搜档网
当前位置:搜档网 › 愤怒在燃烧

愤怒在燃烧

愤怒在燃烧
愤怒在燃烧

愤怒在燃烧

愤怒在燃烧今天下午放学,我和爸爸在回家的路上说说笑笑,好不开心。

在路的岔道口,突然发生了一件令人愤怒的一件事:一辆白色的北京现代奔驰着,到了转弯的时候,竟不打方向指示灯,和一辆摩托车撞了个满怀!这时,整条路都堵上了。“啪”摩托车倒了,车主和一个大概六七岁的小女孩压在了硬邦邦的路上,车主——一位40岁左右的妇女在地上挣扎着,可就是摆脱不了摩托车的重量。看到这情景,我那好心情消失得无影无踪。那辆白色汽车里的主人走了出来,他圆圆的脸,一对招风耳。只见他一丝不苟地检查着车子,他不但不拉一把那位可怜的妇女,还举起手,指着依然在地上痛苦挣扎的妇女,不知廉耻地大骂起来。虽然我隔着玻璃听不见,但耳不听心为净,听了心中也只有气,看着他那刻意翻出的白眼,便也能料出个一二来。我平生最讨厌刀子嘴的人了,这回让我碰了个正着。我心中的怒火油然而生,就像憋人的气体一样,气得我透不过气。在反光镜里,我看见我的脸色煞白,并恼怒地咯吱咯吱咬着牙,哼哼起来:明明是你先不对,怎么还怪起了别人?仗着自己有钱有势,都不把人放在眼里了!……不只是发泄得过猛,我的嘴唇都哆嗦着,手紧握着,在毛茸茸的衣裳上搓着,我觉得气愤在我胸膛凝结了起来,就像一团火红的铁渣,隐隐燃烧着,堵得我喘不过气来,烧得我左边心里阵阵作疼,但我依然没有勇气下车。

这时,那妇女站了起来,我以为她要怒气冲冲地反驳这位蛮横的男子,但事与愿违,那个妇女脸直发白,胸口起伏得又急又快,她正低头哄着身子像拧麻花似的扭动的那位小女孩,对于男子的话,她一声不吭。对于妇女的不吭声,男子很满意,就越发羞辱妇女来了。我看得浑身的怒火都在燃烧,都快喷出来了,世界上怎么会有你这么不知廉耻的人?!这时,路旁的好心人再也忍不住了,都愤愤不平地下了车,替妇女说了句公平话!那位男子见情形不对,便不情愿地从鼓鼓的钱包里扔下一张一百一百元,一溜烟跳进车子里,逃之夭夭了!

像这种视金钱,权势为生命,视法律如儿戏的人真让人气愤!纸是包不住火的,我相信,像这种仗着自己有钱而不顾别人的感受的人一定会曝光在法庭上,不管他是谁,王子犯法与民同罪,法律面前人人平等!我希望有像那名男子一样行为的人能及时改正!

爱国——从愤怒开始

爱国与愤怒似乎是两个不相干的字眼,可很多时候他们又是联系在一起的。

因为爱国,所以愤怒。因为愤怒,才有爱国的行为。岳飞因为对入侵的金人愤怒,才有了“精忠报国”的英雄篇章,林则徐因为对英国用鸦片打开中国大门的卑劣行径而愤怒,才有了“虎门销烟”的壮举;等市场为日本的无耻侵略而愤怒,才有了与日航同沉的悲壮一幕;中国青年因为巴黎和会的不公正而愤怒,才有了轰轰烈烈的“五四”运动……在英雄一怒的背后呢,我们感到一颗爱国的心。一片甘洒热血的爱国情,无数的事例向我们透露出一个真理爱国——从愤怒开始。

与之相反,虽然我们很小的时候,老师就教育我们要爱国,但还是不断有人往外国跑,难道就说我们中国人不爱国了吗?我国近代科学先驱、着名工程师詹天佑,在国内一无资本、二无技术、三无人才的艰难局面面前,满怀爱国热情,受命修建京张铁路。他以忘我的吃苦精神,走遍了北京至张家口之间的山山岭岭,只用了4年时间就修成了外国人计划需7年时间才能完成的京张铁路,前来参观的外国专家无不震惊和赞叹。当时,美国有所大学为表彰詹天佑的成就,决定授予他工程博士学位,并邀请他去参加仪式。可是詹天佑正担负着一条铁路设计任务,因而毅然谢绝了邀请。他这种为国家不为个人功名的精神,赢得了国内外的称赞。如果说詹天佑还不能说明我们中国人爱国,难道你还不会说能抵五个师的钱学森博士不爱国了吗?在1950年,已是美国大学的终身教授和实验中心主任。他配备有世界第一流搞科研的技术设备,享有非常优裕的生活条件。如果从追求个人的科研成果来说,那真是“得天独厚”。但他毅然冲破美国的种种阻挠,回到祖国,在“一穷二白”的土地上创造中国人的火箭、导弹事业。有人问他为什么归心似箭,他说:“因为我是一个中国人,我的事业在中国,我的归宿在中国”。有人问他中国既无人才又无设备,搞火箭导弹能行吗?他回答是:“外国人能干的,中国人为什么不能干!”钱学森的誓言实现了,中国卫星上天了,洲际导弹可以同外国“比武”了。我们中国人从起站起来了,我们中国人不比外国人差!

爱国是我们中华民族的传统美德,加油吧,好好学习,长大了一定要成为我们祖国繁荣富强的中坚力量,为实现中华民族伟大复兴而

奋斗,相信吧,祖国的明天因有我们而精彩,我爱我的祖国!

愤怒与惋惜

今天我看了电影《火烧圆明园》,他讲述了1860年10月16日,英法联军像中国索要天津,清代的皇帝愤怒无比,决定誓死守卫天津,经过几天的苦斗还是失败了,哎!难道清政府就那么腐败?

