搜档网
当前位置:搜档网 › 习题8.2反常积分的收敛判别法

习题8.2反常积分的收敛判别法

习题8.2反常积分的收敛判别法
习题8.2反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法

⒈ ⑴ 证明比较判别法(定理8.2.2);

⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞

+a dx x )(?和

?

+a

dx x f )(的敛散性可以产生各种不同的的情况。

解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数。则

当?∞

+a dx x )(?收敛时?

∞+a dx x f )(也收敛;

当?

+a

dx x f )(发散时?∞

+a

dx x )(?也发散。

证 当?∞

+a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理,

0>?ε ,a A ≥?0,0,A A A ≥'?:K

dx x A A ε

?<

?'

)(。

于是

?'

A A

dx x f )(ε?

A A dx x K )(,

所以?

∞+a

dx x f )(也收敛;

当?

∞+a

dx x f )(发散时,应用反常积分的Cauchy 收敛原理,

00>?ε,a A ≥?0,0,A A A ≥'?:

εK dx x f A A ≥?'

)(。

于是

≥?'A A dx x )(?0)(1

ε≥?'

A A dx x f K ,

所以?∞

+a dx x )(?也发散。

(2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0)

()(lim

=+∞→x x f x ?。则当?∞

+a dx x f )(发

散时,?∞

+a dx x )(?也发散;但当?∞

+a dx x f )(收敛时,?∞

+a dx x )(?可能收敛,也可能发散。

例如21)(x x f =

,)20(1

)(<<=p x

x p ?,则0)()(lim =+∞→x x f x ?。显然有 ?∞

+1

)(dx x f 收敛,而对于?∞

+1)(dx x ?,则当21<

发散。

设在[,)a +∞上有0)(,0)(≥≥x x f ?,且+∞=+∞→)

()(lim

x x f x ?。则当?∞

+a dx x f )(收

敛时,?∞

+a dx x )(?也收敛;但当?∞

+a dx x f )(发散时,?∞

+a dx x )(?可能发散,也可能收敛。

例如x

x f 1)(=

,)21

(1)(>=

p x

x p ?,则+∞=+∞→)()(lim x x f x ?。显然有 ?∞

+1

)(dx x f 发散,而对于?∞

+1)(dx x ?,则当

12

1

p 时收敛。 ⒉ 证明Cauchy 判别法及其极限形式(定理8.2.3)。

证 定理8.2.3(Cauchy 判别法) 设在[,)a +∞?+∞(,)0上恒有f x ()≥0,K 是正常数。

⑴ 若f x K

x

p ()≤,且p >1,则?∞+a dx x f )(收敛;

⑵ 若f x K

x

p ()≥,且p ≤1,则?∞+a dx x f )(发散。

推论(Cauchy 判别法的极限形式)设在[,)a +∞?+∞(,)0上恒有f x ()≥0,且

lim ()x p x f x l →+∞

=,

⑴ 若0≤<+∞l ,且p >1,则?∞

+a dx x f )(收敛; ⑵ 若0<≤+∞l ,且p ≤1,则?

+a

dx x f )(发散。

证 直接应用定理8.2.2(比较判别法)及其推论(比较判别法的极限形式),将函数)(x ?取为

p x

1

。 ⒊ 讨论下列非负函数反常积分的敛散性:

1

1

3

21

x e

x dx x

-++-+∞

?ln ; ⑵

?

++1

3

1tan arc dx x x

;

1

10

++∞

?x x dx |sin |

;

x x dx

q p

11

++∞

?(+

∈R q p ,). 解 (1)当+∞→x 时,

1

ln 1

23++--x e

x x

2

31

x ,

所以积分1

1

321

x e x dx x -++-+∞

?ln 收敛。

(2)当+∞→x 时,

31arctan x x +~3

2x

π

, 所以积分?

