素蛋白复合体都分布在类囊体膜上。盐胁迫下,过量盐离子积累使类囊体膜糖脂含量显著下降,不饱和脂肪酸含量降低,而饱和脂肪酸含量升高,从而影响细胞膜的光合特性。叶绿素是类囊体膜上色素蛋白复合体的重要组成部分,所以盐胁迫下叶绿素含量的降低必将影响色素蛋白复合体的功能,使垛叠状态的类囊体膜比例减小,叶绿体中基粒数量和质量下降,光合强度降低[8]。 R ub isco(核酮糖-1,5-二磷酸羧化酶)和PEP(磷酸烯醇式丙酮酸)羧化酶是光合作用的两种重要酶。盐胁迫下,收稿日期:2005-06-25 基金项目:基金项目:国家863项目(2004AA247030,2004AA247010);国家科技攻关项目(2004BA521B01);农业部蔬菜遗传与生理重点开放实验室项目. 作者简介:杨晓慧(1980-),女,硕士研究生,从事设施园艺与无土栽培. *通讯作者:Aut hor f or correspo ndence.E-m a i:l ji ang w@j m ai.l https://www.sodocs.net/doc/348584841.html,

植物抗病性的分子机制和信号传导

第42卷2006年第2期 西 北 师 范 大 学 学 报(自然科学版)  Vol 142 2006 No 12 Journal of Northwest Normal University (Natural Science )  收稿日期:2005Ο03Ο23;修改稿收到日期:2005Ο05Ο23 作者简介:李淮(1959— ),男,甘肃临洮人,馆员.主要研究方向为生物信息学.?科研综述? 植物抗病性的分子机制和信号传导 李 淮1,王 莱1,武国凡1,于 玲2 (11西北师范大学生命科学学院,甘肃兰州 730070; 21南京农业大学作物遗传育种国家重点实验室,江苏南京 210000) 摘 要:植物抗病性的分子机制一直是植物病理学关注的焦点.近年来,国内外不少学者和实验室正在大量分离和培 养与抗病有关的突变体,并且寻找和研究与抗病有关的基因和抗病机制.研究表明,在病原物与植物的相互作用、病原信号的传导和抗病性激发的过程中存在着一系列的调节因子和基因,并形成复杂的调控网络.综述了近年来国内外植物抗病性的分子研究进展,阐述了植物抗病性分子机制和信号传导.关键词:植物抗病机制;信号传导;水杨酸中图分类号:Q 7:Q 94518 文献标识码:A 文章编号:10012988Ⅹ(2006)022******* The mechanism and signal t ransduction of plant disease resistance L I Huai 1,WAN G Lai 1,WU Guo Οfan 1,YU Ling 2 (11College of Life Science ,Northwest Normal University ,Lanzhou 730070,G ansu ,China ; 21National Key Laboratory of G enetics and Breeding ,Nanjing Agriculture University ,Nanjin 210000,Jiangsu ,China ) Abstract :This article clarifies t he advance of mechanism and signal t ransduction of plant disease resistance.The mechanism of plant disease resistance is always t he focus of plant pat hology.Recently ,many mutant s related to plant disease resistance have been t rained and separated in many laboratory.Now new gene and mechanism about plant disease resistance are still seeked and researched. The result s indicate t hat series gene and regulation factors are involved in interaction between plant and pat hogen ,in signal t ransduction and in p rocess of stimulating disease resistance ,and t he complicated regulation net is established. K ey w ords :mechanism of plant disease resistance ;signal t ransduction ;salicylic acid 研究植物的抗病性不仅直接关系到作物产量和 质量的提高,而且对于植物保护和环境建设也具有同样重要的意义.研究发现,植物的抗病性不仅与植物的种类有关,而且与病原物有直接关系.目前,对于病原物致病、植物抗病的分子生物学基础和信号传导方面的研究已取得了一系列进展. 1 植物抗病性的分子机制 111 病原菌致病的分子基础 植物对病原物的反应有抗病和感病两大类:抗 病反应又叫非亲和反应,这一系统是以寄主抗病和病原物无毒为特征,寄主植物对病原物有抑制、排斥和减毒作用,使病害不发生或受到限制;感病反应又叫亲和反应,以寄主感病和病原物有毒为特征,造成植物严重发病[1].通常由几类物质被认为是病原物致病因子,即毒素、酶类、胞外多糖及其它毒性因子.植物病害的症状类型与致病因子的性质有密切的关系,如腐烂通常认为与病菌的胞壁降解酶有关;坏死与毒素有关;萎蔫可能与毒素有关,也可能与胞外多糖有关;生长畸形与激素失调 3 11

