搜档网
当前位置:搜档网 › 含油污泥

含油污泥

含油污泥
含油污泥

REGULAR ARTICLE

Rhizobacteria (Pseudomonas sp.SB)assist phytoremediation of oily-sludge-contaminated soil by tall fescue (Testuca arundinacea L.)

Wuxing Liu &Jianying Sun &Linlin Ding &

Yongming Luo &Mengfang Chen &Caixian Tang

Received:15January 2013/Accepted:5April 2013#Springer Science+Business Media Dordrecht 2013

Abstract

Background and aims The objectives of this study were to examine the effect of direct inoculation of seeds with the rhizobacteria Pseudomonas sp.SB on the growth of tall fescue and phytodegradation effi-ciency in an oily-sludge-contaminated soil.

Methods SB isolated from rhizosphere soil of tall fescue was evaluated for their plant-growth-promoting characters and ability to produce biosurfactant.A pot experiment was conducted to study the effect of inoculation of SB on phytoremediation.

Results SB reduced the surface tension of culture me-dia and produced indole acetic acid,siderophores,and 1-aminocyclopropane-1-carboxylate deaminase.Inoc-ulation of SB increased shoot and root dry weights of

tall fescue in oily-sludge-contaminated soil by 28%and 19%,respectively.Over 120days,the content of total petroleum hydrocarbon in soil decreased by 33.9%,68.0%,and 84.5%,and of polycyclic aro-matic hydrocarbons (PAHs)by 32.9%,40.9%,and 46.2%,respectively,in the no-plant control,tall fescue,and tall fescue +SB treatments.Inoculation of SB also increased the activity and biodiversity of soil microbial communities in the planted treatments.

Conclusions SB could produce biosurfactant and exhibited a number of characters of plant-growth-promoting rhizobacteria.Inoculation of SB to tall fescue led to more effective remediation of oily-sludge-contaminated soils.

Keywords Biosurfactant-producing bacterium .PGPR .Phytoremediation .Oily sludge

Introduction

The widespread extraction,refining,processing,trans-portation,and utilization of petroleum are posing an ever increasing risk of soil contamination with petro-leum hydrocarbons (Tahhan et al.2011).In addition to accidental contamination,improper disposal of oily sludge generated in oil refineries and petrochemical industries often leads to soil contamination and poses a serious threat to soil and groundwater as many of the constituents of oily sludge are carcinogenic and potent immunotoxicants (Propst et al.1999).

Plant Soil

DOI

10.1007/s11104-013-1717-x

Responsible Editor:Peter Christie.

W.Liu (*):J.Sun :L.Ding :Y .Luo :M.Chen Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China

e-mail:liuwuxin@https://www.sodocs.net/doc/269788398.html, Y .Luo

Institute of Coastal Zone Research,Chinese Academy of Sciences,Yantai 264003,China

C.Tang

Department of Agricultural Science,La Trobe University,Melbourne Campus,

Bundoora,Victoria 3086,Australia

Oily-sludge-contaminated soils are currently treated using physical,chemical,and biological processes. Physical or chemical methods include incineration,chlo-rination,ozonation,and combustion.Many of these technologies,however,are either costly or do not result in complete removal of contaminants.On the other hand, biological treatment(“bioremediation”)is widely used (Huang et al.2005;Liu et al.2010;Vasudevan and Rajaram2001;Wang et al.2012)and appears to be among the most promising methods for remediating a wide range of organic contaminants,particularly petro-leum hydrocarbons though some fractions of them with high molecular weight are fairly resistant to bioremedi-ation,requiring long periods of time for assimilation. Phytoremediation is one of bioremediation technologies. It uses plants and their associated microbes for environ-mental cleanup and is generally considered as an envi-ronmental friendly and gentle management option for polluted soils as it uses solar-driven biological processes to treat pollutants(Wenzel2009).Phytoremediation can be applied at moderate contamination levels and biotoxicity or after the application of other remediation measures as a further step to degrade residual pollutants (Merkl et al.2005).The successful application of phytoremediation of petroleum-contaminated soils has been shown in a number of studies(Gerhardt et al.2009; Huang et al.2005;Muratova et al.2008).However,there are also many limitations in phytoremediation.One of the factors limiting biodegradation of oil pollutants is that many hydrocarbon compounds are less readily accessible to microorganisms in the soil due to their low aqueous solubility and strong binding/sorption onto soil matrix.Low biomass production and slow growth of the plants due to the phytotoxicity of hydrocarbons in soil also limit effective remediation(Huang et al.2004, 2005).

One of the effective ways to increase the bioavail-ability of petroleum hydrocarbon pollutants in soil is using surfactants to enhance their desorption and solu-bilization,thereby facilitating microbial degradation (Kuyukina et al.2005).Biosurfactants are structurally diverse group of surface-active substances produced by living cells and have desirable characteristics such as biodegradability,low toxicity,and ecological accept-ability.Though most of biosurfactants are produced by microorganisms,including rhamnolipids,surfactin, sophorolipids,and so on,there are also plant-derived biosurfactants such as saponins.They can also be pro-duced from renewable and cheaper substrates than many synthetic surfactants(Banat et al.2000).A number of studies have been successfully carried out on soil biore-mediation using biosurfactants(Cameotra and Singh 2008;Lai et al.2009;Liu et al.2012;Urum et al.2003).

Successful plant growth in petroleum-contaminated soils is also critical for the optimum performance of phytoremediation.Plant-growth-promoting rhizobacteria (PGPR)have been used to enhance the tolerance of plants against toxicity through the production of plant-growth-promoting factors such as siderophores,indole-3-acetic acid(IAA),and1-aminocyclopropane-1-carboxylate (ACC)deaminase(Glick et al.2007).Therefore,the application of rhizobacteria with PGPR characters is a promising approach to improving the efficiency of phytoremediation.However,to the best of our knowl-edge,no report has been published on the utilization of biosurfactant-producing bacteria with PGPR characters to assist phytoremediation petroleum-contaminated soils.

Tall fescue(Testuca arundinacea L.)which can sig-nificantly increase the efficiency of hydrocarbon degra-dation in the soil(Huang et al.2005)was used in this study.The aims of this work were(1)to characterize the biosurfactant-producing Pseudomonas sp.SB which has the characters of PGPR,(2)to determine the impact of the strain inoculation on tall fescue growth and re-moval rate of total petroleum hydrocarbon(TPH)and polycyclic aromatic hydrocarbons(PAHs)in an oily-sludge-contaminated soil,and(3)to examine changes in the functional diversity indices of the microbial com-munity and the acute biological toxicity of the contam-inated soil after phytoremediation.

Materials and methods

Soil characterization

The oily-sludge-contaminated soil was collected from the surface layer(0–20cm)in Jingmeng city,Hubei Province,China(31°02′N,112°11′E).Soil samples were air-dried,ground to pass through a2-mm sieve, and stored in plastic bags until use.Hydrolyzable nitro-gen,cation exchange capacity(CEC),pH,and available phosphorus and potassium were measured using stan-dard methods(Lu1999)before phytoremediation,and the soil had the following properties(dry-weight basis): pH(1:2.5soil/water)6.45,hydrolyzable N558mg kg?1, available P171mg kg?1,available K174mg kg?1,and cation exchange capacity23cmol kg?1.

Plant Soil

Bacterium and surface tension measure

Pseudomonas sp.SB was isolated from rhizosphere soil of tall fescue(Testuca arundinacea L.)grown in a petroleum-contaminated soil and stored in the labora-tory.The isolated strain was inoculated into50ml of the LB medium and incubated at25°C with shaking at 180rpm for48h.The surface tension and the optical density at600nm of the culture medium were mea-sured every4h.The surface tension was measured by the ring method at25°C using a Model ZL-2digital tensiometer(Boshan Tongye Analytical Instrument, Shandong,China).

