搜档网
当前位置:搜档网 › 微弱信号检测的前置放大电路设计

微弱信号检测的前置放大电路设计

微弱信号检测的前置放大电路设计
微弱信号检测的前置放大电路设计

微弱信号检测的前置放大电路设计

摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。

1、引言

精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和生态效益[1]。农田环境和农作物信息的准确获取取决于可靠的生物传感技术。如常规精准灌溉主要关注空气的温度、湿度和土壤的含水量,利用这些参数的变化控制对农作物的灌溉,而作物自身产生的一些信号能够更准确的反映其自身的生理状况,通过检测这些信号控制灌溉可以使灌溉更精确。目前精准灌溉技术正朝着以环境信息和农作物生理信息相结合为控制依据的方向发展,为此各种生物传感器如植物电信号传感器、植物茎流传感器等应运而生。但一般作物自身生理状况产生的信号极其微弱,往往电流信号只能达到纳安级,电压信号也只能达到微伏级。为有效的利用这些信号,应首先对其进行调理,本文根据植物生理信号的特点设计了适合此类微弱信号检测的前置放大电路。

2、电路基本结构

生物传感器所产生的信号一般为频率较低的微弱信号,检测不同的植物生理参数,可能得到电压或电流信号。对于电流信号,应首先把电流信号转换成为电压信号,通过放大电路的放大,最后利用低通滤波器,滤除混杂在信号中的高频噪声。微弱信号检测前置放大电路的整体结构如图1。

考虑到传感器产生的信号非常微弱,很容易受到噪声的污染,所以放大电路选择仪表放大器结构。仪表放大器拥有差分式结构,对共模噪声有很强的抑制作用,同时拥有较高的输入阻抗和较小的输出阻抗,非常适合对微弱信号的放大。另外为了使输出电压在高频段以更快的速度下降,提高低通滤波器滤除噪声的能力,这里选择了二阶低通滤波器。微弱信号检测前置放大电路原理图如图2。生物传感器产生的生物信号通常具有很大的动态范围,达到几个数量级,原理图中R2 为可变电阻,通过改变R2 的阻值,可以改变仪表放大器的放大倍数,从而适应放大不同大小的微弱信号。

3、噪声的抑制和屏蔽

在微弱信号检测的过程中,噪声的抑制和屏蔽至关重要,由于信号微弱,很容易受到噪声污染,这些噪声主要由环境噪声、电路元器件自身产生的噪声和电源的工频噪声组成,因此在噪声的抑制和屏蔽上要综合考虑这几方面的因素。

3.1 元器件的选择

在进行微弱信号检测过程中,为了减少集成运算放大器对电路的干扰,应选择接近理想运算放大器的芯片。主要参数的要求是具有较小的输入偏执电流、输入偏执电压和零漂,具有较大的共模抑制比和输入电阻。特别是电流电压转换级对集成运放的要求较高,一般需要运放的输入偏执电流在pA 级。目前市面上有很多满足条件的集成运算放大器,如AD8571、LMC6482、LF351和OPA2703等。

电路中的仪表放大级通常设计为程控放大倍数的结构,通过程控开关调整反馈电阻的大小,从而改变放大倍数。为了对数字电路和模拟电路进行隔离,程控开关应选用光偶开关。为了提高仪表放大器的性能,可以选用集成仪表放大器。很多公司提供了不同类型的集成仪表放大器,如INA127,它内部集成了仪表放大器的主要结构,有很好的对称性,可通过改变外接电阻的大小改变放大倍数。PGA202 是一款可程控放大倍数的仪用放大器,应用它可以简化电路结构,但PGA202 需要搭建差分输入级,这样就降低了共模抑制能力。2007年末ADI 公司推出的AD8253 芯片集以上两种芯片的优点于一身,不但集成了完整的仪表放大电路,还集成了程控放大倍数的逻辑电路,是微弱信号检测前置放大电路的理想选择。