植物抗盐性研究综述解读

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2.3.2生态区间差别不同生态区的调查样本对有机、无机肥的投入量差异也很大(表7,3个生态区表现无机肥的投入大于有机肥,其中沿黄灌区的无机肥投入大于定西地区和陇东地区。定西地区的调查农户施用有机肥的比例相对最高,由有机肥而来的氮磷钾分别为48.05、22.42、47.78kg/hm 2,分别占到该区小杂粮氮磷钾总投入量的19.7%、9.2%和19.6%;陇东地区和沿黄灌区的小杂粮种植均未施用有机肥,这可能与区域间的施肥习惯有关,定西地区多施有机肥可以发挥肥料的长期效益,而陇东地区和沿黄灌区的农民为了得到短期效益而多以无机肥料为主。 3 小结 调查结果表明,甘肃省种植的小杂粮肥料投 入明显不足,且投入比例不协调。调查区农户对小杂粮的施肥主要采用基肥或种肥的方式,追肥量较少。追肥多以氮肥为主,忽略了对于磷钾肥的后期投入。调查区对有机肥的投入比例较小,并且区域间极不平衡,定西地区施用有机肥的比例和面积相对较大,而灌溉条件充足的陇东地区和沿黄灌区施用有机肥的比例和面积相对较小,甚至不施用有机肥。参考文献: [1]姬永莲,吴丽岗.甘肃小杂粮生产现状及发展前景[J ]. 调查研究,2009(6:39-40. [2]任瑞玉,杨天育,何继红,等.甘肃省小杂粮生产优势 与发展对策[J ].中国农业资源与区划,2009(2:68-70.[3]吴国忠.甘肃省小杂粮生产现状及发展措施[J ].甘肃 农业科技,2003(3:19-21.

[4]赵有彪.关于甘肃小杂粮产业化开发的思考[J ].甘肃 科技,2007(1:17-18;89. [5]吴朝霞,丁霞.杂粮的营养价值及杂粮保健食品的开 发和利用[J ].杂粮作物,2001,21(5:48-50.[6]黎青慧.陕西省黄瓜西红柿施肥调查[J ].西北农林科技 大学学报(自然科学版,2003,31 (增刊:73-78.(本文责编:郑立龙 定西地区16.66 19.49048.0522.4247.78陇东地区72.5900000沿黄灌区136.62 79.99 0表7小杂粮区域间有机肥和无机肥投入量kg/hm 2 作物 无机肥有机肥N P 2O 5K 2O N P 2O 5K 2O 摘要:综述了盐分胁迫对植物的危害和机理,以及植物的抗盐性基本机理和提高植物抗盐性的途径。 关键词:盐分胁迫;伤害机理;抗盐机理;植物抗盐性中图分类号:S156.4 文献标识码:A 文章编号:1001-1463(201102-0029-05 植物抗盐性研究综述