++13

1tan arc dx x x

收敛。

(3)因为当0≥x 时有

x

x x +≥+11

sin 11,

而积分dx x

?∞

++0

11

发散,所以积分110

++∞?x x dx |sin |发散。 (4)当+∞→x 时,

p

q

x

x +1~q p x -1, 所以在1>-q p 时,积分x x dx q

p

11

++∞

?收敛,在其余情况下积分 x x dx q

p

11

++∞

?发散。 ⒋ 证明:对非负函数f x (),)cpv (f x dx ()-∞+∞

?收敛与f x dx ()-∞+∞

?收敛是等价的。 证 显然,由f x dx ()-∞+∞

?收敛可推出)

cpv (f x dx ()-∞+∞

?收敛,现证明当0)(≥x f 时

可由)cpv (f x dx ()-∞+∞

?收敛推出f x dx ()-∞+∞

?收敛。

由于)cpv (f x dx ()-∞+∞

?收敛,可知极限

+∞

→A lim =)(A F +∞

→A lim

?-A

A dx x f )( 存在而且有限,由Cauchy 收敛原理,

0>?ε,00A ?>,0,A A A ≥'?:ε<-)'()(A F A F ,

于是0,A A A ≥'?与0',A B B ≥?,成立

≤?'

A A

dx x f )(ε<-)'()(A F A F

≤?--B

B dx x f ')(ε<-)'()(B F B F ,

这说明积分?∞

+0)(dx x f 与?∞-0

)(dx x f 都收敛,所以积分f x dx ()-∞+∞

?收敛。

⒌ 讨论下列反常积分的敛散性(包括绝对收敛、条件收敛和发散,下同):

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

对数判别法

一个比拉阿比判别法更精细的正项级数判别法 摘要:本文用级数∑ ∞ =3 ln 1 n p n n 做比较标准,得到一个比拉阿比判别法更为精细又应用方便的判别法,笔者称之为“对数判别法”。 关键词:比较判别法 级数判别法的极限形式 拉格朗日中值定理 对数判别法 目前较常用而又精细的正项级数判别法是拉阿比判别法,然而此判别法有时精确度仍然不够。以下本文就以级数∑ ∞ =3 ln 1 n p n n 做比较标准,得到一个比拉阿比判别法更为精细又应用方便的判别法——“对数判别法”。 我们先看级数∑ ∞ =3ln 1 n p n n 的敛散性:当1>p 时级数收敛;当1≤p 时级数发散。这个结论可用柯西积分判别法证明(具体证明请参见邓东皋、尹小玲编著《数学分析简明教程》),本文不再细述。 先考虑发散的情况。由比较判别法有:设数列}{n u 是正项数列,若n 足够大时,有 n n n n u u n n ln ) 1ln()1(1++< + 成立,则∑∞ =1 n n u 发散。 为了应用方便我们来寻求像拉阿比判别法那样的“极限形式”: n n n n u u n n ln )1ln()1(1++<+n n n u n nu n n ln ln )1ln(1)1(1-+< -+?+, 由拉格朗日中值定理知,对任意n ,存在)1,(+∈n n n ξ,使得 n n n ξ1 ln )1ln(= -+, 故 n n n n u u n n ln ) 1ln()1(1++<+1]1)1([ln 1 <-+?+n n n u n nu n ξ, 要使n 足够大时有1]1)1([ ln 1 <-++n n n u n nu n ξ成立,只需

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

习题反常积分的收敛判别法

页脚内容278 习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞+a dx x )(?和?∞+a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞+a dx x )(?收敛时?∞+a dx x f )(也收敛; 当?∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε?< ?')(. 于是 ≤ ?'A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是

页脚内容279 ≥?'A A dx x )(?0)(1ε≥?'A A dx x f K , 所以?∞+a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0)()(lim =+∞→x x f x ?.则当?∞+a dx x f )(发散时,?∞+a dx x )(?也发散;但当?∞+a dx x f )(收敛时,?∞+a dx x )(?可能收敛,也可能发散. 例如21)(x x f =,)20(1)(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有 ?∞+1)(dx x f 收敛,而对于?∞+1)(dx x ?,则当21<

=p x x p ?,则+∞=+∞→)()(lim x x f x ?.显然有 ?∞+1)(dx x f 发散,而对于?∞+1)(dx x ?,则当12 1≤

p 时收敛. ⒉ 证明Cauchy 判别法及其极限形式(定理8.2.3). 证 定理8.2.3(Cauchy 判别法) 设在[,)a +∞?+∞(,)0上恒有f x ()≥0,K 是正常数. ⑴ 若f x K x p ()≤,且p >1,则?∞+a dx x f )(收敛;