3.2 工频噪声和环境噪声的隔离

工频噪声是影响电路的主要噪声,通常可通过电路的电源传递到电路中。为了减少这种影响,在电路设计时应在连接电源处增加旁路电容,隔离电源的交流噪声。除了这些措施外,为了滤除50Hz 的工频干扰,还可以在模数转换时采用具有50Hz 陷波的模数转换器。另外,数字电路部分与模拟电路部分分别接地,尽量减少模拟电路的接地点同时采用画圈接地的方法都可以有效的隔离噪声。

4、电路的设计与实现

综合考虑微弱信号检测的需要和市场上芯片的供应情况,本文选用PGA202 搭建仪表放大器,对微弱信号检测前置放大电路进行了整体设计。

4.1 PGA202 简介

这里所选用的 PGA202 是由BURR-BROWN 公司生产的,PGA202 是一种程控仪表放大器,它内部集成了程控的增益改变逻辑电路。由于省去了增益控制部分,利用PGA202 搭建仪表放大器可以使电路结构得到很大的简化,并且它的放大倍数稳定精确,为后续的数据处理提供了方便。PGA202 的内部结构如图3。

在图 3 中可以看到, A0 和A1 为数字程控信号的输入端,控制PGA202 中集成的前置逻辑电路,通过改变A0、A1 的值可以使仪表运算放大器的倍数在1、10、100 和1000之间改变。

4.2 滤波器的设计

为了加强滤波器滤除噪声的能力,笔者采用了二阶低通滤波器,并在滤波器的设计过程中选择了同样的电容电阻组合。滤波器的截

止频率可通过公式来进行计算,由于生物传感器的信号多为低频信号,因此可以将低通滤波器的截止频率设计的低一些。在笔者所设计的电路中,电阻值100kΩ,电容值33nF,截止频率为48Hz。

4.3 电路设计

为了提高仪表放大器差分输入级的对称性,同时满足零漂、输入偏执电流、输入偏执电压等参数的需求,选用了性能参数较好并且同一芯片中含有两个运算放大器的OPA2277作为仪表放大器的差分输入级。在电压电流转换级采用了性能参数更为理想的集成运放AD8571,AD8571 的输入偏执电流为20-70pA,输入偏执电压为1uV,共模抑制比达到 120-140dB,可以满足I/V 转换输入级对运放性能的要求。在实际的电路设计中还考虑了噪声的隔离,为减少电源的工频噪声对电路的影响,芯片连接电源处分别并联了0.1uF的旁路电容。另外为降低环境噪声对输入信号的污染,将电路的输入点放在了画圈接地的圈中,利用接地圈对环境噪声起到屏蔽作用。整体电路的设计如图4 所示。

4.4 电路的测试

本文按照图 4 制作了电路板,选择R0 的大小为1kΩ,对电路的性能进行了测试。测试过程采用TFG2300 数字合成信号发生器产生20H 正弦信号,通过串联500 kΩ高精度电阻分压后接入电路。设信号发生器产生信号的振幅为A,仪表放大器的输入信号的振幅可

以通过公式计算。采用TDS1002 数字示波器观察到电路输出了较平滑的正弦波形。表1 中给出了A1、A0 分别为11、10 时电路的测试数据。通过表1 可以看出放大器的放大倍数稳定增益误差较小。

5、结论

本文中所讨论的微弱信号检测前置放大电路适用于精准农业中的生物传感器。运用本文所阐述的降噪方法,有效的抑制和屏蔽了可能对电路造成影响的各种噪声,如环境噪声、工频噪声等。通过利用微弱低频信号对以程控增益集成仪表放大器PGA202 为核心的微弱信号检测前置放大电路进行测试,得到了较为理想的结果,说明该电路可以在微弱信号的检测过程中得到应用。