盐胁迫对植物的影响及植物的抗盐机理

盐胁迫对植物的影响及植物的抗盐机理 摘要: 盐是影响植物生长和产量的主要环境因子之一, 根据国内外最新的研究资料, 从盐胁迫对植物的生长、水分关系、叶片解剖学、光和色素及蛋白、脂类、离子水平、抗氧化酶及抗氧化剂、氮素代谢、苹果酸盐代谢、叶绿体超微结构的影响, 及影响光合作用的机制等方面入手, 对植物盐胁迫研究现状及进展情况进行了综述, 旨在为开展植物抗盐机理研究、选育培育耐盐植物新品种提供依据。 关键词: 植物盐胁迫抗盐性机理 Effects of Salt Stress on Plants and the Mechanism of Salt Tolerance Abstract: Salinity is the major environmental factor limit ing plant growth and productivity. According to the documents and data at home and abroad, the research currents of salt stress in plants were summarized including the effect on plant growth, the water relations, leaf anatomy, photosynthetic pigments and proteins, lipids, ion levels, antioxidative enzymes and antioxidants etc. This r eview may help to study the salt2toler ant mechanism and breeding new salt-toler ant plants. Key words: plant, salt2stress, salt2tolerant, mechanism 目前, 受全球气候变化、人口不断增长的影响,土壤盐碱化日趋严重。盐分是影响植物生长和产量的一个重要环境因子, 高盐会造成植物减产或死亡。过去的二十年已有很多有关盐胁迫生物学及植物对高盐反应的报道。这些研究涉及到胁迫相关的生物学、生理学、生化及植物对盐胁迫产生的一些复杂的反应等很多方面。本文分别在盐胁迫对植物产生的影响、植物抗盐途径、抗盐的生理基础和分子机制等方面进行了综述。 1 盐胁迫对植物的影响 各种盐类都是由阴阳离子组成的, 盐碱土中所含的盐类, 主要是由四种阴离子(Cl- 、SO42- 、CO32- 、HCO3- ) 和三种阳离子( Na+ 、Ca2+ 、Mg2+ ) 组合而成。阳离子与Cl- 、SO42- 所形成的盐为中性盐; 阳离子与CO32- 、HCO3- 所形成的盐为碱性盐, 其中对植物危害的盐类主要为Na 盐和Ca 盐, 其中以Na盐的危害最为普遍。盐胁迫下, 所有植物的生长都会受到抑制, 不同植物对于致死盐浓度的耐受水平和生长降低率不同。盐胁迫几乎影响植物所有的重 要生命过程, 如生长、光合、蛋白合成、能量和脂类代谢。 1. 1 对生长及植株形态的影响 盐胁迫会造成植物发育迟缓, 抑制植物组织和器官的生长和分化, 使植物的发育进程提前。植物被转移到盐逆境中几分钟后, 生长速率即有所下降,其下降程度与根际渗透压呈正比。最初盐胁迫造成植物叶面积扩展速率降低, 随着含盐量的增加, 叶面积停止增加, 叶、茎和根的鲜重及干重降低。盐分主要是通过减少单株植物的光合面积而造成植物碳同化量的减少。在控制条件下测试了11 种木麻黄属植物以后, 发现木麻黄的发芽率和生长速率随NaCl浓度的增加而降低[1] 。植物叶片中Na+ 的过量积累常见叶尖和叶缘焦枯( 钠灼伤) , 而且会抑制对钙的吸收, 造成植物的缺钙现象, 新叶抽出困难, 早衰, 结实少或不结实; Ca2+ 过量可能导致缺乏硼、铁、锌、锰等养分;Mg2+过量则会使植物叶缘焦枯, 导致缺钾, 老叶叶尖叶缘开始失绿黄化, 直至焦枯。SO2-4 离子浓度高也会引起缺钙, 使植物的叶片发黄, 从叶柄处脱落。氯离子的过量积累也会引起氧灼伤, 植株生长停滞、叶片黄化, 叶缘似烧伤, 早熟性发黄及叶片脱落, 而且还会影响硝态氮的吸收和利用。 1. 2 对水分关系的影响 植物的水势和渗透压势与盐分的增加呈负相关, 而细胞膨胀压则会随着盐分的增加而升高。