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

反常积分的收敛判别法

反常积分的收敛判别法 阿文 摘 要:掌握不同类型函数反常积分收敛性的多种判别方法,对于需要计算出其收敛值的,也可以方便的计算出其收敛的数值. 关键词:Cauchy 判别法; Abel 判别法; Dirichlet 判别法 引 言 一般情况下,只需确定一个反常积分函数的收敛性,而不一定需要求出其具体的收敛数值.因此,掌握不同类型函数的反常积分收敛判别法是极其必要的. 一 非负函数反常积分的收敛判别法 1.比较判别法 设在),[+∞a 上恒有)()(0x K x f ?≤≤,其中K 是正常数,则 (1) 当? +∞a dx x )(?收敛时?+∞a dx x f )(也收敛; (2) 当?+∞a dx x f )(发散时?+∞a dx x )(?也发散. 2.Cauchy 判别法 设在),[+∞a ),0(+∞?上恒有0)(≥x f ,K 是正常数, (1)若p x K x f ≤)(,且p>1,则dx x f a ?+∞)(收敛; (2)若p x x f K ≥)(,且p 1≤,则?+∞a dx x f )(发散. 二 一般函数反常积分的收敛判别法 1.Abel 判别法 dx x f a ? +∞)(收敛,)(x g 在),[+∞a 单调有界,则dx x g x f a )()(?+∞收敛;

2.Dirichlet 判别法 F(A)=dx x f A a ?)(在[),+∞a 上有界,)(x g 在[),+∞a 上单调且+∞→x lim 0)(=x g ,则dx x g x f a )()(?+∞ 收敛. 三 无界函数反常积分的收敛判别法 1.Cauchy 判别法 设在[),b a 上恒有0)(≥x f ,当x 属于b 的某个领域),[0b b η-时,存在正常数K ,使得 (1) ,) ()(p x b K x f -≤且p<1,则?b a dx x f )(收敛; (2) ,)()(p x b K x f -≥且p 1≥则?b a dx x f )(发散. 2.Abel 判别法 ?b a dx x f )(收敛,)(x g 在),[ b a 上单调有界,则?b a dx x g x f )()(收敛. 3.Dirichlet 判别法 ? -=ηηb a dx x f F )()(在],0(a b -上有界,)(x g 在),[b a 上单调且0)(lim =-→x g b x , 则?b a dx x g x f )()(收敛. 总 结 函数的类型不同,其相应的反常积分收敛判别法也就不同. 熟练掌握多种判别法可以对不同类型函数的敛散性做出正确的估计及计算.一般的,同一类函数也可用不同的方法来计算,既省时间,正确度又高. 参考文献 [1]陈纪修,於崇华,金路.数学分析(第二版)[M],北京:高等教育出版社,2004.6.

(完整版)定积分典型例题精讲

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

广义积分敛散性判别法的应用

安.师专攀报(自泊科学蔽)1995年旅魂翔 2)若、‘1,。0)的敛散性推导得出的。这在分析教材 中都有介绍。 在使用判别法时,关键在于如何选取入与d,使得符合判别法的条件,从而得出相应的结 论—收敛或发散。一般来说.这种选取是较为困难的。因此,选取入、d,就成为教学中的难点,在分析教材中的例,都是预见选好了入,求出d,据判别法得出相应结论。具体做习题时,在选取入后;还要结合考虑x性(x)的极限,当入,d符合判别法条件l)或幻后,才有相应的结论。对入、d 用“尝试法洲对号入座”,一般不易掌握,但是考虑判别法的特点,还是有一定规律可循的。我们通过对下述例题的讨论,看怎样选取入与d。 例‘讨论几兴dx的敛散性 解一”是被积分函数‘(x,一兴的瑕点·”0<·<,时,in·<”,叮>”, 考虑极限31imx了 工一。+ 一Inx 、反二一1im一Inx~1sm4x寺一。‘一。十x一皿一。十 。___3___.,~~,、,,‘,_ 送里入~丁丈1,d~U,砍原积分收双。悦 分析讨论:能否取入一告呢?‘ 由极限lim、奋 x~。+ 一InX V下~lim(一inx)~一co,不满足O<入<1,O簇d<十、的条件。x一O+ 怎样确定入呢?我们考虑极限limx‘ x~。十 Inx 侧丁~1jm,要使该极限值为有限,而O<久