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

微小信号采集电路的设计与研究

微小信号采集电路的设计与研究 刘文光 牛荣军 陈扬枝 摘要 介绍微小信号采集电路的硬件、软件设计和工作原理,将采集到的微小信号放大后进行A/D转换,并通过串行通信方式传送到上位机,以便对信号进行分析处理。经对所制作微小信号采集电路的试验测试,测试结果显示,采集电路性能满足设计要求。 关键词:微小信号 采集 模数转换 中图分类号:TP24 文献标识码:A 文章编号:1671—3133(2005)07—0101—03 D esi gn and study on the c i rcu it for collecti n g ti n y si gna l L i u W enguang,N i u Rongjun,Chen Yangzh i Abstract The design of hard ware and s oft w are of the circuit f or collecting tiny signal and its operating p rinci p le has been intr o2 duced.So as t o analyze and deal with the signal,the collected tiny signal has been ADC after a mp lified,and send it t o the PC thr ough UART.After testing experi m ent on the circuit of collecting tiny signal,the results turn out that the perfor mance of the cir2 cuit f or collecting can reach t o the request of design. Keywords:T i n y si gna l Collecti on ADC 医用人体管道微机器人是当前国际微机械电子技术研究的一个热点,其研究难点在于微机器人的驱动方法及其驱动装置。笔者采用一种新型的轮式驱动方法及其驱动装置设计了管道微机器人的模型样机(如图1所示)。该驱动方法通过弹性啮合与摩擦耦合组合传动的方式使微机器人运动。目前微机器人已经顺利通过直径<20mm的塑料管道的实验,证明了该驱动方法及其驱动装置的原理可行性。因为微机器人采用的是一种新型的轮式驱动方法,该驱动方法最终要使用到医用人体管道微机器人,具体应用到人体肠胃道环境,其性能是否可靠需要进一步的理论与实验研究。同时管道微机器人采用的是直径为<8mm的微直流电动机为驱动源,其输出驱动力十分微小,如此大小的驱动力能否带动管道微机器人在人体肠道这种粘弹性环境中顺利运行,还需要对微机器人的驱动力进行测试与研究。由于管道微机器人驱动力的微小性,给测试与研究带来很大的困难。为了测试管道微机器人驱动力的大小,实验过程中利用悬臂梁式微小力传感器将微小力信号转换成微小电压信号。传感器输出的微小电压信号经过放大并A/D转换后直接送入微机进行计算、存储和显示。基于上述设计要求,本文对微小信号采集电路进行了设计和研究 。 图1 微机器人模型样机 1 采集电路的硬件设计 1.1 电路的组成与工作原理 采集电路主要包括放大电路、A/D转换和单片机三部分,组成框图如图2所示。其工作原理是:管道微机器人的驱动力作用在悬臂梁式微小力传感器上,传感器将微小力信号转换成微小电压信号。微小电信号输入到采集电路后,经过二级放大电路放大到0~5V,以满足A/D转换的需要,放大后的电压信号送入A/D 转换芯片ADS1286。AT89C51单片机根据ADS1286 4)在松开轴向锁定螺钉6时,螺钉不可松开过多,一般应控制在1/4~1/2圈内,以保证O形密封圈始终都处在压偏的密封状态下。 5 结语 可调偏心卡盘已在C620车床和曲柄磨床上使用,解决了695Q型柴油机曲轴等偏心件的生产问题。实践证明,使用效果良好。 参 考 文 献 1 顾维邦.金属切削机床概论[M].北京:机械工业出版社, 1991 2 陈万利.机械设备改装[M].北京:机械工业出版社,1997 3 陈永泰.机械制造技术实践.北京:机械工业出版社,2001 4 陆剑中.金属切削原理与刀具.北京:机械工业出版社,1999 作者通迅地址:湖南工学院(筹)西校区机械系(衡阳421101) 收稿日期:20050104  交叉学科:机械工程/生物医学?艺术造型

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

微弱信号检测装置(实验报告)

微弱信号检测装置 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图 1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。

方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。 方案二:采用TI公司提供的MSP430G2553作为控制芯片。由于MSP430G2553资源配置丰富,内部集成了10位AD,可以直接使用,简化电路,程序实现简单。此外还有低功耗,以及性价比高等优点,所以采用该方案。 5 显示电路的方案设计 方案一:采用液晶显示器作为显示电路,液晶显示器显示内容较丰富,可以显示字母数