植物耐盐的分子机制及SOS信号转导详解

植物耐盐的分子机制及SOS信号转导详解 过量Na+对植物是有毒的,但可限制Na+吸收、增加Na+外排,同时保证K+的吸收,来维持细胞质较低的Na+/K+比值,从而提高耐盐性。近年来,人们对盐胁迫下的植物维持离子平衡的机制进行了深入研究,发现植物细胞膜中一些载体、通道和信号系统控制K+、Na+等离子进出细胞,维持细胞的离子平衡,如高亲和K+转运载体(high affinity K+transporter,HKT)、非选择性阳离子通道(nonselective cation channel,NSCC)和盐超敏感信号转导途径(salt overly sensitive,SOS)等,盐胁迫过程中介导了Na+、K+和Ca2+的转运。 目前已从拟南芥中定义了5个耐盐基因,其中SOS1、SOS2和SOS3三个基因参与介导了细胞内离子平衡的信号转导途径。SOS1基因编码质膜Na+/H+逆向转运因子(plasma membrane Na+/H+ antiporter);SOS2基因编码丝氨酸/苏氨酸蛋白激酶(serine/threonine kinase);SOS3基因编码钙结合蛋白(Ca2+ - binding protein)。研究表明,SOS信号系统是指调控细胞内外离子均衡的信号转导途径的系统,盐胁迫下介导细胞内Na+的外排及向液泡内的区域化分布,调节离子稳态和提高耐盐性。Na+ 通过SOS1 Na+-H+ 的反向运输体穿过质膜外排,在高NaCl情况下,SOS1被激活,并且通过Ca2+信号转导的SOS途径介导(图12-13)。 此外,还从冰草中分离到编码水通道蛋白(MIP))基因。在盐胁迫下,MIP的基因转录水平大大提高,提高水通道蛋白的表达量和细胞膜的透性,便于水分的摄入,在没有蒸腾作用下,将水分迅速吸收到根中,并长距离运输到地上组织器官。这将是耐盐基因工程的一条新途径。 图12-13 SOS信号转导途径、盐胁迫和钙浓度调节的离子平衡(改编自Taiz L & Zeiger E, 2006) SOS1,质膜Na+-H+反向运输体;SOS2,Ser/Thr激酶;SOS3,Ca2+结合蛋白;HKT1,钠内流转运体;AKT1,内向校正K+通道;NSCC,非选择性阳离子通道;NHX1,2和5,内膜Na+-H+