ACC deaminase,phosphate solubilization,IAA,

and siderophore assay

The activity of ACC deaminase of cell-free extracts was determined by estimating the amount ofα-ketobutyrate (α-KB)generated by the enzymatic hydrolysis of ACC. The amount ofα-KB was determined by comparing the absorbance at540nm of a sample to a standard curve of α-KB(Zhang et al.2011).Total protein was determined by the method of Bradford(1976)using bovine serum albumin as a standard.After determining the amount of protein andα-KB,the enzyme activity was expressed as molarα-KB per milligram per hour(Jalili et al.2009). Mineral phosphate solubilization was assayed on Pikovskaya agar plates containing insoluble tricalcium phosphate Amprayn et al.(2012).The plates were incu-bated at28°C,and development of a clear zone around the colony was evaluated at day5.

Bacterial IAA was measured as previously described (Glickmann and Dessaux1995).Single bacterial colony was inoculated into the TSB medium and grown over-night with shaking at200rpm in a water bath at30°C. The absorbance at600nm of culture was adjusted to approximately1.2,and5ml of each culture was inocu-lated into5ml of the DF medium[with(NH4)2SO4] containing L-tryptophan(200μg ml?1).The cultures were grown with shaking at200rpm at30°C for40h (Reed et al.2005).Siderophore secretion by the Pseu-domonas sp.SB was detected by the method of Payne (1994).

Pot experiment

A pot experiment was conducted in a glasshouse with natural light.The experiment consisted of three treatments in four replicates with a fully randomized design.The treatments were(1)no-plant control,(2) tall fescue,and(3)tall fescue plus Pseudomonas sp. SB(tall fescue+SB).Plastic pots were filled with 2.0kg air-dry soil,and water content of the soil was maintained at about80%field capacity during the experimental period.All treatments received80mg P kg?1as KH2PO4before the experiment.Other nutri-ents were at adequate ranges and thus were not applied.

Uniform seeds of tall fescue were surface-disinfected by immersing in0.3%sodium hypochlorite for5min and rinsing with sterilized distilled H2O.An aliquot of50 seeds were then sown in each pot of the planted treat-ments.For the tall fescue+SB treatment,the strain SB in the exponential phase in the LB medium were collected by centrifugation at9,000×g for15min at4°C,washed with sterile distilled water,and centrifuged.Bacterial inoculum was prepared by resuspending pelleted cells in sterile distilled water to obtain an inoculum density of109colony-forming units(cfu)ml?1.Bacterial suspen-sion(10ml pot?1)was mixed with the soil before sowing seeds.Plants were harvested at day120.

TPH analysis

Sub-samples(10g)of freeze-dried and pulverized soil were mixed with an equal volume of anhydrous Na2SO4.Then the mixtures were placed in a thimble and extracted in a Soxhlet apparatus with100ml tetrachloromethane for24h and analyzed by FT-IR after passing the extract through a florisil column.The TPH content of the soil before remediation is 1,851mg kg?1.

PAHs analysis

An aliquot of2g freeze-dried soil samples was mixed with an equal volume of anhydrous Na2SO4.Then the mixtures underwent Soxhlet extraction with dichloromethane(DCM)for24h.The extracts were reduced to2ml using rotary evaporation followed by further concentration under a weak stream of nitrogen. The residue was dissolved in2ml of cyclohexane and 0.5ml of the solute and extracted.The extracts were then purified by a silica gel column(8mm×220mm) and washed with a mixture of hexane and DCM(1:1). The first1ml of elute was discarded because it contained non-polar saturated hydrocarbons and was

Plant Soil

less retained than PAHs by silica gel.The second 2-ml aliquot of elute was collected,dried by sparging with N2,and dissolved in1ml hexane (Ping et al.2007).

Sixteen US Environmental Protection Agency (USEPA)priority PAH compounds were identified and quantified using GC–MS.An Agilent7890N GC sys-tem and Agilent5795B series MSD equipped with G6500-CTC autosampler was used.The GC–MS oper-ating conditions were as follows:DB-5silica column (30m×0.25mm×0.25μm);injection temperature was set at250°C;splitless mode.The column temperature was programmed as follows:50°C hold for1min, rising at25°C min?1to200°C,rising at8°C to 280°C,rising at1°C to283°C,and rising at2°C to 290°C.Helium was used as the carrier gas with flow rate at1.0ml min?1.Peaks was verified and quan-tified based on key fragment ions,retention times compared to those of external PAH standards,and/or mass spectra.The MS operating conditions were as follows:ionization voltage70eV,transfer line tem-perature260°C,ion source230°C,and mass scan range m/z60–640amu.

Microbial counts and community-level physiological profiling(CLPP)analysis

Soil samples were taken on days60and120for analyses of heterotrophic bacteria,TPH degraders and PAH degraders,and on day120for determination of the CLPP of the soil microbial communities.The heterotrophic bacteria were enumerated on nutrient agar plates.TPH degraders and PAH degraders were enumerated by the most-probable-number(MPN) technique(Wrenn and Venosa1996).The CLPP of the soil microbial communities was analyzed with gram-negative(GN)microplates(BIOLOG Inc.).Al-iquots of10?3dilutions were used to inoculate GN plates(150μl per well)and incubated at30°C.The plates were read every12h(OD590)over132h using a BIOLOG automated plate reader.All wells were blanked to the control well A1.For the BIOLOG data, average well color development(AWCD)was calcu-lated as described by Garland and Mills(1991).The Shannon index,Shannon evenness,McIntosh index, McIntosh evenness,and Gini coefficient of soil micro-bial communities were used to measure species meta-bolic diversity(Harch et al.1997;Yang and Yao 2000).Toxicity assay

The biotoxicity of the contaminated soil before and after remediation was studied according to the methods of P?aza et al.(2005a).Briefly,DCM and dimethylsulfoxide(DMSO)were used to extract the soil.The biological toxicity of the DCM/DMSO ex-tracts and DMSO(control)were tested based on the measurement of reduction in light emission by Photobacterium phosphoreum T3under toxic stress. All bioassays were carried out in triplicate and light output was measured using a portable luminometer (Model DXY-2).Toxicity results were reported as the effective concentration promoting a50%(EC50) reduction in light emitted by the bacteria.

Statistical analysis

All experiments were conducted with four replicates or otherwise specified.The data collected were ana-lyzed statistically using SPSS16.0software.Duncan’s multiple range tests was used to compare the means of the treatments,variability in the data was expressed as the standard deviation,and a P<0.05was considered to be statistically significant.

Results

Bacterial growth and biosurfactant production

Growth curves were obtained for the strains Pseudo-monas sp.SB in order to establish the relation between cell growth and surface activity of the biosurfactant in time(Fig.1).The results showed the absorbance (growth)and surface tension of the LB medium plot-ted versus time for the strain.Surfactant production was directly proportional to cell growth as the surface tension decreased with increasing cell density.The lowest surface tension(27.3mN m?1)and highest absorbance(1.59)was obtained at16h.Therefore, 16h incubation is sufficient for surfactant production and cell growth in the following experiments.