强磁场下微弱电压信号检测系统设计

第26卷第6期2013年6月 传感技术学报 CHINESE JOURNAL OF SENSORS AND ACTUATORS Vol.26 No.6Jun.2013 项目来源:贵州大学研究生创新基金项目(理工2012013)收稿日期:2013-03-19 修改日期:2013-05-06 The Design of Weak Signal Detection System in Strong Magnetic Field * LIU Wenjing ,WANG Minhui *,WANG Yalin ,HU Lanzi (Electrical Engineering College of Guizhou University ,Guiyang 550025,China ) Abstract :In order to measure the electric current of busbar ,a measuring device is designed to provide a reference for busbar configuration.This device is based on INA114which is an operational amplifier circuit with high precision and processor S3C2440of ARM.Weak voltage signal and temperature signal can be detected under the strong magnetic field by the detecting system.The characteristic feature and the adverse effects of the strong magnetic field are introduced ,and the characteristics of hardware ,software ,Anti?interference measures are also analyzed.We use the way of power spectral estimation to confirm the signal information of the frequency ,which is proved validity by LabVIEW simulation result.According to the signal frequency ,a low pass filter is designed in the hardware.Finally ,the test data proves that the accuracy of the system can be within 5%.In strong magnetic field the device can collect data once per second and track the change of the current in time. Key words :weak signal detection ;strong magnetic field ;busbar current ;detection circuit ;power spectral estimation ;anti?interference measure EEACC :6140 doi :10.3969/j.issn.1004-1699.2013.06.022强磁场下微弱信号检测系统设计 * 刘文静,王民慧*,汪亚霖,胡兰子 (贵州大学电气工程学院,贵阳550025) 摘 要:为获知母线电流的分布情况,给母线配置提供参考,设计了一个以高精度运放INA114和RAM 处理器S3C2440为基 础的检测装置,使其在强磁场环境下能完成微小电压和温度信号的测量三阐述了强磁场环境的特点和影响,重点分析了系统的硬件构成,软件设计和系统所采取的抗干扰措施三其中,硬件设计采用了功率谱估计的方法确定信号频段,通过Labview 的仿真实验验证了该方法的可行性,并以该频段信息为参考依据设计了低通滤波器三最后,通过试验数据证明了该系统的可靠性,其测量误差小于5%,且在强磁场环境下能实现每秒采集一次数据,实时跟踪电流变化的功能三 关键词:微弱信号检测;强磁场环境;母线电流;检测电路;功率谱估计;抗干扰措施 中图分类号:TP274 文献标识码:A 文章编号:1004-1699(2013)06-0865-06 众所周知,铝电解槽的电场二磁场和流场的稳定直接决定了电解槽的运行情况[1],而运行稳定的电解槽又有利于降低运行电压,达到节能减排的要求三但是,如果母线配置存在缺陷将会导致阴极电流的分布不均,从而无法降低运行电压三刘升[2]在对 300kA 系列电解槽的母线优化改造的研究中,主要以母线电流分布作为参考依据来发现缺陷,通过修正母线电阻来达到从新分配电流的目的三改造后,修正了母线电流的分布偏差,且吨铝省电超过200kWh ,达到了节能的效果三该研究表明,对母线电流 分布的在线监控,可以分析母线配置是否存在缺陷,从而指导电解槽的运行和维护三周萍[3]通过对不同进电方式的电解槽进行了研究,并得出结论:电解槽的进电方式直接影响了槽内熔体的运动三贺志辉[4]对不同进线点的母线配置和母线补偿技术进行了研究,研究表明:进线点数较多以及适当使用母线补偿技术可以有效的降低影响电解生产的垂直磁场强度三对于铝电解工业,电解槽内产生的磁场是直接影响磁流体运动的主要原因之一,磁场不稳定会引起磁流体的强烈扰动[5],从而威胁安全生产三