植物中的一氧化氮信号分子

2005年第40卷第11期生物学通报17 一氧化氮(NO)是大气污染中的一种重要成份,如汽车尾气、化工生产排出的废气等等。近年来,NO作为信号分子的研究备受关注。现简要介绍NO在植物中的生物合成、主要生理功能以及信号转导的作用机制。 1NO的生物合成 在植物中,NO的产生主要有3种途径。一是通过类动物NOS蛋白催化;二是由亚硝酸盐通过NADPH硝酸还原酶(NR)酶促反应合成;三是通过非酶促反应生成,包括以抗坏血酸作为还原剂与亚硝酸反应放出NO以及由类胡萝卜素通过光介导的亚硝酸盐的转化非酶促反应产生NO。在植物中合成的NO以气态方式通过植物器官的转运是很有限的,其他溶解转运形式如GSNO可以代替气态方式,作为NO的来源;参与GSNO分解代谢的酶,谷胱甘肽依赖的甲醛脱氢酶(GS-FDH)及其编码基因最近已经从豌豆中克隆出来。 2NO的生理功能 NO已证明在植物生长、发育、衰老、乙烯释放、抗病和对环境胁迫等各种不同形式的响应中发挥重要作用。低浓度NO可以诱导叶片伸长,刺激根的生长,高浓度下则起抑制作用。NO刺激种子萌发;刺激去白化;抑制胚轴延长。实验表明,低浓度的NO(100nM ̄1!M)可以减少由于除草剂导致的叶绿素丧失的程度、离子渗漏、坏疽和落叶、脂质过氧化、Rubisco以及D1蛋白的损失、mRNA的破坏。Laxalt等[2]认为NO介导的叶绿素保护来源于对抗活性氧(ROS)毒性,保护膜的完整性。NO调节叶绿体的光合磷酸化,抑制PS2电子传递活性,NO也抑制穿过类囊体膜的由光诱导的pH梯度形成;研究表明NO还是光合ATP合成的可逆抑制剂。 NO和豆血红蛋白(Lb)紧密联结,形成NO-Lb复合物。NO与Lb的结合,抑制了后者的携氧能力,因为NO-Lb是很稳定的复合物。NO-Lb复合物可以和O2.-和(或)H 2 O2反应,从而可能避免ROS对根瘤的损害。与此相反,NO似乎对固氮有毒害效应;NO和NO-Lb通过与Fe-S簇的反应抑制固氮酶的活性。 在衰老的豌豆叶片中,NO与乙烯同时释放,在成熟果实中NO浓度要低于在未成熟果实中浓度,而且NO浓度在衰老的花中要低于新鲜的花朵。研究表明在许多植物中NO和乙烯含量呈负相关,在植物开花和衰老期间的器官发育过程中,NO的产生率要远高于乙烯,因此可以认为,NO是植物的衰老延迟因子。 研究证实:在大麦糊粉层细胞,过氧化氢酶(CAT)和超氧化物歧化酶(SOD)含量在用赤霉素(GA)处理的糊粉层细胞是显著减少的。在NO供体存在情况下细胞程序性死亡(PCD)得到延缓,与此同时,用GA处理糊粉层细胞可以延缓CAT和SOD的活性下降,推测NO是大麦糊粉层细胞内源性PCD调节因子。 还有研究表明,NO可直接结合于铁调节蛋白(IRP)的铁硫中心,使之解聚;也可螯合铁使细胞内铁降低而间接发挥作用。NO现已证明可以抑制番茄的顺乌头酸酶,NO供体可以诱导铁蛋白在mRNA和蛋白质水平上积累。在这一由NO介导的铁蛋白转录积累过程中,铁不是必需的,而NO对于铁诱导的铁蛋白的积累则是必需的。 3NO对生物和非生物胁迫响应 在植物与病原相互作用中,NO可以缓解一些发生在马铃薯中由ROS引起的诸如DNA断裂、离子渗漏和细胞死亡等损伤。NO可以刺激感染组织细胞壁的木质化。NO和过氧化氢相互作用诱导植物细胞死亡,二者的比例非常重要,比例相等时,导致细胞死亡,任何一种过量都可以清除另一种,并使细胞免于死亡。正常生理情况下,细胞质、线粒体和细胞外SOD的催化活性可以快速歧化超氧阴离子O 2. -为H2O2和分子氧。而高浓度的NO可以和这种歧化反应竞争,导致ONOO-的形成,从而损伤蛋白质、脂、RNA和DNA。NO在生物胁迫下的互相矛盾的效应依赖于其浓度的不同,在低浓度下NO可以终止自由基介导的脂质氧化从而扮演保护角色;在高浓度下,它与产生有毒产物的活性氧有协同效应。 在水分和短时热胁迫情况下都可以检测到NO产生的增加,用高浓度NO处理豌豆叶片可以诱发胁迫症状;NO供体SNAP可以增加叶绿素荧光,用浓度相当于1mMNO的SNAP处理豌豆叶片可以看到脂质 植物中的一氧化氮信号分子! 肖强郑海雷!!(厦门大学生命科学学院福建厦门361005) 摘要综述了NO分子在植物中的生物合成、主要生理功能以及在耐受生物胁迫和非生物胁迫响应中的作用,以及植物对NO信号转导过程中cGMP途径和其他途径的关系。 关键词NO信号转导NOS胁迫 *国家自然科学基金(30271065,39970438,39870630)和福建省自然科学基金(D0210001) **通讯作者