Plant-growth-promotion features of Pseudomonas sp.SB

Pseudomonas sp.SB was found to exhibit a number of traits which are important for plant-growth-promoting activity.The production of ACC deaminase was

Plant Soil

2.04M α-KB mg ?1h ?1in the DF medium.The strain also had the capacity to produce IAA (16.0mg l ?1)in the LB medium when the medium was supplemented with L -tryptophan.Orange halos around the colonies of SB on the blue agar were formed,indicating siderophore excretion of the strain.Clear zone around the colony of the strain appeared in the SRSM agar plate after 5days,indicating that the strain was able to solubilize P (Jin-Hee et al.2011).Plant growth

The inoculation of Pseudomonas sp.SB improved the growth of tall fescue.It increased shoot and root dry weights by 28%and 19%,respectively,by the end of the experiment (Table 2).Degradation of TPH and PAHs

The TPH contents of the soil after 120days are shown in Table 1.The TPH decreased by 33.8%,68.0%,and 84.5%in non-planted control,tall fescue,and tall fescue +SB treatments,respectively.The content of TPH was significantly lower (P <0.05)in two treat-ments with plants than the control,and the inoculation of BS further decreased TPH contents.

Sixteen USEPA PAHs were detected in the initial soil (Table 2).After 120days,total PAHs decreased by 31.7%,40.7%,and 46.2%in the control,tall fescue,and tall fescue +SB treatments,https://www.sodocs.net/doc/269788398.html,-pared with the tall fescue treatment,the inoculation of BS further decreased the contents of total PAHs and individual PAHs with high molecular weights (HMW)(five to six rings)such as benzo[k ]fluoranthene,

dibenz[ah ]anthracene,and benzo[ghi ]perylene.For example,the removal efficiency of benzo[a ]pyrene,a strongly carcinogenic compound,was 43.7%,43.7%,and 61.3%in the soil of the control,tall fescue,and tall fescue+SB treatments,respectively.Microbial populations

To reveal the treatment effects on microbial commu-nities in the soil,heterotrophic bacteria,TPH de-graders,and PAH degraders were quantified at days 60and 120.The counts of heterotrophic bacteria,TPH degraders,and PAH degraders were all the highest in the tall fescue +SB treatment and lowest in the no-plant control at day 60.Heterotrophic bacteria showed the same trend at day 120,but the counts of TPH and PAHs degraders decreased over time and were lower in the plant treatments than in the control at day 120(Table 3).

CLPP of the sludge microbial communities

AWCD and diversity index were analyzed using BIOLOG data to detect treatment difference in micro-bial communities.The activity of soil microbial com-munities in the soil evaluated by AWCD increased over time and was highest in the tall fescue+SB treat-ment and lowest in the controls (Fig.2).The absor-bance of each well in the BIOLOG plates at 72h was used to calculate diversity indices of the microbial community (Table 4).The Shannon index,Gini coef-ficient,and McIntosh evenness were significantly higher in the planted treatments than in the control.The inoculation of SB further increased the Shannon evenness,McIntosh Index,and Gini

coefficient.

Table 1Effect of growing tall fescue for 120days and inocu-lation of Pseudomonas sp.SB on plant biomass and concentra-tion of total petroleum hydrocarbon (TPH)in soil Treatments

Shoot dry weight(g)Root dry weight (g)TPH

(mg kg ?1)No-plant control –

1,224±16a Tall fescue 9.64±0.50b 2.29±0.27b 593±63b Tall fescue +SB

13.38±1.34a

2.84±0.19a

286±22c

The data represent the mean ±standard deviation of four repli-cates,and data followed by different letters indicate a significant difference at p <0.05according to Duncan ’s multiple range tests

Plant Soil

Biotoxicity assay

Biotoxicity of the soil was determined before and after phytoremediation by P.phosphoreum T3.EC50values were ranked as follows:Before remediation(Before Rem)

Table2Removal of polycyclic aromatic hydrocarbon(PAHs)after120days of growing tall fescue with or without inoculation of Pseudomonas sp.SB

PAHs Initial No-plant control Tall fescue Tall fescue+SB

(μg kg?1soil)Concentration

(μg kg?1soil)%Removal a Concentration

(μg kg?1soil)

%Removal Concentration

(μg kg?1soil)

%Removal

Naphthalene747±31a329±26c55.9±3.5176±7b76.4±0.991±2d87.9±0.2 Acenaphthylene106±14a61±5bc42.1±4.251±1b51.4±0.544±6c58.4±5.3 Acenaphthene150±22a94±7b37.5±4.680±1b46.9±0.573±8b51.8±5.3 Fluorene505±17a362±20b28.3±4.0292±18c42.2±3.5292±27c42.2±5.3 Phenanthrene288±24a299±21bc0255±6c11.7±2.0264±17bc8.7±6.0 Anthracene93±7a51±9b44.8±10.057±4b38.5±4.459±4b36.4±4.1 Fluoranthene157±8a118±9b25.3±5.4119±3b24.5±2.0114±3b27.3±2.0 Pyrene185±13a143±5b22.8±2.6141±8b23.6±4.0117±6c36.7±3.1 Benz[a]anthracene151±12a96±13b36.3±8.894±4b37.7±3.084±2b44.5±1.2 Chrysene824±18a442±40b46.4±4.9361±9c56.2±1.2301±11d63.5±1.3 Benzo[b]fluoranthene612±15a232±23b62.1±3.9190±22b69.0±3.6250±84b59.2±13.7 Benzo[k]fluoranthene411±14a175±6b57.5±1.3171±5b58.5±1.1104±4c74.7±1.0 Benz[a]pyrene426±6a240±5b43.7±1.1240±6b43.7±1.4165±3c61.3±0.8 Indeno[123-cd]pyrene357±23a227±17b36.5±4.8160±23c55.1±6.3135±8c62.2±2.2 Dibenz[ah]anthracene7,599±115a5,614±159b26.1±2.15,066±271c33.3±3.64,741±90c37.6±1.2 Benzo[ghi]perylene339±20a203±9b40.2±2.7202±4b40.4±1.1130±3c61.6.6±0.8 Total12,950±65a8,684±101b32.9±0.87,655±331c40.9±2.56,964±179d46.2±1.4

The data represent the mean±standard deviation of four replicates,and data followed by different letters in the same row indicate a significant difference at p<0.05according to Duncan’s multiple range tests

a%Removal was calculated as(PAH concentration after120days×100)/initial concentration

Table3Heterotrophic bacteria,TPH degraders,and PAH degraders in the soil after growing tall fescue for60and120days with or without inoculation of Pseudomonas sp.SB

60Days120Days

Control Tall fescue Tall fescue+SB Control Tall fescue Tall fescue+SB

Heterotrophic bacteria

(log cfu g?1dry soil)

8.28±0.06b8.49±0.04a8.57±0.05a8.27±0.04c8.44±0.05b8.65±0.03a

TPH degraders

(log MPN g?1dry soil)

4.98±0.04c 6.22±0.09b 6.42±0.08a

5.2±0.17a 4.50±0.13b 4.44±0.07b

PAH degraders

(log MPN g?1dry soil)

4.82±0.05b

5.27±0.12a 5.43±0.06a 4.30±0.30a 3.76±0.05b 3.69±0.17b

The data represent the mean±standard deviation of four replicates,and data followed by different letters in the same row at the same sampling day indicate a significant difference at p<0.05according to Duncan’s multiple range tests

Plant Soil

Discussion

Mass transfer from adsorbed or insoluble phases to the aqueous phase is considered to be the rate-limiting step in biodegradation of organic contaminants be-cause the compounds must be released to the aqueous phase prior to entering the microbial cell and subse-quent intracellular transformation by the necessary catabolic enzymes (Dean et al.2001).Compounds present in oily sludge are inherited from petroleum hydrocarbons,and most of them are insoluble.Fur-thermore,oily sludge undergoes several aging and weathering processes that eventually lead to the com-pounds having low water solubility.As shown in Table 2,the HMW PAHs (five-and six-ring PAHs)with low water solubility accounted for 75%of total PAHs in the oily contaminated soil used in this exper-iment.There are several reports on improving oily sludge degradation by addition of biosurfactant or chemical surfactant to increase the bioavailability of

the hydrocarbons (Ahn et al.2010;Benincasa 2007;Cameotra and Singh 2008;Lai et al.2009).However,the effect of inoculating biosurfactant-producing bacteria which can produce surfactants successively is relatively less studied.