微弱信号检测装置(国科大电子电路大作业)要点

目录 摘要 (1) Abstract (1) 第一章绪论 (2) 1.1 微弱信号检测技术概述 (2) 1.2 信号检测的方法及微弱信号的特点 (2) 1.2.1 常规小信号的检测方法 (2) 1.2.2 微弱信号的检测方法 (4) 1.2.3 微弱信号的特点 (4) 1.3 本文的主要工作 (5) 第二章微弱信号检测装置设计方案选择与论证 (6) 2.1 方案选择与论证 (6) 2.1.1 系统方案的确定 (6) 2.1.2移相网络设计 (9) 2.2总体方案论述 (9) 第三章基于锁相放大的微弱信号检测装置设计 (10) 3.1 锁相放大器原理 (10) 3.2 移相网络 (10) 3.3 相敏检波器原理分析 (11) 3.4 电路设计 (12) 3.4.1加法器 (12) 3.4.2纯电阻分压网络 (12) 3.4.3前级放大电路模块 (13) 3.4.4带通滤波器 (13) 3.4.5相敏检波器 (13) 第四章仿真分析与程序设计 (16) 4.1 仿真分析 (16) 4.1.1 输入信号波形(前置两级放大电路输入波形) (16) 4.1.2 经过前置放大电路和带通滤波器后输出波形 (16) 4.1.3 参考信号输入输出波形 (17) 4.1.4 LM311过零比较器输出波形 (18) 4.1.5 开关乘法器输出波形 (18) 4.1.6 低通滤波输出波形 (19) 4.2 程序设计 (20) 第五章实物展示与测试方案及结果 (21) 5.1 实物展示 (21) 5.2 测试方案与测试结果 (21) 5.2.1 测试仪器 (21) 5.2.2 测试方案 (21) 5.3测试结果及分析 (23) 5.4 总结 (23)

高频小信号放大电路课程设计

通信基本电路课程设计报告设计题目:高频小信号放大电路 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (2) 二、总体方案 (2) 三、设计内容 (2) 3.1电路工作原理 (3) 3.1.1 电路原理图 (3) 3.1.2 高频小信号放大电路分析 (3) 3.2 主要技术指标 (6) 3.3仿真结果与分析 (10) 四、总结及体会 (12) 五、主要参考文献 (13)

一、设计任务与要求 1、主要内容 根据高频电子线路课程所学内容,设计一个高频小信号谐振放大器。通过在电路设计中发现问题、解决问题,掌握小信号谐振放大器的基本设计方法,加深对该门课程的理论知识的理解,提高电子实践能力。 2、基本要求 设计一个小信号谐振放大器,主要技术指标为: (1) 谐振频率04MHz f =; (2) 谐振电压放大倍数04060dB v dB A ≤≤; (3) 通频带300Hz BW K =。 二、总体方案 小信号调谐放大器是各种电子设备、发射和接收机中广泛应用的一种电压放大器。其主要特点是晶体管的输入输出回路(即负载)不是纯电阻,而是由L 、C 元件组成的并联谐振回路。 小信号调谐放大器的类型很多,按调谐回路区分:有单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分:有共基极、共发射极和共集电极放大器。 高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高功率晶体管和LC 并联谐振回路。 三、设计内容 1.电路工作原理

微弱信号检测 课程设计

LDO 低输出噪声的分析与优化设计 1 LDO 的典型结构 LDO 的典型结构如下图所示,虚线框内为LDO 芯片内部电路,它是一个闭环系统,由误差放大器(Error amplifier)、调整管(Pass device)、反馈电阻网络(Feedback resistor network)组成,其闭环增益是: OUT REF V Acloseloop V = (1) 此外,带隙基准电压源 ( Bandgap reference)为误差放大器提供参考电压。 LDO 的工作原理是:反馈电阻网络对输出电压进行分压后得到反馈电压,该电压输入到误差放大器的同相输入端。误差放大器放大参考电压和反馈电压之间的差值, 其输出直接驱动调整管,通过控制调整管的导通状态来得到稳定的输出电压。例如,当反馈电压小于基准电压时,误差放大器输出电压下降,控制调整管产生更大的电流使得输出电压上升。当误差放大器增益足够大时,输出电压可以表示为: R1(1+)R2 OUT REF V V = (2) 所谓基准电压源就是能提供高精度和高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,其原理是利用PN 结电压的负温度系数和不同电流密度下两个PN 结电压差的正温度系数电压相互补偿,而使输出电压达到很低的温度漂移。传统基准电压源是基 于晶体管或齐纳稳压管的原理而制成的,其αT =10-3/℃~10-4/℃,无法满足现代电子测量之 需要。20世纪70年代初,维德拉(Widlar)首先提出能带间隙基准电压源的概念,简称带隙(Bandgap)电压。所谓能带间隙是指硅半导体材料在0K 温度下的带隙电压,其数值约为 1.205V ,用U go 表示。带隙基准电压源的基本原理是利用电阻压降的正温漂去补偿晶体管发射结正向压降的负温漂,从而实现了零温漂。由于未采用工作在反向击穿状态下的稳压管,因而噪声电压极低。带隙基准电压源的简化电路如下图所示。