作物耐盐性研究

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。

2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体

植物抗逆机制研究进展

植物抗逆机制研究进展 摘要:随着全球性生态环境日渐恶化,各种各样的环境胁迫对植物的正常生长带来了不同程度的影响。中国是一个农业大国,每年因各种环境因素及土地条件所导致的产量和经济损失巨大,因此植物整体抗逆性研究愈来愈受到重视。本文以干旱胁迫、盐胁迫及低温胁迫为切入口,详细论述了不同因素对植物的影响以及植物对抗的胁迫的机制。同时介绍了基因组学在植物抗逆性基因研究中的应用。为将来的研究提供新的思路。 关键词:抗逆机制;基因组学 背景 植物生存的环境并不总是适宜的,经常受到复杂多变的逆境胁迫,植物的环境胁迫因素分物理、化学和生物3大类。其中,物理类有:干旱、热害、冷害、冻害、淹水(涝,渍)、光辐射、机械损伤、电伤害、磁伤害、风害;化学类有:元素缺乏、元素过剩、低pH、高pH、盐碱、空气污染、杀虫剂和除草剂、毒素、生化互作物质;生物类有:竞争、抑制、生化互作、共生微生物缺乏、人类活动、病虫害、动物危害、有害微生物[1]。我国是农业大国,干旱、盐碱和低温等逆境每年都会严重影响农作物的正常生长发育和产量。随着分子生物学技术的不断发展,植物抗逆性机制成为当前研究的热点,对植物适应逆境机制的研究从生理水平步入分子水平,甚至利用基因组学等技术,进行新的抗逆性基因的筛选,为抗逆性植物的杂交提供新思路。 1 植物抗逆性举例 1.1 干旱对植物的影响及植物的抗旱机制 植物在自然界中生长时,由于气候环境等因素,会出现植物耗水量大于吸水量的情况,此时植物体内水分亏缺,即为干旱缺水胁迫[2]。根据水分亏缺的原因,可以将干旱胁迫分成三类:1、大气干旱。空气湿度降低或是烈日炙烤,加剧植物蒸腾作用,此为植物失水量大于根系吸水量而导致的缺水;2、土壤干旱。由于土壤中缺乏水分,导致植物根系吸水困难,无法供应生长代谢及蒸腾作用所需水分;3、生理干旱。土壤温度过低或土壤中化肥、有毒物质浓度过高,导致植物根系不能从土壤中吸收水分。 干旱时,原生质仍保有一部分束缚水,使得其不至于变性凝聚,从而避免了机械损伤的发生。干旱条件下,植物细胞内会大量聚集海藻糖、蔗糖、麦芽糖等糖类物质,它们会发生玻璃溶胶化,充满细胞的原生质,起到一定的保水作用,同时还增加了原生质的黏性,限制了大分子的混合,保持了细胞的相对稳态[3]。同时为保护细胞内水分平衡,植物通过无机离子和小分子有机代谢产物的积累﹑转运和区域化等机制解除渗透胁迫。如H+-ATPase是质膜与液泡膜上的一种H+泵,可维持细胞质Na+﹑Cl-浓度。Na+/H+逆向转运蛋白则在外界环境的Na+浓度提高时,通过Na+/H+逆向转移将Na+转运到液泡中,从而减少细胞质中的Na+浓度[4]。 1.2 盐胁迫对植物的影响及植物抗盐机制 土壤盐分过多会对植物造成盐胁迫。当土壤含盐量超过0.20%~0.25%时,我们认为就会引发盐胁迫。盐胁迫对植物伤害很大,一类是盐离子本身对植物的毒害,包括

相关主题