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2 2 22[()]' [()]'=2() x x x x x x e e e e e e - --+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是3 2π,求这个函数. 解 设所求函数为f (x ), 则由题意知 '()f x = '(arcsin )x 因为 '()()d arcsin f x f x x x C ===+?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知'' ()2y f x x == 因为 2()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

习题8.2反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况。 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数。则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散。 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(。 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(。 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散。 (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?。则当?∞ +a dx x f )(发 散时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散。 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?。显然有 ?∞ +1 )(dx x f 收敛,而对于?∞ +1)(dx x ?,则当21<

不定积分换元法例题1

__________________________________________________________________________________________ 【第一换元法例题】 1、9 9 9 9 (57)(57)(5711(57)(57)55 )(57)dx d x d x dx x x x x +=+?=+?= +?++? ? ? ? 110091(57)(57)(57)10111 (57)5550 d C x x x x C =?=?+=+++++? 【注】1 (57)'5,(57)5,(57)5 x d x dx dx d x +=+==+?? 2、1ln ln ln ln dx d x x x dx x x x =?=???? 221 (l 1ln ln (ln )2n )2x x x d C x C =?=+=+? 【注】111 (ln )',(ln ),(ln )x d x dx dx d x x x x ===?? 3(1)sin tan cos co si s cos cos n cos cos xdx d x xdx dx x d x x x x x --= ===? ???? cos ln |cos |c ln |co s |o s x x d C x C x =-=-+=-+? 【注】(cos )'sin ,(cos )sin ,sin (cos )x x d x xdx xdx d x =-=-=-?? 3(2)cos cos cot sin sin sin sin xdx x xdx dx d x x x x = ==? ??? sin ln |si ln |sin |n |sin x x d C x C x ==+=+? 【注】(sin )'cos ,(sin )cos ,cos (sin )x x d x xdx xdx d x ==?=? 4(1) 1()11d dx a x a x a d x x a x =?=?++++??? ln |1(|)ln ||d C a x a x a x a x C ++=?=+=+++? 【注】()'1,(),()a x d a x dx dx d a x +=+==+?? 4(2) 1()11d dx x a x x x d a a x a =?=?----??? ln |1(|)ln ||d C x a x a x a x a C --=?=+=--+? 【注】()'1,(),()x a d x a dx dx d x a -=-==-?? 4(3) 22221111111212x a a x a dx dx x a x a dx dx a a a x dx x ??- ?--+??? =-+?==- ? -?? ?????

反常积分的敛散性判定方法

内蒙古财经大学本科学年论文反常积分敛散性的判定方法 作者陈志强 学院统计与数学学院专业数学与应用数学年级2012 级 学号122094102 指导教师魏运 导师职称教授 最终成绩75 分

目录 摘要??????????????????.. ?? . ?. ?????..1 关键词??????????????????.. ?? . ?. ????..1 引言 ----------------------------------------------------------------------------------------2 一、预备知识?????????? .. ?? . ?. ????? . 2 1.无穷限反常积分??????????..??.?.?????..2 2.瑕积分????????..??.?.????3 3.反常积分的性质???????? .. ?? . ?. ????3 二、反常积分的收敛判别法????????????.. ?? . ?. 4 1 无穷积分的收敛判别????????.. ?? . ? . ?????4 (1). 定义判别法 (2). 比较判别法 (3).柯西判别法??????? .. ?? . ?. ?????..?? 4??????? .. ?? . ?. ?????..?? 4??????? .. ?? . ?. ?????..?? 5 (4)阿贝尔判别法 . ???????..??.?.?????.6 (5).狄利克雷判别法???????..??.?.?????7 2 瑕积分的收敛判别???????..??.?.?????. .?8 (1). 定义判别法???????..??.?.?????..??8 (2). 定理判别法???????????..??.?.?????.9. (3). 比较判别法?????????????.. ?? . ?. ????9 (4).柯西判别法???????????..??.?.?????9 (5).阿贝尔判别法???????????..??.?.???.10 (6).狄利克雷判别法????????..??.?.?????10.