通信电子电路课程设计小信号放大器

通信电子线路课程设计-- 高频小信号谐振放大器 学校: 姓名: 学号: 班级: 指导老师:

目录 一、刖言 (3) 二、电路基本原理................................................. .3 三、主要性能指标及测量方法....................................... .5 1谐振频率 (7) 2、电压增益 (7) 3、通频带 (8) 4、矩形系数 (9) 四、设计方案 (10) 1设置静态工作点 (10) 2、计算谐振回路参数 (10) 3、电路图、仿真图和PCB图 (11) 五、电路装调与测试.......................................... ??13 六、心得体会................................................. ??14 七、参考文献............................................... ???15

一、前言高频调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现问题是自激震荡,同时频率选择和各级建阻抗匹配也恶化你难实现。 Protel DXP 软件能实现从电学概念设计到输出物理生产数据,以及这之间的所有分析、验证、和设计数据管理。今天的Protel DXP 软件已不是单纯的PCB 设计工具,而是一个系统,它覆盖了以PCB 为核心的全部物理设计。使用Protel、等计算机软件对产品进行辅助 设计在很早以前就已经成为了一种趋势,这类软件的问世也极大地提高了设计人员在机械、电子等行业的产品设计质量与效率。 通过《通信电子线路》的学习,使用Protel DXP 软件设计了一个高频小信号放大器。 二、电路的基本原理高频小信号放大器的功用就是五失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。

小信号多级放大电路设计-模电课程设计报告

机械与电气工程学院 《模拟电子技术》课程设计报告 姓名: 学号: 班级: 指导教师:

课题名称:小信号多级放大电路设计 一、设计目的 1.通过本课程设计,掌握晶体管放大电路工作原理。 2.熟悉简单模拟电路的设计方法和主要流程。 3.学习模拟电路的制作与调试方法。 二、设计要求 1.输入电压:Vi p-p =30mV。 2.输入电阻:10k~40k。 3.频率特性:100HZ~100kHZ。 4.总谐波失真度(THD)≦3%。 5.供电电压:15V。 6.电压增益:100倍。 7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。 8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。 三、方案设计 1.负反馈的类型 在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。 2.负反馈对放大电路性能的影响 (1)引入负反馈使增益下降 闭环增益表达式为 =A/(1+AF) A f 其中D=1+AF为反馈深度。深度负反馈D>>1条件下

A f ≈1/F (2)负反馈提高增益的稳定性易得: d A f / A f =d A/(1+AF)*A=d A/D*A 上式表明,反馈越深,闭环增益的稳定性越好。(3)负反馈对输入电阻和输出电阻的影响 串联负反馈使R i 增加,并联负反馈使R i 下降。程度取决于反馈深度: R if =(1+AF)R i (串联负反馈) R if = R i /(1+AF)(并联负反馈) 电压负反馈使R o 下降,电流负反馈使R o 增加。程度上取决于反馈深度: R of =(1+AF)R o (电流负反馈) R of =R o /(1+AF) (电压负反馈) (4)负反馈展宽频带 基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为: f Hf =(1+AF)f H f Lf =f L /(1+AF) 3.方案确定 输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。输出电阻:<1k,不是太小,则输出级不需要引入共集电路。电压增益:100倍,且题目要求必须要有两级共射电路,则电路分为两级共射放大。频率特性:100HZ~100kHZ,每一级的电容耦合,本来用10uF,但是通频带在仿真的时候下限只能达到290HZ,上限能达到4.5MHZ。所以用47uF电容耦合,能展宽通频带。 四、电路设计 设计电路图如图1所示