This study showed that Strain SB produced the biosurfactant that reduces the surface tension of medium to 27.3mN m ?1.The biosurfacant is expected to en-hance desorption of TPHs and PAHs and increased their removal from the soil.It was evident that SB inoculation significantly (P <0.05)increased the removal of TPHs and PAHs in the sludge-contaminated soil.For HMW PAHs such as benzo[ghi ]perylene,benz[a ]pyrene,and benzo[k ]fluoranthene,their removal rates were 21.2%,17.6%,and 16.3%higher in the BS inoculated treat-ment than in the tall fescue alone treatment,respectively.These PAHs all have large K ow (above 6.0)and low water solubility.The bioavailability could be the rate-determining factor for their degradation.One possible reason why biosurfactant-producing bacteria enhanced the removal of TPHs and PAHs is that the inoculation could increase the rate of solubilization and desorption of TPHs and PAHs by enhancing the rate of

mass

Fig.2Changes in average well color development (AWCD)of soil microbial community during incubation.Error bars :±1standard deviation (n =4)

Table 4Functional diversity indices of microbial community in soils of no-plant control and after 120days of growing tall fescue with or without inoculation of Pseudomonas sp.SB Treatments Shannon index Shannon evenness Gini coefficient McIntosh index McIntosh evenness No-plant control 3.971±0.015b 0.901±0.007b 0.978±0.001c 11.211±2.463b 0.955±0.004b Tall fescue 4.193±0.071a 0.912±0.014b 0.982±0.001b 11.972±0.439b 0.973±0.006a Tall fescue +SB

4.322±0.040a

0.959±0.004a

0.986±0.001a

16.782±1.342a

0.984±0.002a

The data represent the mean ±standard deviation of four replicates,and data followed by different letters in the same column indicate a significant difference at p <0.05according to Duncan ’s multiple range

tests

Plant Soil

transfer from adsorbed phases to soil solution(Juhasz and Naidu2000).

Apart from the produced biosurfactant,Pseudomonas sp.SB used in this experiment also exhibited a number of characters of PGPR and improved the development of the root and shoot system of tall fescue.It produced IAA and siderophore,and had the P-solubilization ability.Espe-cially,the bacteria with ACC-deaminase activity metab-olize ACC(an immediate precursor of ethylene in plants) intoα-ketobutyric acid and ammonia,thus regulating the biosynthesis of ethylene and promoting plant growth.

The degradation of most hydrocarbons is believed to enhance through a rhizosphere effect.Plants exude organ-ic compounds through their roots,which increase the density,diversity,and activity of specific microorganisms which in turn degrade hydrocarbons in the surrounding rhizosphere(Phillips et al.2006).Hence,extensive root growth is a prerequisite of maximizing the effectiveness of phytoremediation processes.Reduced root growth in contaminated soils might be owing to production of eth-ylene induced by toxicity stress(Arshad et al.2007). Huang et al.(2004;2005)demonstrated that biomass accumulation and root growth of tall fescue were severely decreased by TPHs in soil,although tall fescue is relative-ly tolerant of organic contaminants.Merkl et al.(2005) also showed that root biomass was positively correlated with phytoremediation activity in a hydrocarbon-contaminated soil.

In phytoremediation,hydrocarbons are degraded mainly by soil microbial communities.Therefore,the phytoremediation potential can be characterized by enumerating cultivable soil heterotrophic and pollutant-degrading bacteria in the rhizosphere(Muratova et al.2008).This present study showed that tall fescue planting and SB inoculation promoted TPH and PAH degraders at60days,although the TPH and PAHs de-graders were lower than that of control at120days (Table3).The heterotrophic bacterial counts in the two planted treatments were always higher than in the control plot throughout the experiment(Table3).The reason might be that most of the TPH and PAHs were degraded in two planted treatments and their concentration was very low and hard to support the degraders’growth at the end of the experiment.

Wuensche et al.(1995)demonstrated that substrate utilization patterns as recorded with the BIOLOG sys-tem are suitable for rapidly assessing the dynamics of autochthonous communities and evaluating their biodegradative potential in soil.The highest activity of soil microbial communities evaluated by AWCD in the tall fescue+SB treatment indicates that tall fescue and Pseudomonas sp.SB inoculation had important influences on the microbial activity.

There were also similar effects of growing tall fescue and SB inoculation on microbial metabolic diversity reflected by Shannon index,McIntosh index, and Gini coefficient.The Shannon index provides the information on the distribution of C source utilization by microbial communities and potential metabolic diversity of the communities while the McIntosh index provides information on species richness based on the number of species and their abundances.Gini coefficient quantifies the inequality of use of carbon sources (richness and evenness)(Harch et al.1997).Thus, it can be concluded that phytoremediation not only decreased TPH content but also increased microbial activity and community diversity in this oily-sludge-contaminated soil.It must be emphasized that CLPP is not a culture-independent method and is somewhat biased towards fast-growing and easily cultivable species(Smalla et al.1998).

Petroleum contains hundreds of individual com-pounds with varying degrees of toxicity,mutagenicity, and carcinogenicity,and its composition varies with sites and source strata(Liu et al.2009).Therefore, ecotoxicity bioassays should be used as supplementary tools for monitoring the remediating effectiveness of petroleum-contaminated sites(P?aza et al.2008;P?aza et al.2005b).In this study,the toxicities of the soil as a function of petroleum biodegradation activity were also determined.P.phosphoreum T3was used to test the biotoxicity of the oily sludge before and after bioreme-diation.The EC50of the soils increased by41%, 218%,and550%in the control,tall fescue,and tall fescue+SB treatments,respectively,at the end of the experiment.Clearly,the EC50of the SB-inoculated treatment was the highest,indicating that the soil of this treatment had the lowest toxicity.This ecotoxicity decrease of the soils might be due to the efficient conversion of the toxic raw-petroleum material to less or non-toxic intermediates and by-products during biodegradation(P?aza et al.2008). Conclusion

In this study,the biosurfactant-producing strain Pseudomonas sp.SB was isolated from rhizosphere

Plant Soil

of tall fescue grown in a petroleum-contaminated soil. This strain can produce biosurfactants thereby decreasing the surface tension of the culture medium to27.3mN m?1 after16h of growth.This strain also produced IAA, siderophores,and ACC deaminase.The inoculation of the SB strain promoted the growth of tall fescue and significantly enhanced the degradation of TPH and PAHs.It also increased the microbial activity and diver-sity in the soil.Furthermore,the inoculation of the SB markedly decreased the biotoxicity of the contaminated soil.Thus biosurfactant-producing Pseudomonas sp.SB which has the characters of PGPR may be a suitable bioinoculant to assist phytoremediation of oily-sludge-contaminated soils,but validation under field conditions is needed.

Acknowledgments We thank the National Natural Science Foundation of China(41001182),Jiangsu Provincial Natural Science Foundation of China(BK2012891),and the Environmental Protection Public Welfare Special Fund for Scientific Research (201009015)for financial support.