英法联军又一次去北京签订不合法条约,我们中国的人要和他们笔试武功,英法联军惨败,为什么我们中国有如此身强体壮的人还能输呢?因为清政府腐败的已经无可救药了。英法联军走向天坛,在那里大言不惭的说:有几句话传给恭亲王和大清王的皇帝我要烧毁他的行宫举世闻名的万园之园的圆明园。强盗要杀人放火借口是主人不许他来屋里偷窃真是荒谬之论还要恬不知耻的大声宣告,说完,他们就带领3500名士兵,把能拿走的拿走了,拿不走的烧毁,抢完了,还在当场拍卖,最后放了一把大火,大火烧了三天三夜,更可气的是他们把我们的奇珍异宝运回了自己的祖国,还建立的中国馆,专门收藏从中国带回来的宝贝,为什么他们敢如此横行霸道呢?就是因为中国有丰富的资源和各种奇珍异宝,他们也有,有的是野心和洋枪大炮。最后还是无奈的签订了不合法条约,就让这废墟随时警告自己,随时提醒自己,这是英法联军烧毁的,这是他们在中国犯下的滔天大罪,落后就要挨打,我们要用自己劳动的成果来强大祖国,我们是祖国的未来。

中国就是一只雄狮,从沉睡的梦中醒来,全世界因为这只雄狮而震撼,我们必须要有自己的梦,那就是中国梦,让曾经欺辱华人的外

国人看一看我们中国是有气节的,有骨气的,从来都是顶天立地,从来不低头折节的。现在的中国虽然表面上很强大,那么日本为什么还敢向中国要钓鱼岛呢?难道新中国是第二个清政府吗?今日之责任,不在他人,而全在我少年。少年智则国智,少年富则国富,少年强则国强,少年独立则国独立,少年自由则国自由,少年进步则国进步,少年胜于欧洲则国胜于欧洲,少年雄于地球则国雄于地球。”

纸张燃烧的制作方法

步骤1:首先建立一个720*576,长度为6秒的合成图像(comp),把它命名为“燃烧”。如图1。

步骤2:导入一段影片。此练习中导入heart.jpg。将heart拖动到合成图像中。按Ctrl+Alt+F,使图像与合成图像一样大。如图2。 步骤3:再建立一个720*576的名为“置换”的合成图像。建立一个和合成图像等大的固体层(solid),在该层上施加Fractal Noise效果(Effects/Render/Fractal Noise)。将contrast值设为205。在Transform卷展栏中取消“uniform scal

ing”的圈选,将高度缩放值设为200%(这样使火苗的长度增加,在原来的火球形状上产生更多的卷曲火舌)。如图3。

步骤4:在Fractal Noise的evolution项上,设定关键帧。0秒时为0,4秒时为旋转4圈。如图4。 接下来我们要使Fractal Noise产生向上的动画效果。 在分形噪波(Fractal Noise)的Transform项中的offset turbulence上,设定关键帧,0秒时值为360,288,4秒时为360,96。如图5。

把合成图像“置换”拖到合成图像“燃烧”中。关闭它的可视开关。(前面的小眼睛)。如图6。 步骤5:在合成图像“燃烧”中,创建一个720*576,名为“火焰”的固体层。在其上施加椭圆(Ellipse)效果(Effect/Rende r/Ellipse)。将Ellipse中的内圈颜色(inside color)设置为桔黄色(R255,G128,B0),外圈颜色(outer color)设为一种略深的桔黄色(R128,G64,B0)。柔和度(softness)设为0%。 在时间线窗口中,ellipse滤镜中选择高度(height),按下Shift+Alt+=,建立一个表达式。

燃烧新技术的应用与发展

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 燃烧新技术的应用与发展 燃烧新技术的应用与发展随着经济的发展,我国能源消耗量愈来愈大,同时对环境造成的污染也愈来愈严重。 近来我国对节能减排的要求越来越高,尤其是当前全球金融危机的不利形势下,能耗水平的竞争也已成为了国家实力竞争的主战场。 而降低能耗不仅要在生产过程中严格把控,更要采用先进的节能技术和配套相应的节能设备才能实现。 针对以上现状,近年来,各类燃烧新技术在很多方面得到应用,得到了很大的发展,比如工业炉的高温空气燃烧技术、多孔介质燃烧新技术、富氧燃烧新技术在马蹄焰玻璃窑炉上的应用等等,以下将分别简单介绍。 一、工业炉的高温空气燃烧技术高温空气燃烧技术(High Temperature Air Combustion-HTAC)是 20 世纪90 年代开发成功的一项燃料燃烧领域中的新技术。 它是在传统的蓄热燃烧基础上发展起来的。 蓄热燃烧在钢铁工业中找已应用,如炼铁的热风炉,已过时的炼钢用的平炉等。 70 年带末,日本学者在英国学者提出的超焓火焰的理念基础上进行了开发。 所谓超焓是指在原有混合气所具有的焓值基础上,再添加一部 1 / 6

分焓之后的状态,不需要借助于外部热源,只要采用常规的工业炉窑燃烧所用的热再循环,就可以维持超稀薄混合气体的稳定燃烧。 日本学者重点对多孔性固体壁的传热和蓄热性能、热的再循环促进燃烧过程的机理及其应用进行了研究,取得了节能降耗的良好效果。 HTAC 包括两项基本技术手段: 一是燃烧产物显热最大限度回收(或称极限回收);二是燃料在低氧气氛下燃烧。 燃料在高温下和低氧空气中燃烧,燃烧和体系内的热工条件与传统的(空气为常温或低于600℃以下,含氧不小于 21%)燃烧过程有明显区别。 高温空气燃烧技术能把 30%被烟气带走的余热再回收 60%~80%,节能效果显著,但是该技术在改善加热物体的温度均匀性、减少污染物排放方面在国内应用效果不佳。 二、多孔介质燃烧新技术近年来,在燃烧研究领域中,多孔介质燃烧技术越来越多的受到人们的青睐。 其特点是气体混合物在一种既耐高温、导热性能又好的特殊多孔介质材料里完成燃烧,介质做成什么形状,火焰就是什么形状,炉子内部没有火焰,加热物体不是靠火焰,而是靠加热高温介质和温度均匀的烟气的辐射热。 多孔介质燃烧新技术,是继第一代常规气体燃烧技术,第二代蓄热燃烧技术之后,国际最新的第三代气体燃烧技术。