基于锁定放大器的微弱信号检测系统设计

龙源期刊网 https://www.sodocs.net/doc/3018931099.html, 基于锁定放大器的微弱信号检测系统设计 作者:蒋碧波杨振国杨越 来源:《科技经济市场》2017年第04期 摘要:文章设计了一种基于锁定放大器的微弱信号检测系统,该系统以相敏检波器和单片机为核心,结合加法器、纯电阻分压网络、微弱信号检测电路和显示电路组成。测试表明,该系统可以有效地用于噪声淹没的微弱信号检测。 关键词:微弱信号;强噪声;相敏检波 0.概述 微弱信号检测技术综合利用电子、信息学、计算机技术和物理学方法,研究导致噪声的原因和规律,以及被测信号的相关性,将被噪声淹没的微弱有用信号检测出来。相较于生物芯片扫描法中扫描时间与检测灵敏度难以兼顾的缺点和微弱振动信号的谐波小波频域提取法的局限性来说,以锁定放大器为核心的微弱信号检测系统更有潜力。 用调制器将直流或渐变信号进行交流放大,可以避免噪声的不利影响;利用相敏检测器检测频率和相位,利用窄带低通滤波器来抑制高频噪声,大大提高了稳定性,这些优点使得该项技术具有更加广阔的应用前景。 1.锁定放大器的原理 锁定放大器由信号通道、参考通道、相敏检波器以及输出电路组成。其基本思想是将与被测信号相同频率和相位关系的参考信号作为基准信号,使得只有与被测信号本身以及与参考信号同频和同相的噪声分量有响应,其他频率的噪声被抑制,从而能提取出有用信号。若增加辅助前置放大器,锁相放大器增益可达220dB,能检测极微弱交流输入信号。锁定放大器输出为直流电压信号,且正比于输入信号幅度及被测信号与参考信号相位差。与一般的带通放大器不同,锁相放大器具有极强的抗噪声能力。 系统的核心相敏检波器(PSD)的本质功能是对两个信号之间的相位进行检波,只有当同频同相信号输入时,为全波整流且输出最大。 2.系统总体设计 本系统总体框图如图1所示,系统由接收信号预处理通道、参考信号预处理通道、相关器及输出电路组成,其中核心部件相关器,它包括开关乘法器和RC低通滤波器;其中加法器由同相放大电路构成,实现噪声与待测信号相加,使得信号淹没在噪声环境中,然后经过衰减器衰减约100倍,模拟接收方收到的信号,并送入以相敏检波器为核心的微弱信号检测电路。参

微弱信号检测学习总结分析方案

微弱信号检测学习总结报告 1本课程的基本构成 本课程目录: 第1章微弱信号检测与随机噪声 第2章放大器的噪声源和噪声特性 第3章干扰噪声及其抑制 第4章锁定放大 第5章取样积分与数字式平均 第6章相关检测 第7章自适应噪声抵消 本课程分为七章: 第一章主要介绍随机噪声的统计特性,是后续各章的理论基础。 第二章主要介绍电路内部固有噪声源及其特性,对各种有源器件的噪声性能进行分析,并阐述低噪声放大器设计中需要考虑的几个问题。 第三章介绍干扰噪声的来源、特点及各种耦合途径,并详细介绍屏蔽和接地对于各种干扰噪声的抑制作用,以及其他一些常用的抗干扰措施和微弱信号检测电路设计原则。 第四~七章分别为锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消,分别介绍这几种方法的理论基础、设计实现以及一些应用实例。 因此本课程<微弱信号检测)基本构成:微弱信号检测与随机噪声,放大器的噪声源和噪声特性、干扰噪声及其抑制、锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消。 2本课程研究的基本问题 微弱信号是相对背景噪声而言的,其信号幅度的绝对值很小、信噪比很低<远小于1)的一类信号。如果采用一般的信号检测技术,那么会产生很大的测量误差,甚至完全不能检测。微弱信号检测的主要目的是提高信噪比。微弱信号检测是测量技术中的一个综合性的技术分支,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。微弱信号检测技术研究的重点是:如