References

Ahn CK,Woo SH,Park JM(2010)Surface solubilization of phenanthrene by surfactant sorbed on soils with different organic matter contents.J Hazard Mater177:799–806 Amprayn K,Rose MT,Kecskés M,Pereg L,Nguyen HT, Kennedy IR(2012)Plant growth promoting characteristics of soil yeast(Candida tropicalis HY)and its effectiveness for promoting rice growth.Appl Soil Ecol61:295–299 Arshad M,Saleem M,Hussain S(2007)Perspectives of bacterial ACC deaminase in phytoremediation.Trends Biotechnol25:356–362

Banat IM,Makkar RS,Cameotra SS(2000)Potential commercial applications of microbial surfactants.Appl Microbiol Biotechnol53:495–508

Benincasa M(2007)Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil.Curr Microbiol54:445–449

Bradford MM(1976)A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding.Anal Biochem 72:248–254

Cameotra SS,Singh P(2008)Bioremediation of oil sludge using crude biosurfactants.Int Biodeterior Biodegrad 62:274–280

Dean SM,Jin Y,Cha DK,Wilson SV,Radosevich M(2001) Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria.J Environ Qual30:1126–1133

Garland JL,Mills AL(1991)Classification and characterization of heterotrophic microbial communities on the basis of

patterns of community-level sole-carbon-source utilization.

Appl Environ Microbiol57:2351–2359

Gerhardt KE,Huang XD,Glick BR,Greenberg BM(2009) Phytoremediation and rhizoremediation of organic soil con-taminants:potential and challenges.Plant Sci176:20–30 Glick BR,Cheng Z,Czarny J,Duan J(2007)Promotion of plant growth by ACC deaminase-producing soil bacteria.Eur J Plant Pathol119:329–339

Glickmann E,Dessaux Y(1995)A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria.Appl Environ Microbiol61:793–796

Harch BD,Correll RL,Meech W,Kirkby CA,Pankhurst CE (1997)Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities.J Microbiol Methods30:91–101

Huang XD,El-Alawi Y,Penrose DM,Glick BR,Greenberg BM (2004)Responses of three grass species to creosote during phytoremediation.Environ Pollut130:453–463

Huang XD,El-Alawi Y,Gurska J,Glick BR,Greenberg BM (2005)A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs)from soils.Microchem J81:139–147

Jalili F,Khavazi K,Pazira E,Nejati A,Rahmani HA, Sadaghiani HR,Miransari M(2009)Isolation and charac-terization of ACC deaminase-producing fluorescent pseu-domonads,to alleviate salinity stress on canola(Brassica napus L.)growth.J Plant Physiol166:667–674

Jin-Hee P,Nanthi B,Mallavarapu M,Ravi N(2011)Isolation and characterization of phosphate solubilizing bacteria from phosphate amended and lead contaminated soils.J Hazard Mater185:829–836

Juhasz AL,Naidu R(2000)Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzo[a]pyrene.Int Biodeterior Biodegrad45:57–88

Kuyukina MS,Ivshina IB,Makarov SO,Litvinenko L V,Cunningham CJ,Philp JC(2005)Effect of biosurfactants on crude oil desorp-tion and mobilization in a soil system.Environ Int31:155–161 Lai CC,Huang Y,Wei YH,Chang JS(2009)Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil.J Hazard Mater167:609–614

Liu WX,Luo YM,Teng Y,Li ZG,Christie P(2009)Prepared bed bioremediation of oily sludge in an oilfield in northern China.J Hazard Mater161:479–484

Liu WX,Luo YM,Teng Y,Li ZG,Ma L(2010)Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes.Environ Geochem Heal32:23–29

Liu WX,Wang XB,Wu LH,Chen MF,Tu C,Luo YM,Christie P(2012)Isolation,identification and characterization of Bacillus amyloliquefaciens BZ-6,a bacterial isolate for enhancing oil recovery from oily sludge.Chemosphere 87:1105–1110

Lu RK(1999)Analytical methods of soil agricultural chemistry.

China Agricultural Science and Technology Press,Beijing (in Chinese)

Merkl N,Schultze-Kraft R,Infante C(2005)Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils.Water Air Soil Pollut 165:195–209

Plant Soil

Muratova AY,Dmitrieva TV,Panchenko LV,Turkovskaya OV (2008)Phytoremediation of oil-sludge-contaminated soil.

Int J Phytoremediation10:486–502

Payne SM(1994)Detection,isolation,and characterization of siderophores.Methods Enzymol235:329–344

Phillips LA,Greer CW,Germida JJ(2006)Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil.Soil Biol Biochem 38:2823–2833

Ping LF,Luo YM,Zhang HB,Li QB,Wu LH(2007)Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region,east China.

Environ Pollut147:358–365

Plaza G,Jangid K,Lukasik K,Nalecz-Jawecki G,Berry C, Brigmon R(2008)Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.Bull Environ Contam Toxicol81:329–333

P?aza G,Na?ecz-Jawecki G,Ulfig K,Brigmon RL(2005a)The application of bioassays as indicators of petroleum-contaminated soil remediation.Chemosphere59:289–296 P?aza G,Na?ecz-Jawecki G,Ulfig K,Brigmon RL(2005b) Assessment of genotoxic activity of petroleum hydrocarbon-bioremediated soil.Ecotoxicol Environ Saf62:415–420 Propst TL,Lochmiller RL,Qualls CW Jr,McBee K(1999)In situ(mesocosm)assessment of immunotoxicity risks to small mammals inhabiting petrochemical waste sites.

Chemosphere38:1049–1067

Reed MLE,Warner B,Glick B(2005)Plant growth–promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons.Curr Microbiol51:425–429

Smalla K,Wachtendorf U,Heuer H,Liu W,Forney L(1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities.Appl Environ Microbiol64:1220–1225Tahhan RA,Ammari TG,Goussous SJ,Al-Shdaifat HI (2011)Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy.Int Biodeterior Biodegrad 65:130–134

Urum K,Pekdemir T,Gopur M(2003)Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions.Process Saf Environ Prot81:203–209 Vasudevan N,Rajaram P(2001)Bioremediation of oil sludge-contaminated soil.Environ Int26:409–411

Wang X,Wang Q,Wang S,Li F,Guo G(2012)Effect of biostimulation on community level physiological pro-files of microorganisms in field-scale biopiles com-posed of aged oil sludge.Bioresour Technol111:308–315

Wenzel W(2009)Rhizosphere processes and management in plant-assisted bioremediation(phytoremediation)of soils.

Plant Soil321:385–408

Wrenn BA,Venosa AD(1996)Selective enumeration of aro-matic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure.Can J Microbiol 42:252–258

Wunsche L,Bruggemann L,Babel W(1995)Determination of substrate utilization patterns of soil microbial com-munities:an approach to assess population changes after hydrocarbon pollution.FEMS Microbiol Ecol 17:295–305

Yang YH,Yao J(2000)Effect of pesticide pollution against functional microbial diversity in soil(in Chinese).J Microbiol20:23–25

Zhang Y,He L,Chen Z,Wang Q,Qian M,Sheng X (2011)Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus.Chemosphere 83:57–62

Plant Soil

含油污泥处置利用污染控制标准

陕西省地方标准 《含油污泥处置利用污染控制标准》编制说明 一、工作概况 我省长庆油田、延长石油等油气田生产单位和炼化企业在中国石化工业的发展中发挥了巨大的作用,但随着油田的迅速发展和炼化企业的持续增产,资源的短缺、环境污染的问题越来越突出,石油与环境、石油与资源的综合利用矛盾越来越引起人们的关注。近几年,随着陕北油气田不断发展壮大,2014年油气产量已经达到了6500万吨以上,石油炼制达到1500万吨以上,在石油和炼化生产过程中产生的各类含油污泥如大罐沉降污泥、落地油泥、污水处理过程产生的含油污泥等,总量达到了50万吨以上。这些污泥组成性质复杂、稳定性高、处理难度大、处理费用高,其中所含的有机物含量高、难降解物质含量高,若不加处理就地填埋或堆放,不仅严重污染环境,而且极大浪费了有限的石油资源。尤其是陕北地处干旱、缺水地区,生态环境脆弱,含油污泥带来的环境污染问题更加严重。 随着国家环保政策的不断深化,国内各主要石油生产及石油化工企业、大专院校等研究部门均加强了含油污泥处理技术研究与应用,已开发出多种含油污泥处理方法及工艺,提出多种含油污泥处理综合利用途径。目前国家仅有《危险废物填埋污染控制标准》GB 18598-2001和《农用污泥中污染物控制标准》GB 4284-1984,及黑龙江省《油田含油污泥综合利用污染控制标准》DB23/T 1413-2010与本标准相关。但是《危险废物填埋污染控制标准》和《农用污泥中污染物控制标准》仅限于污泥处理后填埋和农用,黑龙江省《油田含油污泥综合利用污染控制标准》在填埋和农用基础上增加了铺设油田井场和通井路,仍无法