不定积分第一类换元法

不定积分第一类换元法(凑微分法) 一、 方法简介 设)(x f 具有原函数)(u F ,即)()('u f u F =,C u F du u f +=?)()(,如果U 是中间变量,)(x u ?=,且设)(x ?可微,那么根据复合函数微分法,有 dx x x f x dF )(')]([)]([???= 从而根据不定积分的定义得 ) (] )([)]([)(')]([x u du u f C x F dx x x f ????=??=+=. 则有定理: 设)(u f 具有原函数,)(x u ?=可导,则有换元公式 ) (] )([)(')]([x u du u f dx x x f ???=??= 由此定理可见,虽然?dx x x f )(')]([??是一个整体的记号,但如用导数记号 dx dy 中的dx 及dy 可看作微分,被积表达式中的dx 也可当做变量x 的微分来对待,从而微分等式du dx x =)('?可以方便地应用到被积表达式中。 几大类常见的凑微分形式: ○1??++=+)()(1 )(b ax d b ax f a dx b ax f )0(≠a ; ○ 2??=x d x f xdx x f sin )(sin cos )(sin ,??-=x d x f xdx x f cos )(cos sin )(cos ,?? =x d x f x dx x f tan )(tan cos ) (tan 2,x d x f x dx x f cot )(cot sin )(cot 2??-=; ○3??=x d x f dx x x f ln )(ln 1 )(ln ,??=x x x x de e f dx e e f )()(; ○ 4n n n n x d x f n dx x x f ??=-)(1)(1)0(≠n ,??-=)1()1()1(2x d x f x dx x f ,? ?=)()(2) (x d x f x dx x f ; ○ 5??=-x d x f x dx x f arcsin )(arcsin 1)(arcsin 2 ;

08第八讲 积分判别法

数学分析第十二章数项级数积分判别法 第八讲

数学分析第十二章数项级数 定理12.9(积分判别法) 积分判别法由于比式和根式判别法的比较对象是几何级数,局限性较大,所以还需要建立一些更有效的判别法. 设[1,)f +∞为上非负减函数,+1()d f x x 与反常积分∞ ?同时收敛或同时发散. 证由假设[1,)f 为+∞上非负减函数, f 在[1, A ]上可积,于是 对任何正数A ,那么正项级数()f n ∑

数学分析第十二章数项级数-≤≤-=?1()()d (1),2,3,. n n f n f x x f n n 依次相加可得1 122 1()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?若反常积分收敛,有 111()(1)()d (1)()d . m m m n S f n f f x x f f x x +∞==≤+≤+∑?? 根据定理12.5, 级数()f n ∑收敛. 则由(12)式左边, 对任何正整数m ,

数学分析第十二章数项级数反之, 若()f n ∑为收敛级数, 一正整数m (>1)有 -≤≤=∑?11()d (). (13)m m f x x S f n S 1 0()d , 1.A n f x x S S n A n ≤≤<≤≤+?因为f (x )为非负减函数, 法, 可以证明+1()()d f n f x x 与∞∑? 是同时发散的.112 21()()d (1)().(12)m m m m n n n f n f x x f n f n -===≤≤-=∑∑∑?则由(12)式右边,对任故对任何正数A ,都有111.2,()d .f x x +∞ ?根据定理反常积分收敛用同样方

不定积分例题及答案

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34 134( -+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134( -+-)2 ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ?? ★★ (9) 思路 =? 看到1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? 3x x e dx ?