低no燃烧技术

燃煤锅炉的低NO x燃烧技术 NO x是对N 2O、NO 2 、NO、N 2 O 5 以及PAN等氮氧化物的统称。在煤的燃烧过程中, NO x生成物主要是NO和NO 2 ,其中尤以NO是最为重要。实验表明,常规燃煤锅炉中NO生成量占NO x总量的90%以上,NO2只是在高温烟气在急速冷却时由部分NO 转化生成的。N2O之所以引起关注,是由于其在低温燃烧的流化床锅炉中有较高的排放量,同是与地球变暖现象有关,对于N2O的生成和抑制的内容我们将结合流化床燃烧技术进行介绍。 因此在本章的讨论中,NO x即可以理解为NO和NO2。 一、燃煤锅炉NO x的生成机理 根据NO x中氮的来源及生成途径,燃煤锅炉中NO x的生成机理可以分为三类:即热力型、燃料型和快速型,在这三者中,又以燃料型为主。它们各自的生成量和炉膛温度的关系如图3-1所示。试验表明,燃煤过程生成的NO x中NO占总量的90%,NO2只占5%~10%。

1、热力型NO x 热力型NO x是参与燃烧的空气中的氮在高温下氧化产生的,其生成过程是一个不分支的链式反应,又称为捷里多维奇(Zeldovich)机理 →(3-1) O2 O 2 + → NO N N O+ (3-2) 2 + → NO N+ O O (3-3) 2 如考虑下列反应 → +(3-4) OH N+ NO H 则称为扩大的捷里多维奇机理。由于N≡N三键键能很高,因此空气中的氮非常稳定,在室温下,几乎没有NO x生成。但随着温度的升高,根据阿仑尼乌斯 (Arrhenius)定律,化学反应速率按指数规律迅速增加。实验表明,当温度超

过1200℃时,已经有少量的NO x生成,在超过1500℃后,温度每增加100℃,反应速率将增加6~7倍,NO x的生成量也有明显的增加,如图3-1所示。 但总体上来说,热力型NO x的反应速度要比燃烧反应慢,而且温度对其生成起着决定性的影响。对于煤的燃烧过程,通常热力型NO x不是主要的,可以不予考虑。一般来说通过降低火焰温度、控制氧浓度以及缩短煤在高温区的停留时间可以抑制热力型NO x的生成。 2、快速型NO x 快速型NO x中的氮的来源也是空气中的氮,但它是遵循一条不同于捷里多维奇机理的途径而快速生成的。其生成机理十分复杂,如图3-2所示。 通常认为快速型NO x是由燃烧过程中的形成活跃的中间产物CH i与空气中的氮反应形成HCN、NH和N等,再进一步氧化而形成的。在煤的燃烧过程中,煤炭挥发分中的碳氢化合物在高温条件下发生热分解,生成活性很强的碳化氢自由基(CH· ,CH2· ),这些活化的CH i和空气中的氮反应生成中间产物HCN、NH和N,随后又进一步被氧化成NO,实验表明这个过程只需60ms,故称为快速型NO x,这一机理是由费尼莫(Fenimore)发现的,所以又称为费尼莫机理。

催化燃烧技术研究进展综述

催化燃烧技术研究进展综述 发表时间:2018-08-14T10:35:54.717Z 来源:《基层建设》2018年第21期作者:周灵怡郭士义龚燕雯[导读] 摘要:本文概述了催化燃烧的VOCs治理技术,从催化剂活性组分、催化剂结构、形状、制备等角度,阐述现在芳烃催化燃烧的发展趋势。 上海电气电站环保工程有限公司上海 201600 摘要:本文概述了催化燃烧的VOCs治理技术,从催化剂活性组分、催化剂结构、形状、制备等角度,阐述现在芳烃催化燃烧的发展趋势。 关键词:芳烃;催化燃烧;催化剂前言: 催化燃烧是一个气-固相催化反应,其实质是活性氧参与深度氧化作用。在催化燃烧过程中,催化剂降低反应的活化能,同时使反应物分子富集于催化剂表面,以提高反应速率。借助催化剂可使有机废气在较低的起燃温度条件下发生无焰燃烧,并氧化分解成为CO2和H2O,同时放出大量热量,达到了净化废气的目的。反应过程如式(l-l)所示: 式中m、n为整数;Q为反应放出的热量 VOCs催化燃烧技术中,关键是催化剂的研制,其性能的优劣对废气销毁效率和能耗有着决定性的影响。按照催化剂所用的活性组分不同,催化剂可以分为贵金属催化剂和非贵金属氧化物催化剂两大类。按照催化剂的形状不同,催化剂可以分为颗粒催化剂和整体式催化剂两大类。 1、催化剂概述 1.1 催化剂的活性组分催化剂中活性组分是最重要的组成部分,直接影响催化效果,按照催化剂所使用的活性组分,可将催化剂分为贵金属催化剂和过渡金属催化剂两大类。 1.2 催化剂形状 催化剂的形状不仅影响反应器压力降,也影响反应物和产物的扩散速度,以及反应选择性和转化率。因此,在催化燃烧反应过程中,催化剂在床层中的形状对催化剂的催化燃烧性能有很大的影响。常用催化剂按形状可分为颗粒状和整体式催化剂两大类。(1)颗粒状催化剂 催化燃烧是一个强放热反应,颗粒催化剂在反应中会产生 “热点”和局部高温,催化剂易烧结失活;同时,颗粒催化剂床层压降高,当含有粉尘的废气通过时,床层易被阻塞;另外颗粒催化剂强度低,易破损,阻力大。因此,颗粒催化剂并不适合催化燃烧空速和热效应较大的工业有机废气。 (2)整体式催化剂 整体式催化剂是指一个反应器中只有一块催化剂,英文名叫Monolith,通常为具有许多狭窄、直的或是弯曲的平行通道的整体结构催化剂[1],因而对催化燃烧空速和热效应较大的工业有机废气具有很好的应用前景。催化活性组分负载在通道的壁面上,这些通道为催化剂活性组分与反应气体提供了尽可能大的接触面积,同时也使气体的压力降降到最低。与传统的颗粒催化剂相比,整体式催化剂具有以下优点[2]:1)床层压降大幅降低;2)催化活性物质涂层薄,内表面利用率高,特别适用反应速度快、空速大和处于传质控制过程的催化燃烧反应;3)气流分布均匀,无热点和沟流现象,反应器径向和轴向的温度梯度大大减小;4)不产生粉尘,也不易被外来粉尘堵塞;5)机械强度和热稳定性较好;6)安装简单,既可水平安装(气流水平方向通过),也可垂直安装(气流上下通过)。整体式催化剂一般由活性组分和助剂、载体或涂层和基体三部分组成。基体主要起承载催化涂层的作用,主要分为两类,一类是陶瓷基体(如堇青石、氧化铝、莫来石);另外一类是金属基体(如Fe-Cr-Al合金、金属丝网)。 图1 蜂窝陶瓷基体图2 蜂窝金属基体①蜂窝陶瓷基体 蜂窝陶瓷基体大多以耐熔性氧化物、铝酸盐和硅酸盐材料(如氧化铝、氧化镁、二氧化钛、石英、二氧化锆、尖晶石、堇青石和碳化硅等)作为原料,由于堇青石蜂窝陶瓷价格便宜、原材料易得、生产工艺简单和性能基本满足使用需要,且与各种催化剂活性组分良好的匹配性,孔壁薄热膨胀系数和耐热冲击性好等优点,大多数厂家均将其作为整体式催化剂的基体。但是,蜂窝陶瓷基体也有一些不足:1)一般制作工艺的蜂窝孔径和壁厚还不能制得很小,使进一步提高催化强度和降低床层压降受到限制;2)陶瓷导热性差,热容量大;3)用于汽车尾气处理时,陶瓷的机械强度还不完全经受得住行车过程中的气流冲击和机械震动。 ②蜂窝金属基体 与蜂窝陶瓷基体相比,蜂窝金属基体具有以下优点[3]:1)导热系数大,可以快速地将热量传递,从而达到启动温度或将热量散发;2)壁薄、质轻、床层压降小;3)机械强度高,耐振动;4)良好的延展性,易于加工成型;5)金属丝网基体具有三维多孔结构,允许气流在多个孔道内交错流动,具有更大的传热速率和传质效率。因此,金属蜂窝基体克服陶瓷蜂窝基体的质脆、导热性差等缺点。但是金属基体也存在热膨胀系数高,涂层与金属基体粘结强度不高、易脱落、工艺复杂、价格相对较高等一系列问题,因此其不如陶瓷基体应用广泛。 (3)整体式催化剂制备