满足我省含油污泥综合利用要求。 陕西省固废管理中心和陕西延长石油(集团)有限责任公司相关科技工作人员自2009年就致力于含油污泥处理技术研究工作,在前期研究基础上,为了含油污泥无害化处理与资源化利用工作的规范化,保护环境,根据陕西省质量技术监督局《关于下达2015年第一批地方标准制修订项目计划的通知》(陕质监标〔2015〕8号)要求,特制定《含油污泥处置利用污染控制标准》,本标准项目符合《中共陕西省委、陕西省人民政府关于加快关中统筹科技资源改革率先构建新型区域的决定》中“推进企业成为技术创新主体,实现创新驱动、内生发展”的要求;属于能源化工领域中环境污染优先主题,有利于环境保护相关人才培养,形成具有自主知识产权的集成创新技术,实现含油污泥的无害化处理与资源化利用,减少因含油污泥产生的生态系统退化加剧问题,保护环境,开创油气生产与节约并重新局面,为石油和炼化企业发展循环经济提供有力的技术支撑。同时,本标准将对陕西省含油污泥处理与利用技术研究起到重要指导作用,并提供技术保障,对于我省形成拥有自主知识产权的专利技术和含油污泥特色处置技术起到积极地推动作用。 本标准制订任务下达后,陕西省固废管理中心和陕西延长石油(集团)有限责任公司积极组织,成立标准编写领导小组,明确标准编写任务。陕西省固废管理中心和陕西延长石油(集团)有限责任公司标准编制组在调研了省内外含油污泥处理情况和相关科研院校研究的基础上,开始起草标准。各编写人员就标准内容进行了认真讨论,并邀请相关领导和知名专家提供建设性的意见和建议。 而后,我们就标准起草中的意见和建议,分析比对,借鉴其他地方标准经验、查阅资料,向省内外研发、生产单位一线技术人员了解现状,确定标准草案,经

含油污泥无害化处理研究展望

含油污泥无害化处理研究展望 石油在炼制和生产过程中会不可避免地产生大量的含油污泥。含油污泥由于本身的特性所致,它的处理给石油石化企业带来了巨大的挑战。因此,含油污泥处理已成为一个亟待解决的问题,必须加以探讨和解决。文章主要对含油污泥的无害化处理进行了综述,最后,对含油污泥处理技术的发展及前景进行了预测。 标签:含油污泥;环境保护;处理;无害化 1 前言 含油污泥是在石油炼制和生产过程中产生的危险废物,由于产生量巨大对环境会造成巨大的危害;除此之外,含油污泥含有大量的微生物病菌等,会对水体和人体的健康产生严重威胁,因此,含油污泥必须进行无害化处理,以此来保证对环境的无害影响[1]。对于含油污泥的处理技术,世界各国的科技人员都在进行研究,经过了很多年的实验和分析,取得了一些令人满意的成果。这些成果也主要针对含油污泥的无害化处理和处置。本文将对含油污泥的无害化处理技术进行综述,以此来为研究人员提供一定的指导和借鉴。 2 含油污泥无害化处理现状 2.1 含油污泥固化处理技术 早在1984年,Morgan 等对[2]对含油污泥进行了固化处理,并测试了多种固化剂。研究结果表明,新鲜和陈旧的水泥窑粉尘被认为是最佳的固化剂,具有良好的抗压强度。Lee等[3]对长庆油田产生的含油污泥进行了固化处理。开发的配方可以有效地固化含油污泥,固化后的含油量从处理前的80000mg/L降低到0.4mg/L,污泥固化后的硫含量由4mg/L减少为0.4mg/L。固化污泥的压缩强度为3MPa。Yue等[4]采取直接加入凝固剂的方法对大庆油田第四采油厂的污泥进行固化处理。结果表明,当促凝剂B的质量分数为10%时,固化污泥压缩强度为4.23MPa。固化污泥浸出液的所有参数达到了国家污水综合排放标准,固化后的污泥可进行安全填埋。Hu等[5] 研究了影响固化含油污泥中油迁移的影响因素。实验结果表明,当含油污泥超过9.56MPa的压力强度,油泥中未被发现油的存在。由此证明,固化的方法是可靠的含油污泥处理方法。 2.2 生物处理 生物处理方法有两种,一种是增加油泥中的营养成分含量,然后充气,含油污泥中的微生物得到大量的生长和增殖,以实现污染物的有效降解。另一种是向含油污泥中加入微生物制剂,可以降低油泥中的石油烃含量。大量的文献研究表明,外加的细菌可以使石油烃的降解率达50%[6,7]。 Biswal等[8]利用实验室富集培养的微生物进行了含油污泥的降解研究。研

热解技术含油污泥无害化处理与资源化利用

热解技术:含油污泥无害化处理与资源化利用 近年来,我国固体废物和危险废物处置能力大幅提升,但非法转移、处置固体废物,尤其是跨省倾倒危险废物的事件仍时有发生。这其中,相当数量的危险废物是含油污泥。 严禁含油污泥非法转移倾倒 含油污泥是石油勘探、开采、炼制、清罐、储运及含油污水处理过程中所产生的含油固体废弃物,具有产量大、含油量高、重质组分高、综合利用方式少,处理难度大等特点。含油污泥中含有大量的有毒有害物质,若不及时加以处理整治,将势必对周围土壤、水体、空气及其生物圈造成严重污染。 含油污泥作为一种常见的暴露污染源,已被列入2016年版《国家危险废物名录》(国家环保部令第39号)。《中华人民共和国清洁生产促进法》要求必须对含油污泥进行无害化处理,严禁非法转移倾倒。 2018年5月,生态环境部启动了“清废行动2018”,并印发《关于坚决遏制固体废物非法转移和倾倒,进一步加强危险废物全过程监管的通知》,加强固废危废处置能力,保障生态环境安全。 含油污泥资源化利用势在必行 据不完全统计,我国每年含油污泥产生量在3,000万吨左右,其资源化利用是油田环境保护与可持续发展的重要问题之一。现行的处理技术有填埋、焚烧、固化处理、热脱附、溶剂萃取、生物处理等,许多方法视含油污泥为废物,忽略了其本身的资源属性,在实际大规模工业应用中存在处理过程成本高、工艺设备复杂、效率低、二次污染等问题。研发经济、环保、安全的技术装备,充分回收油泥中的石油资源,并使处理后固体产物无害化势在必行。