何从强噪声中提取有用信号,探索采用新技术和新方法来提高检测系统输出信号的信噪比。 本课程<微弱信号检测)研究噪声的来源和统计特性,分析噪声产生的原因和规律,运用电子学和信号处理方法检测被噪声覆盖的微弱信号,并介绍几种行之有效的微弱信号检测方法和技术。 3学习本课程<微弱信号检测)后了解、掌握了哪些内容 通过对微弱信号这门课程的学习,我掌握的内容主要有以下几个方面: <1)了解了常规小信号检测的手段和方法,即滤波、调制放大与解调、零位法、反馈补偿法。 <2)掌握了随机噪声及其统计特征。 ①随机信号的概率密度函数 对于连续取值的随机噪声,概率密度函数(PDF>P(x>表示的是噪声电压x

微弱信号检测

微弱信号检测电路实验报告 课程名称:微弱信号检测电路 专业名称:电子与通信工程___年级:_______ 学生姓名:______ 学号:_____ 任课教师:_______

微弱信号检测装置 摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大。该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测。本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。经最终的测试,本系统能较好地完成微小信号的检测。 关键词:微弱信号检测锁相放大器相敏检测强噪声

1系统设计 1.1设计要求 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A、B、C、D和E分别为五个测试端点。 图1 微弱信号检测装置示意 (1)基本要求 ①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。 ②微弱信号检测电路的输入阻抗R i≥1 MΩ。 ③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 (2)发挥部分 ①当输入正弦波信号V S 的幅度峰峰值在20mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ②扩展被测信号V S的频率范围,当信号的频率在500Hz ~ 2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ③进一步提高检测精度,使检测误差不超过2%。 ④其它(例如,进一步降低V S 的幅度等)。

调谐小信号放大器分析设计方案与仿真

实验室 时间段 座位号 实验报告 实验课程 实验名称 班级 姓名 学号 指导老师

小信号调谐放大器预习报告 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。 二.实验内容 调谐放大器的频率特性如图所示。 图1-1 调谐放大器的频率特性 调谐放大器主要由放大器和调谐回路两部分组成。因此,调谐放大器不仅有放大作用,而且还有选频作用。本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。 二.单调谐放大器 共发射极单调谐放大器原理电路如图1-2所示。 放大倍数f o f 1f K 0.7o K o K 2o f ?通频带f ?2o f ?2o f ?

图1-2 图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。 三.双调谐回路放大器 图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。 本次实验需做内容

基于DSP的微弱信号检测采集系统设计

基于DSP的微弱信号检测采集系统设计 通常所用的数据采集系统,其采样对象都为大信号,即有用信号幅值大于噪声信号。但在一些特殊的场合,采集的信号很微弱,其幅值只有几个μV,并且淹没在大量的随机噪声中。此种情况下,一般的采集系统和测量方法无法检测该信号。本采集系统硬件电路针对微弱小信号,优化设计前端调理电路,利用测量放大器有效抑制共模信号(包括直流信号和交流信号),保证采集数据的精度要求。针对被背景噪声覆盖的微弱小信号特性,采用简单的时域信号的取样积累平均方法,有利于减少算法实现难度。 DSP芯片因其具有哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令、快速的指令周期等特点,使其适合复杂的数字信号处理算法。本系统采用TI公司的TMS320C542作为处理器,通过外部中断读取ADC数据,并实现取样累加平均算法。 1. 取样积累平均理论 微弱信号检测(Weak Signal Detection)是研究从微弱信号中提取有用信息的方法。通过分析噪声产生的原因和规律,利用被测信号的特点和相干性,检测被背景噪声覆盖的有用信号。常用的微弱信号检测方法有频域信号的相干检测、时域信号的积累平均、离散信号的计数技术、并行检测方法。其中时域信号积累平均是常用的一种小信号检测方法。 取样是一种频率压缩技术,将一个高重复频率信号通过逐点取样将随时间变化的模拟量,转变成对时间变化的离散量的集合,从而可以测量低频信号的幅值、相位或波形。时域信号的取样积累方法是在信号周期内将时间分成若干间隔,在这些时间间隔内对信号进行多次测量累加。时间间隔的大小取决于要求恢复信号的精度。某一点的取样值都是信号和噪声

相关主题