燃烧合成介绍

燃烧合成(combustion synthesis,简称CS)又称为自蔓延燃烧合成,是一种利用化学反应的自身放热使反应持续进行的合成方法。该方法的历史可以追溯到前苏联科学家对火箭固体推进剂燃烧问题的探讨。早在1967年,Merzhanov和Borovinskaya在研究Ti-B混合粉坯时就发现自蔓延燃烧现象,并提出自蔓延高温合成(self-propagating high- temperature synthesis,简称SHS)的概念[104]。SHS 最大的特点是合成反应的自发热和自维持,在合成过程中不需要外部能源供给[104,105]。采用SHS工艺可以合成陶瓷材料、金属基与陶瓷基复合材料、金属间化合物、梯度材料、高温超导等高技术结构材料与功能材料[106,107]。此项新的合成技术一出现就受到各国的重视并列入各国高技术材料发展的规划中。 然而,SHS技术工艺可控性较差。同时,由于燃烧温度一般高于2000 °C,合成的粉末粒度大,难以满足小粒径、大表面粉体材料合成的要求。因此,研究人员将SHS技术与湿化学方法相结合,发展出了低温燃烧合成(1ow-temperature combustion synthesis,LCS)新技术。相对于SHS工艺,LCS工艺中的燃烧温度大为降低,从而避免了产物的严重烧结。LCS技术具有以下特点:(1) 起燃温度低,一般在120-350 °C。(2) 反应自维持,合成时间短;(3) 反应产生的大量气体使产物具有疏松多孔的微观形貌;(4) 保留湿化学方法的优点,化学计量比准确,各组分间能达到分子或原子级均匀度;(5) 产物的烧成温度比传统固相反应有较大降低;(6) 合成所需设备简单,原材料成本低。因此,LCS技术被广泛应用于各种氧化物粉体[108-112],尤其是复合氧化物粉体材料的制备,例如各种固体氧化物燃料电池材料,BaTiO3、SrTiO3电子陶瓷,YBCO系高温超导体及多种其它功能陶瓷材料[113-116]。 燃烧合成中的燃烧反应本质上是一个氧化-还原反应。通常选取金属硝酸盐作氧化剂,有机物作还原剂(燃料)。金属硝酸盐在充当氧化剂的同时,还提供目标产物所需的金属离子。此外,硝酸盐还保证了金属粒子的良好溶解性。燃料的选取一般有两个要求。一是要求燃料与硝酸盐所发生的燃烧反应比较温和,产生气体无毒。二是选取的燃料最好对金属离子有络合作用,因为络合剂可以增加金属离子的溶解性,并阻止在前驱体溶液中金属盐的结晶析出。 燃烧合成所需氧化剂和还原剂(燃料)的量可根据推进剂化学原理进行计算。Jain等[117]提出了一种计算氧化剂和还原剂比例的简单方法,即分别计算两者的总还原价和总氧化价,按照总还原价和总氧化价相等的原则来确定它们的化学计量比。当燃料/硝酸盐的比例少于化学计量比时,燃烧反应称为“贫燃反应”。当燃料/硝酸盐的比例高于化学计量比时,称为“富燃反应”。为了保证目标产物的化学组成和燃烧反应的完全,有时需额外添加一定量的氧化剂。硝酸铵是常用的一种氧化剂。例如,在合成钛酸钡时,加柠檬酸的同时需要加入适量硝酸铵,既保证了Ba2+、Ti4+有足够的络合剂,又避免过量有机物燃烧不完全。另外,空气中的氧气也可作辅助氧化剂。