低温热解技术装备经长期商业化运作验证,以其高效低耗、稳定、安全环保优势,在油泥资源化利用领域受到了越来越多的关注与行业认同,并得到了国家政策的大力支持。 2017年初国家工信部、商务部、科技部三部委发布的《关于加快推进再生资源产业发展的指导意见》(工信部联节[2016]440号)文件中把“热裂解生产技术与装备”列入重点领域。 2017年12月,工信部、科技部两部委联合印发《国家鼓励发展的重大环保技术装备目录(2017年版)》,“污油泥热分解资源化利用成套技术及装备”首次成功入选。 环保型工业连续化污油泥热解技术装备厂房内景 污油泥热解资源化利用成套技术及装备 济南恒誉环保科技股份有限公司,荣膺国家科技进步奖,主持起草多项行业国家标准,作为油泥热解行业领军企业,拥有独立知识产权自主研发的“污油泥热分解资源化利用成套技术及装备依托单位”入选了国家工信部和科技部联合印发的《国家鼓励发展的重大环保技术装备目录(2017年版)》,并经过层级遴选,成功获授此项技术“国家鼓励发展的重大环保技术装备依托单位”。 其自主研发的“工业连续化含油污泥无害化洁净高效热解成套技术装备”对原材料要求低,可处理各类含油污泥。其专有的进出料热气密技术、无结焦热分散技术、可燃气体回用技术及烟气余热循环利用技术、油品阻聚净化工艺技术、电气智能控制系统以及安全预警系统等多项专利技术,解决了气液固在高温下的动态密封、裂解过程中结焦、油气输送管路堵塞、热效率低等行业难题。

一般污泥和含油污泥的处理方法

一般污泥和含油污泥的处理方法( 一般来讲,为了不造成环境的二次污染,需要在污水处理的二级处理之后添加一道污 泥处理工艺。污水处理的目标通过把水中杂质浓缩成固体形态再从流体中分离而实现。这 种浓缩质变称为污泥,因包含了大量的有害物质,需要妥善处置。污泥处理设备大约占污 水处理厂的40%-60%基建投资,污泥处理则占50%左右的处理费用,同时也造成了和其经 济费用不成比例的处理难度。 首先,原污泥通过污泥泵由二沉池打到另一个池子中从而和上清液分离。因为原污泥 的含水率通常能达到99.5%,所以污泥必须浓缩,有多种可行的方法用于减少污泥的体积。例如真空过滤和离心等机械处理的方法通常用于将污泥以半固体形式处置之前。通常这些 方法是污泥焚烧处理的准备工作。如果计划采用生物处理,则多数才用重力沉降或者是气 浮的方法进行浓缩。这两种情况所对应的污泥仍然是流态的。 重力浓缩池的设计和运行类似于污水处理中的二沉池。浓缩功能是主要的设计参数, 为了满足更大的浓缩能力,浓缩池基本上比二沉池要深。一个设计正确,运行良好的重力 浓缩池至少能提高两倍的污泥含泥量。也就是说,污泥的含水率可以有99.5%减少到98%,或者更少。这里值得一提的是,重力浓缩池的的设计要尽量基于中式结果的分析,因为合 适的污泥负荷率与污泥的属性的有很大关系的。 如果采用溶气气浮浓缩,需要有一小部分的水,通常是二沉池出水,在400kPa的压 力下充气。这种过饱和的液体通入罐底,而污泥在大气压下通过。气体以小气泡的形式和 污泥中的固体颗粒黏附,或则是被包围,从而带动固体颗粒上浮到表面。浓缩了的污泥的 上部被除去,而液体由底部流回溶气罐充气。 体积减少后,污泥中含有大量的有害成分,在处置之前需要将之转化为惰性成分。最 常用的方法是生物降解稳定。因为这个过程目的在于将物质转化为最终无菌产物,所以常 应用消化的方法。污泥消化既能进一步的减少污泥体积也能使所含固体转化为惰性物质并 且大体的上没有病菌。通过厌氧消化或好养消化都能达到污泥消化目的。 污泥含有多种有机物,因此需要多种微生物来分解。有关资料将厌氧消化中的微生物 分为两类:产酸菌和甲烷菌。所以,我们也能把厌氧消化分为两步。第一步,由兼性厌氧

含油污泥的处理现状及展望

含油污泥的处理现状和展望 摘要 含油污泥会对环境造成二次污染,必须进行无害化处理和资源化利用。针对含油污泥处理现状,分析了国内外处理含油污泥方法上存在的问题,综述了国内外含油污泥的处理技术现状、及含油污泥处理技术的研究进展。资源化利用将成为含油污泥处理技术的发展趋势。关键词:含油污泥;资源化;除油;综述 Abstract: Oily sludge may do harm to the production and the environment and must be treated harmlessly and be utilized comprehensively.n view of the present situation of oily sludge treatment, the problems existing in oily sludge treatment at home and abroad are analyzed.This article summarized the present situation about domestic and foreign oily sludge treatment, and forecast the development direction about technology of oily sludge treatment. Resources utilization of oily sludge will be the dominant technique for oily sludge treatment in the future. Key Words: oily sludge、comprehensive utilization、oil removal、detoxification 1含油污泥的危害和来源 含油污泥是石油生产的伴随品,是石油生产的主要污染源之一,也是影响油田及周边环境质量的一大难题。含油污泥中大量的有机物和丰富的氮、磷、硫等营养物质,不加稳定处理的污泥任意排入水体,污泥中的有机物和氨氮将大量消耗水体中的氧,导致水体水质恶化,严重影响水生物的生存,营养物质又会使水体富营养化,在沿海海域造成赤潮和绿潮。除此,不同成分的含油污泥对环境和人类造成的危害是不同的。 1.1含油污泥的危害 油田含油污泥的组成成份极其复杂,是一种极其稳定的悬浮乳状液体系,含有大量老化原油、蜡质、沥青质、胶体、固体悬浮物、细菌、盐类、酸性气体、腐蚀产物等,还包括生产过程中投加的大量凝聚剂、缓蚀剂、阻垢剂、杀菌剂等水处理剂[1]。并因其体积庞大,排放后不但占用大量耕地,而且对周围土壤、水体、空气都将造成污染。我国现已对含油污泥的排放加强了重视[2],目前明确规定,肆意排放未经处理的含油污泥将处以1 000元/ m3·d 的罚款。这样虽然限制了部分污染物的排放,但仍然不能从根本上解决问题。所以含油污泥