反常积分

第十一章反常积分 教学要点: 反常积分收敛和发散的概念及敛散性判别法。 教学内容: §1 反常积分的概念(4学时) 反常积分的引入,两类反常积分的定义反常积分的计算。 §2 无穷积分的性质与收敛判别(4学时) 无穷积分的性质,非负函数反常积分的比较判别法,Cauchy判别法,反常积分的Dirichlet判别法与Abel判别法。 §3 瑕积分的性质与收敛判别 瑕积分的性质,绝对收敛,条件收敛,比较法则。 教学要求: 掌握反常积分敛散性的定义,奇点,掌握一些重要的反常积分收敛和发散的例子,理解并掌握绝对收敛和条件收敛的概念,并能用反常积分的Cauchy收敛原理、非负函数反常积分的比较判别法、Cauchy判别法,以及一般函数反常积分的Abel、Dirichlet判别法判别基本的反常积分。 1.反常积分的收敛性及其收敛性的判别法是本章的重点. 2.两类反常积分的性质及其收敛性判别法有很多相似之处,应引导学生加以类比。 §1 反常积分概念 教学目标:掌握反常积分的定义与计算方法. 教学内容:无穷积分;瑕积分. 教学建议:

讲清反常积分是变限积分的极限. 教学过程: 一、 问题的提出 1、为什么要推广Riemann 积分 定积分()b a f x dx ?有两个明显的缺陷:其一,积分区间[a,b]必须是有限区间; 其二,若[,]f R a b ∈,则0M ?>,使得对于任意的[,]x a b ∈,|()|f x M ≤(即有界是可积的必要条件)。这两个缺陷限制了定积分的应用,因为在许多实际问题和理论问题中涉及到积分区间是无穷区间或被积函数出现无界的情形。 例1(第二宇宙速度问题)、在地球表面初值发射火箭,要是 火箭克服地球引力,无限远离地球,问初速度至少多大? 解: 设地球半径为 ,火箭质量为 ,地面重力加速度为,有万有引 力定理,在距地心处火箭受到的引理为 于是火箭上升到距地心处需要做到功为 当 时,其极限就是火箭无限远离地球需要作的功 在由能量守恒定律,可求得处速度至少应使 例2、 从盛满水开始打开小孔,问需多长时间才能把桶里水全部放完? 解: 由物理学知识知道,(在不计摩擦情况下),桶里水位高度为 时,水从小孔里流出的速度为

(完整版)不定积分习题与答案

不定积分 (A) 1、求下列不定积分 1)?2 x dx 2) ? x x dx 2 3) dx x ?-2)2 ( 4) dx x x ? +2 2 1 5)??- ? dx x x x 3 2 5 3 2 6) dx x x x ?2 2sin cos 2 cos 7) dx x e x) 3 2(?+ 8) dx x x x ) 1 1( 2 ?- 2、求下列不定积分(第一换元法) 1) dx x ?-3)2 3( 2) ? - 33 2x dx 3) dt t t ?sin 4) ? ) ln(ln ln x x x dx 5)? x x dx sin cos6) ?- +x x e e dx 7) dx x x) cos(2 ? 8) dx x x ? -4 3 1 3 9) dx x x ?3 cos sin 10) dx x x ? - - 2 4 9 1 11)? -1 22x dx 12) dx x ?3 cos 13)?xdx x3 cos 2 sin 14) ?xdx x sec tan3 15) dx x x ? +2 3 916) dx x x ? +2 2sin 4 cos 3 1 17) dx x x ? -2 arccos 2 1 10 18) dx x x x ? +) 1( arctan

3、求下列不定积分(第二换元法) 1) dx x x ? +2 1 1 2) dx x ?sin 3) dx x x ?-4 2 4) ?> - )0 (, 2 2 2 a dx x a x 5)? +3 2)1 (x dx 6) ? +x dx 2 1 7)? - +2 1x x dx 8) ? - +2 1 1x dx 4、求下列不定积分(分部积分法) 1) inxdx xs ? 2) ?xdx arcsin 3)?xdx x ln 2 4) dx x e x ?- 2 sin 2 5)?xdx x arctan 2 6) ?xdx x cos 2 7)?xdx 2 ln 8) dx x x 2 cos2 2 ? 5、求下列不定积分(有理函数积分) 1) dx x x ? +3 3 2)? - + + dx x x x 10 3 3 2 2 3)? +)1 (2x x dx (B) 1、一曲线通过点 )3, (2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的 方程。 2、已知一个函数 ) (x F的导函数为2 1 1 x -,且当1 = x时函数值为 π 2 3 ,试求此函数。

相关主题