欧洲标准-氧氮燃烧法

欧洲标准草案prEN 14582 2002年10月 ICS 英文版本 废弃物特性描述-卤素和硫含量- 密闭系统内氧气燃烧法和测定方法 本欧洲标准草案提交至CEN成员并征求询问。它是由技术委员会CEN/TC 292拟订的。 如果此草案成为欧洲标准,CEN成员必须遵守《CEN和CENELEC内部章程》,其中制订了赋予此欧洲标准国家标准的地位而不可更改的条件。 本欧洲标准由欧洲标准化委员会(CEN)制定,存在三种官方版本(英文,法文,德文),其它在CEN 成员的负责之下经过翻译成为自己的语言并通知到管理中心的版本具有官方版本相同的地位。 CEN的成员为以下国家的国家标准机构:奥地利、比利时、捷克、丹麦、芬兰、法国、德国、希腊、冰岛、爱尔兰、意大利、卢森堡、马尔他、荷兰、挪威、葡萄牙、西班牙、瑞典、瑞士和大不列颠王国。 警告:本文件并非欧洲标准。它分发至各成员以备审查和征询意见。此文件变更时将不予以通知,不可作为欧洲标准参考。 欧洲标准化委员会(CEN) 管理中心:布鲁塞尔斯塔沙特路36号B-1050 ? 2002 CEN 版权归CEN各成员所有,不得以任何形式进行非法利用。

prEN 14582:2002(E) 目录 前言 (3) 简介 (4) 1范围 (4) 2引用标准 (5) 3术语和定义 (5) 4原理 (5) 5干扰 (6) 6危险 (6) 7试剂和控制混合物 (6) 8样品储存和预处理 (7) 9方法A(量热弹燃烧法) (8) 10方法B(Sch?niger烧瓶燃烧法) (11) 11建议的测定方法 (13) 12控制测量 (14) 13评估 (14) 14性能特征 (14) 15测试报告 (14) 附录A(参考信息)方法A的变异 (17) 附录B(参考信息)实验室间比对实验结果 (18) 附录C(参考信息)控制物质举例 (19) 参考书目 (20)

生物质燃烧技术的研究进展

生物质燃烧技术的研究进展 摘要:生物质燃烧技术是生物质能转化利用途径研究较成熟的一种主要方式。从影响生物质燃烧特性的因素出发,综述了生物质燃料组分、理化特性和运行条件在生物质燃烧技术中的作用,介绍了生物质燃烧过程的动力学模拟研究现状,对生物质燃烧过程中存在的问题进行了总结和探讨,并对今后生物质燃烧技术的发展进行了展望。 生物质是指来源于生物有机体的材料,尤其是基于植物体的材料,包括大量的草本植物、淀粉、纤维素、木质素等。但目前生物质原料不仅仅局限于植物类的废弃物,还包括农林畜产品废弃物、食品加工产业废弃物、餐饮废弃物和城市有机生活垃圾等。生物质能是绿色植物通过光合作用将光能储存为生物有机体内的化学能,与煤相比,生物质能作为新兴能源,受到全世界越来越多的关注,主要因其具有如下特点:①生物质能是一种绿色能源,符合可再生、可持续利用能源的目标,成为当前最洁净的能源之一,对环境污染小,可以降低对传统化石能源的依赖性;②生物质能在成长过程中吸收环境中的CO2,在生命周期内可以实现CO2的零排放或零增长,降低使用化石燃料造成的温室气体排放量;③生物质中灰分比重低、含硫量少和挥发分含量高;④生物质种类繁多、来源广泛、总量丰富,且具有本土特性。 生物质能由于其在社会效益、环境效益和经济效益中的可持续发展而备受世界各方重视并得以大力推广。目前生物质能提供全球总量10%~15%的能源供应,是世界上排名第四的能源。在工业发达国家中,生物质能占到能源总量的9%~14%,而在发展中国家则更高,占到25%~30%,部分地区甚至高达50%~90%。但在这些国家中,大部分生物质能被当地低收入者用于炊事和供暖用能,商业化程度并不高,且热利用效率极低。 随着科技的进步,生物质能的转化利用形式也多种多样,改变了简单的直燃模式下利用效率低的缺点。当前生物质能转化的方式主要可以归结为:热裂解、气化、液化、超临界流体提取、厌氧消化、厌氧发酵、酸解、酶解和酯化降解等,但这些生物质转换技术由于成本、技术的成熟度和使用效率等方面的原因,难以大面积推广,生物质能的应用仍以直接燃烧为主。到目前为止,生物质燃烧所利用的能源约占全球生物质能利用的95%。为了提高热利用效率,如何对其燃烧利用技术进行深入地研究,已成为国内外各方相关人员普遍关注的问题。 1生物质燃烧特性的影响因素

燃烧法合成高纯β-SiC超细粉的工艺参数

蒲永平等:施主掺杂BaTiO3陶瓷临界浓度的理论计算· 817 ·第35卷第7期 燃烧法合成高纯β–SiC超细粉的工艺参数 张利锋,燕青芝,沈卫平,葛昌纯 (北京科技大学特种陶瓷粉末冶金研究室,北京 100083) 摘要:以硅粉、碳黑、活性炭为原料,以聚四氟乙烯为添加剂,在氮气中分别用直接燃烧合成和预热燃烧合成工艺制备了高纯β–SiC微粉。用扫描电镜测得产物呈等轴球形,平均粒径为100nm。添加剂聚四氟乙烯的质量分数(下同)为5%以上时,均可以直接点燃合成高纯度亚微米级的β–SiC,2%的添加剂就可以使理论预热温度由1023K降到673K,降低了成本。另外,以活性炭代替碳黑为原料,对比了硅和碳的摩尔比为1:1和1:1.25的2个配方对产物物相的影响, 说明用足够纯净的活性炭为原料代替碳黑制备β–SiC是可行的。将预热法、氮气助燃法以及化学活化法成功的进行了结合,布料方式由以往的压块改为直接粉状布料,且在60L燃烧合成反应器中单炉装料1kg条件下,合成了高纯度的β–SiC粉体,适应了中试生产的需要。 关键词:燃烧合成;β–碳化硅;亚微米粉末;预热自蔓延反应;化学活化自蔓延反应 中图分类号:TQ174 文献标识码:A 文章编号:0454–5648(2007)07–0817–05 TECHNOLOGY PARAMETERS OF ULTRA-FINE β–SiC POWDER BY COMBUSTION SYNTHESIS ZHANG Lifeng,YAN Qingzhi,SHEN Weiping,GE Changchun (Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083, China) Abstract: Ultra-fine β–SiC powder has been obtained by two methods, direct combustion synthesis and preheating combustion syn-thesis, in nitrogen atmosphere using Si, carbon, activated carbon as raw materials and teflon (–C2F4–)n as additive. The crystallites of combustion products measured by a scanning electron microscopy showed that they are global and the average diameters are about 100 nm. Pure and ultra-fine β–SiC powders can be obtained on direct combustion when the mass fraction(the same below) of additive is more than 5%. The theoretic preheating-temperature can decrease from 1023K to 673K by decreasing the amount of additive to 2% and thus saving the cost. The same time, using activated carbon as substitution of carbon, the effect on combustion products of two batches of mole ratio of Si to active C with 1:1 and 1:1.25 was compared, it illustrated that the substitution of purer active C for carbon as raw material in preparing the β–SiC is possible. Three methods of preheating combustion synthesis, combustion synthesis in nitrogen atmosphere and chemical stimulation combustion synthesis were successfully combined, and the material introduce from pressed block to powdery spread, the ultra-fine β–SiC powders were fabricated through combustion synthesis in 60L reactor with a single load of more than 1 kg materials. It makes the needs of pilot-plant. Key words: combustion synthesis; beta silicon carbide; ultra-fine powder; preheating combustion synthesis; chemical stimulation combustion synthesis SiC最常见的有2种晶型[1]:α–SiC和β–SiC。β–SiC为立方晶型,类似金刚石的结构。与六方晶型的α–SiC相比,β–SiC有更高的硬度(Mohs硬度达9.5以上),更好的韧性和优越的磨削性能。β–SiC 相对于α–SiC还具有更加优异的烧结性能,而且粉体越细,烧结活性越高。此外,β–SiC还具有良好的吸波性能,是良好的吸波材料。 目前超细β–SiC的生产主要采用Acheson法,存在的问题是反应时间长(一般达几十小时)、需要酸洗除杂等后续工艺[2–6]。探索高效节能的低成本制备工艺一直是近年来的研究热点。 燃烧合成是已经得到广泛研究和获得应用的一种材料合成和制备的新技术[7–9],它是利用外部提供的瞬间能量,诱发高放热化学反应体系产生局部化 收稿日期:2007–01–11。修改稿收到日期:2007–03–08。第一作者:张利锋(1982~),男,硕士。Received date:2007–01–11. Approved date: 2007–03–08. First author: ZHANG Lifeng (1982—), male, master. E-mail: zlf8207@https://www.sodocs.net/doc/2e15221309.html, 第35卷第7期2007年7月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 35,No. 7 J u l y,2007

燃烧控制系统及优化

燃烧控制系统及优化 一、燃烧控制系统 1风烟系统流程与作用 锅炉烟风系统主要包括一次风机、送风机及引风机等系统。一次风机和送风机主要用来克服供燃料燃烧所需空气在空气预热器、煤粉设备和燃烧设备等风道设备的系统阻力;引风机主要用来克服热烟气在受热面管束(过热器、炉膛后墙排管和省煤器等)、空气预热器、电除尘器等烟道的产生的系统阻力,并使炉膛出口处保持一定的负压。锅炉的风烟系统由送风机、引风机、空气预热器、烟道、风道等构成。冷空气由两台送风机克服送风流程(空气预热器、风道、挡板等)的阻力,并将空气送入空气预热器预热;空气预热器出口的热风经热风联络母管,一部分进入炉两侧的大风箱,并被分配到燃烧器二次风进口,进入炉膛;另一部分由一次风机经空预器引到磨煤机热风母管作干燥剂并输送煤粉。炉膛内燃烧产生的烟气经锅炉各受热面分两路进入两台空气预热器,空气预热器后的烟气进入电除尘器,由两台引风机克服烟气流程(包括受热面、脱硝设备、除尘器、烟道、脱硫设备、挡板等)的阻力将烟气抽吸到烟囱排入大气。 引风机:克服尾部烟道、除尘器、空气预热器等的压力损失。使炉膛内产生的烟气能够顺利排除,并使炉膛内维持一定的负压,让锅炉能够良好的充分燃烧。以提高经济效益。 一次风系统:一次风的作用是用来输送和干燥煤粉,并供给煤粉挥发份燃烧所需的空气。 二次风系统:二次风是在煤粉气流着火后混入的。由于高温火焰的粘度很大,二次风必须以很高的速度才能穿透火焰,以增强空气与焦碳粒子表面的接触和混合。二次风由两台二次风机供给,进入空气预热器内加热后,由二次热风道送到锅炉四周,再由二次风管分层在不同高度进入炉内,供给燃料燃烧所需要的氧量,并实现分级送风,降低NOx排放。另一路从二次热风道引出送到给煤口和石灰石管线上作为密封风。 燃烧方式:鸳鸯湖电厂采用的燃烧方式是四角切圆燃烧方式,有24个燃烧器。工作原理是:煤粉气流在射出喷口时,虽然是直流射流,但当四股气流到达炉膛中心部位时,以切圆形式汇合,形成旋转燃烧火焰,同时在炉膛内形成一个自下

发动机燃烧新技术

发动机燃烧新技术——Hcci 发动机均质充量压缩着火HCCI(homogeneous charge compression ignition)燃烧是一种全新的燃烧方式。是将燃料、空气及再循环燃烧产物所形成的预混合气被活塞压缩,自燃、着火、做功的过程。 一、HCCI燃烧方式概述 HCCI是均匀的可燃混合气在气缸内被压缩直至自行着火燃烧的方式。随着压缩过程的进行,气缸内的温度和压力不断升高,已混合均匀或基本混合均匀的可燃混合气多点同时达到自燃条件,使燃烧在多点同时发生,而且没有明显的火焰前锋,燃烧反应迅速,燃烧温度低且分布较均匀,因而,只生成极少的NOx和微粒(PM),在低负荷时具有很高的热效率。HCCI发动机主要具有以下几个特点: 1.超低的NOx和PM排放。 2.燃烧热效率高。HCCI发动机的热效率甚至超过了直喷式柴油机。 3.HCCI燃烧过程主要受燃烧化学动力学控制。 4.HCCI发动机运行范围较窄,HCCI发动机燃烧受到失火(混合气过稀)和爆燃(混合气过浓)的限制,使发动机运行范围变窄。对于高十六烷值燃料,由于HCCI发动机燃烧非常迅速,在高负荷工况下(混合气浓度大)易发生爆

震;对于高辛烷值的燃料,由于HCCI燃烧为稀薄燃烧,发动机在小负荷工况下容易失火。 5.HCCI发动机HC、CO排放偏高。这主要是由于HCCI 燃烧通常采用较稀的混合气和较强的EGR,因缸内温度较低造成的。 二、柴油机HCCI燃烧的特点 实现柴油机HCCI燃烧要面临两方面的困难:一是柴油粘度大,挥发性差,难以形成均质混合气;二是柴油作为高十六烷值燃料,容易发生低温自燃反应,均质混合气的燃烧速度控制困难,易造成粗暴燃烧。 柴油HCCI的燃烧放热表现出特别的两个阶段。第一阶段(放热曲线上较小的峰值)与低温化学动力学有关(冷焰或蓝焰);第二阶段(放热曲线上较大的峰值)是主燃烧期;第一阶段是第二阶段的焰前反应,焰前反应放出的热量加热了余下的充量,同时余下的充量继续被压缩,经历短时间的延迟后,余下的充量达到着火条件,几乎同时着火,使放热率迅速升高,表现在放热曲线上出现大的峰值。 因此,HCCI燃烧速度较快,燃烧始点和放热率对压缩过程中充量的温度、压力等很敏感,控制起来很困难。如果HCCI燃烧控制得较好,则可在拓宽的大空燃比范围内进行高效稳定的燃烧,循环波动压力小,工作柔和。

巧用燃烧规律法解有机化学计算题

点燃 点燃 点燃 巧用“燃烧规律法”解有机化学计算题 绝大部分有机物可以燃烧。在有机化学计算题中涉及燃烧的反应计算题最多,如何快速解决这方面问题,笔者对有机物燃烧的规律进行了一些探索,寻找出了解决燃烧问题的有机计算的有效方法,叫“燃烧规律法”。本文从以下四个方面进行阐述有关燃烧的计算规律。 1从有机物完全燃烧的总反应式入手的计算规律 烃C x H y :C x H y +(x +y /4)O 2——→x CO 2+y /2 H 2O 烃的含氧衍生物C x H y O z :C x H y O z +(x +y /4-z /2)O 2——→x CO 2+y /2 H 2O 例1:25℃时某气态烃与O 2混合,在容积不变的密闭容器中点燃,爆炸后又恢复到原温度,此时容器内压强为原来的一半,再经NaOH 溶液处理,容器内几乎成为真空。该烃的分子式可能为 A .C 2H 4 B . C 2H 6 C .C 3H 6 D .C 3H 8 解析:此题涉及到有机物是烃(C x H y ),经燃烧生成CO 2和H 2O ,其中CO 2能被NaOH 溶液吸收,容器几乎成为真空,说明烃C x H y 与O 2均无剩余,恰好完全反应。先书写反应式,在列式计算: C x H y +(x +y /4)O 2——→x CO 2+y /2 H 2O 1 x +y /4 x 结合气体状态方程式:PV==nRT (公式中:P —压强,V —体积,n —物质的量,T —温度,R —气体常数) 据题意,同T 、V 下, ,而 (N —微粒数) 得出: 解得:x ==1+y /4 分析答案,A 、D 符合x ==1+y /4,所以答案为A 、D 。 2等物质的量的有机物完全燃烧的计算规律 等物质的量的烃完全燃烧时的耗氧量,按照烃燃烧方程式知,取决于(x +y /4)的大小,在不写反应在此的情况下,x 可以直接比较。(x +y /4)越大,耗氧量越大;x 越大,生成CO 2越多;y 越大,生成H 2O 越多。反之,恰好相反。 如果是烃的含氧衍生物,在不写反应式的情况下,则可采取转换形式的简单方法。若符合C x H y (CO 2)m (H 2O)n 形式,即几种有机物间差若干个CO 2或若干个H 2O 不影响耗氧量,则几种有机物的耗氧量是相同的。 例2:下列各组物质,分别取等物质的量在足量的氧气中完全燃烧,耗氧量不同的组是 A .乙烷(C 2H 6)和甲酸乙酯(C 3H 6O 2) B .乙炔( C 2H 2)和乙醛(C 2H 4O ) C .乙酸(C 2H 4O 2)和乙醇(C 2H 6O ) D .乙烯(C 2H 4)和乙醇(C 2H 6O ) 解析:本题中各组物质是取等物质的量在足量氧气中完全燃烧。按照燃烧规律法采取转换形式: 选项A :C 2H 6和C 3H 6O 2—→转换成C 2H 6·CO 2,耗氧量相同; 选项B :C 2H 2和C 2H 4O —→转换成C 2H 2·H 2O ,耗氧量相同; 选项C :C 2H 4O 2和C 2H 6O —→不能转换成C x H y (CO 2)m (H 2O)n 形式,耗氧量不同; 选项D :C 2H 4和C 2H 6O —→转换成C 2H 4·H 2O ,耗氧量相同; 所以,答案为C 。 3等质量的有机物燃烧的计算规律 依据等质量C 、H 两种元素燃烧时耗氧量多少,H 燃烧后转换为H 2O (H 与O 质量比为1:8),C 转换成CO 2(C 与O 质量比为3:8),H 耗氧多。等质量的烃燃烧,采取化简的方法,将烃化简成CH x 的依据 2121n n P P =2121n n N N =122 41====++P P x y x

生物质燃烧技术的研究进展

生物质燃烧技术的研究进展 摘要:生物质燃烧技术是生物质能转化利用途径研究较成熟的一种主要方式?从影响生物质燃烧特性的因素出发,综述了生物质燃料组分?理化特性和运行条件在生物质燃烧技术中的作用,介绍了生物质燃烧过程的动力学模拟研究现状,对生物质燃烧过程中存在的问题进行了总结和探讨,并对今后生物质燃烧技术的发展进行了展望? 关键词:生物质燃烧;转化利用途径;动力学模拟 Progress of Biomass Combustion Technology Abstract: Biomass combustion is a mature and major way of biomass utilization. Based on the characteristics of biomass combustion, the effects of biomass fuel constitutes, physicochemical properties and operation conditions on biomass combustion technology were reviewed. The research status of kinetics numerical simulation on biomass combustion was introduced. The problems in biomass combustion were summarized and discussed. The development prospects of biomass combustion technology were also put forward. Key words: biomass combustion; way of utilization; kinetics simulation 生物质是指来源于生物有机体的材料[1],尤其是基于植物体的材料,包括大量的草本植物?淀粉?纤维素?木质素等?但目前生物质原料不仅仅局限于植物类的废弃物,还包括农林畜产品废弃物?食品加工产业废弃物?餐饮废弃物和城市有机生活垃圾等?生物质能是绿色植物通过光合作用将光能储存为生物有机体内的化学能,与煤相比,生物质能作为新兴能源,受到全世界越来越多的关注,主要因其具有如下特点[1-4]:①生物质能是一种绿色能源,符合可再生?可持续利用能源的目标,成为当前最洁净的能源之一,对环境污染小,可以降低对传统化石能源的依赖性;②生物质能在成长过程中吸收环境中的CO2,在生命周期内可以实现CO2的零排放或零增长,降低使用化石燃料造成的温室气体排放量;③生物质中灰分比重低?含硫量少和挥发分含量高;④生物质种类繁多?来源广泛?总量丰富,且具有本土特性? 生物质能由于其在社会效益?环境效益和经济效益中的可持续发展而备受世界各方重视并得以大力推广?目前生物质能提供全球总量10%~15%的能源供应[1],是世界上排名第四的能源[5]?在工业发达国家中,生物质能占到能源总量的9%~14%,而在发展中国家则更高,占到25%~30%,部分地区甚至高达50%~90%[1]?但在这些国家中,大部分生物质能被当地低收入者用于炊事和供暖用能,商业化程度并不高,且热利用效率极低[1,6]?

燃烧法制备氧化铈

燃烧法制备氧化铈 稀土元素由于存在4f 层电子而是其氧化产物具有独特的光、电、磁等性能,而氧化铈(CeO2)是稀土氧化物系列中活性最高的一个氧化物催化剂。近几年来,由于氧化铈的应用愈加广泛,所以需求量也很高,因此在多种氧化铈的制备工艺中,燃烧法有着重要地位。 制备氧化铈的的方法,常见的有溶胶凝胶法,一般沉淀法,均相沉淀法,微乳液法和燃烧法等,而燃烧法的存在着一些显著的优点,例如制备温度低、操作简单等。如果使用沉淀法进行制备,沉淀过程漫长,而且实验条件难控制,操作复杂,所以燃烧法的另一个优点是缩短了试验周期而且节省了时间和能源。 一、实验设备和试剂:六水硝酸铈(O H NO Ce 236)(?)、硬脂酸(23618O H C )、工业废乙醇、研钵、铁架台、玻璃棒、电子天平。 二、实验原理:将助燃剂氧化铈和六水硝酸铈混合后在加热的条件下达到沸点后燃烧,生成产物即为氧化铈。 X NO O H CeO O H NO Ce ++????→??22236)(助燃剂,燃烧 三、氧化铈的制备 将六水硝酸铈和硬脂酸按照1:4定量取出,硝酸铈取0.43g ,硬脂酸为2.1g 左右,用电子天平称量后混合倒入烧杯当中。将废弃的工业酒精倒入研钵适量,便于燃烧。将研钵放置在铁架台上,固定烧杯在适当的位置,然后点燃酒精棉加热烧杯。在加热的过程中使用玻璃棒不断地进行搅拌,目的是在加热的过程中使得硝酸铈和硬脂酸混合并且受热均匀。当混合物开始沸腾并由白色变为棕色时,注意观察可一看到,混合物达到着火点,烧杯中发生自蔓延燃烧反应,剧烈并带有大量烟雾产生,燃烧结束后烧杯中获得黄色絮状产物。 四、燃烧成分的测定。 将燃烧的产物放入玛瑙研钵中研磨使其成为大小尺寸均匀的粉状物,然后使用压片机制片(当燃烧物较少时可加入适量硼酸)。将样品在检测中可以检测到产物为100%的氧化铈。 五、结果与讨论。 燃烧法制备氧化铈的实验条件和影响因素: (1)、原料配比对实验现象和实验结果的影响。 由于在实验中,纯硝酸铈的燃烧比较困难,所以加入有机酸作为助燃剂,降低着火点。由于硬脂酸内碳元素的百分含量较高,而且价格低廉,所以选择硬脂酸作为助燃剂。在多次实验的基础下发现当两者配比不同时燃烧现象不同,并且当燃烧不完全时,燃烧产物会出现杂质,实验结果会出现差异。在多次试验的分析后,两者的成分比例存在一个最佳配比(此处不做详细讨论)。 (2)试验温度。 由于采用火焰煅烧法直接燃烧试样,火焰温度难以控制,所以难以进行测定。经过资料调查后发现,温度同样影响燃烧制备的结果。当设置的温度较低时,也可以发生燃烧反应,但是温度对凝胶时间产生影响。温度低,水分蒸发慢,形成凝胶的时间较长,这样在燃烧时,反应物并非同时达到着火点,整个体系的反应时间延长,氧化还原反应不是集中放热,反应温度也随之下降,而反应过程中不时突然产生大量气体,而是随着反映的进行缓慢产生气体,所以生成的产物蓬松度不够,产物颗粒也大小不一。

燃烧控制系统的设计

目录 一绪论...................................................................................................................................... 二燃烧控制系统的设计 2.1燃烧过程控制任务 2.2燃烧过程调节量 2.3燃烧过程控制特点 三燃料控制系统 ........................................................................................................................ 3.1燃料调节系统...................................................................................................................... 3.2燃料调节——测量系统...................................................................................................... 3.3给煤机指令.......................................................................................................................... 四600MW火电机组DCS系统设计 4.1 电源部分 4.2 通信部分 4.3 系统接地 4.4 软件部分 五结论................................................................................................................................... 参考文献...................................................................................................................................

相关主题