含油污泥特点及处理方法

38 2005年12月油气田环境保护 治理技术 含油污泥特点及处理方法 姜 勇 赵朝成 赵东风 (中国石油大学(华东)化学化工学院环境科学与工程系) 摘 要含油污泥主要来源于油田开采、油气集输及污水处理场,污泥中一般含油率在10%~50%,含水率在40%~90%。文章介绍了不同来源含油污泥的特点及脱水方法,并对各种含油污泥处理方法的优、缺点进行了比较。研究结果表明,各种方法都有其特点和适用范围。由于含油污泥成分复杂,没有任何一种处理方法可以处理所有类型的含油污泥。 关键词油田开采 含油污泥 处理方法 脱水工艺 适用范围 0 引 言 含油污泥是在石油开发、运输、炼制时污水处理过程中产生的。污泥中一般含油率在10%~50%,含水率在40%~90%,我国石油石化行业中,平均每年产生80万吨罐底泥、池底泥[1],胜利油田每年产生含油污泥在10万吨以上,大港油田每年产生含油污泥约15万吨,河南油田每年产生5×104 m3含油污泥[2],其中含有大量苯系物、酚类、蒽、芘等有恶臭的有毒物质[3],若不加以处理,不仅污染环境,而且造成资源的浪费。 含油污泥体积庞大,若不加以处理直接排放,不但占用大量耕地,而且对周围土壤、水体、空气都将造成污染,伴有恶臭气体产生。污泥含有大量的病原菌、寄生虫(卵)、铜、锌、铬、汞等重金属,盐类以及多氯联苯、二恶英、放射性核元素等难降解的有毒有害物质。 1 含油污泥特点 含油污泥主要分以下几类。 ◆ 原油开采产生的含油污泥原油开采过程中产生的含油污泥主要来源于地面处理系统。采油污水处理过程中产生的含油污泥,再加上污水净化处理中投加的净水剂形成的絮体、设备及管道腐蚀产物和垢物、细菌(尸体)等组成了含油污泥。这种含油污泥一般具有含油量高、粘度大、颗粒细、脱水难等特点,它不仅影响外输原油质量,还导致注水水质和污水难以达标外排[4]。 ◆ 油田集输过程产生的含油污泥胜利油田含油污泥主要来源于接转站、联合站的油罐、沉降罐、污水罐、隔油池底泥、炼厂含油水处理设施、轻烃加工厂、天然气净化装置清除出来的油沙、油泥,钻井、作业、管线穿孔而产生的落地原油及含油污泥[5]。油品储罐在储存油品时,油品中的少量机械杂质、沙粒、泥土、重金属盐类以及石蜡和沥青质等重油性组分沉积在油罐底部,形成罐底油泥。 中原油田污泥产生主要来自一次沉降罐、二次沉降罐、洗井水回收罐的排污。含油污泥本身成分复杂,含有大量的老化原油、蜡质、沥青质、胶体和固体悬浮物、细菌、盐类、酸性气体、腐蚀产物等,污水处理过程中还加入了大量的凝聚剂、缓蚀剂、阻垢剂、杀菌剂等水处理药剂[6]。 在3~6年的油罐定期清洗中,罐底含油污泥量约占罐容的1%左右。罐底含油污泥的特点是碳氢化合物(油)含量极高。据调查测试发现,油罐底泥中大约25%为水,5%的无机沉淀物为泥沙,70%左右为碳氢化合物,其中沥青质占7.8%,石蜡占6%,污泥灰分含量占4.8%[3]。 ◆ 炼油厂污水处理场产生的含油污泥 炼油厂含油污泥主要来源于隔油池底泥、浮选池浮渣、原油罐底泥等,俗称“三泥”,这些含油污泥组成各异,通常含油率在10%~50%之间,含水率在40%~90%之间,同时伴有一定量的固体。 2 常用处理过程及方法 含油污泥处理以减量化、资源化、无害化为原则,常用的处理方法有:溶剂萃取法、焚烧法、生物法、 焦

陕西含油污泥处理处置企业监督管理指南

陕西含油污泥处理处置企业监督管理指南

陕西省含油污泥处理处置企业监督管理指南 (试行) 为落实《中华人民共和国环境保护法》、《中华人民共和国固体废物污染环境防治法》、《关于办理环境污染刑事案件适用法律若干问题的解释》、《危险废物经营许可证管理办法》及《陕西省固体废物污染环境防治条例》等法律法规,强化我省含油污泥处理处置企业危险废物管理的主体责任,规范我省含油污泥处理处置企业的监督管理,特制定《陕西省含油污泥处理处置企业监督管理指南(试行)》(以下简称“指南”)。 指南在分析我省含油污泥处理处置企业项目构成及主要工艺、废物产生环节与规律的基础上,明确该行业环境监督管理的要点和方法,指导企业规范处理处置危险废物,供环境保护主管部门开展日常管理与监督检查时参考使用。 1适用范围 本指南适用于我省各级环境保护行政主管部门对本行政区域内含油污泥处理处置企业的日常环境管理和监督检查。 2监管依据 2.1法律、法规 2.1.1《中华人民共和国环境保护法(修订)》 2.1.2《中华人民共和国大气污染防治法(修订)》 2.1.3《中华人民共和国水污染防治法(修订)》 2.1.4《中华人民共和国固体废物污染环境防治法(修订)》 2.1.5《国家危险废物名录》(环境保护部、国家发展和改革委员会、公安部令第39号,2016年) 2.1.6《危险废物转移联单管理办法》(国家环境保护总局令第5号,1999年) 2.1.7《危险废物经营许可证管理办法》(国务院令第408号,2004年) 2.1.8《陕西省煤炭石油天然气开发环境保护条例(2007年修正本)》(陕西省

人民代表大会常务委员会公告第78号,2007年) 2.1.9《陕西省固体废物污染环境防治条例》(陕西省人民代表大会常务委员会公告第29号,2015年) 2.2政策 2.2.1《危险废物污染防治技术政策》(环发[2001]199号) 2.2.2 《关于进一步加强危险废物和医疗废物监管工作的意见》(环发[2011]19 号) 2.2.3《石油天然气开采业污染防治技术政策》(环境保护部公告2012年第18号) 2.2.4《关于进一步规范油泥、泥浆等危险废物的无害化处置和综合利用工作的通知》(陕环函[2010]766号) 2.2.5《关于进一步加强危险废物规范化管理工作的通知》(陕环办发[2012]144号) 2.2.6《危险废物规范化管理指标体系》(环办[2015]99号) 2.3标准、规范 2.3.1《危险废物鉴别标准》(GB5085-2007) 2.3.2《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001及其修改单) 2.3.3《危险废物贮存污染控制标准》(GB18597-2001及其修改单) 2.3.4《危险废物焚烧污染控制标准》(GB18484-2001) 2.3.5《危险废物填埋污染控制标准》(GB18598-2001及其修改单) 2.3.6《恶臭污染物排放标准》(GB14554-93) 2.3.7《含油污泥处置利用控制限值》(DB61/T1025-2016) 2.3.8《危险废物收集贮存运输技术规范》(HJ2025-2012) 2.3.9《危险废物处置工程技术导则》(HJ2042-2014) 3术语和定义 下列术语和定义适用于本指南:

含油污泥处理解决方案

油田和炼油厂的污水处理系统以及原油生产储运系统会产生大量含油污泥。目前我国每年产生的含油污泥总量达500余万t。随着大多数油田进入中后期开采阶段,采出油中含水率越来越高,含油污泥量还会继续增加。本文将叙述含油污泥的特性、危害,目前主要的处理方式,以及根据现有条件,对我们可能提出的技术方案进行叙述。 1 含油污泥的性质和危害 含油污泥成分极其复杂,主要由乳化油、水、固体悬浮物等混合组成,其成分与地质条件、生产技术、污水处理工艺、污水水质、加药种类、排污方式以及管理操作水平有关。含油污泥的比阻比一般污泥大40倍,其可压缩性系数大20倍,属难过滤性污泥,又由于其颗粒细小,呈絮凝体状,含水量高,体积庞大,因此不易实现油-水-泥的三相分离。我国大部分油田含油污泥的含水率一般为70%~99%,油、盐成分含量较高,且含有重金属和其它有害杂质;炼油厂污泥还含有大量苯系物、酚类、芘、蒽等有毒物质。 含油污泥直接外排会占用大量土地,其含有的有毒物质会污染水、土壤和空气,恶化生态环境;直接用于回注和在污水处理系统循环时,会造成注水水质下降和污水处理系统的运行条件恶化,对生产造成不可预计的损失;同时大量石油资源被浪费。含油污泥己被列入《国家危险废物目录》中的含油废物类,《国家清洁生产促进法》和《固体废物环境污染防治法》也要求必须对含油污泥进行无害化处理。因此,无论是从环境保护、维护正常生产还是从回收能源的角度出发,都必须对含油污泥进行无害化、资源化处理 2 含油污泥的处理技术 含油污泥处理以减量化、资源化、无害化为原则,故虽然目前的处理方式有很多,但最具发展前景的应该是一下四种技术:调质-机械分离、生物处理、固化处理和综合利用技术。下面逐一介绍这四种技术。 2.1 调质-机械分离技术 浓缩、化学调节(即调质)、脱水是含油污泥处理系统必不可少的三个环节。高含水量的含油污泥不能直接进行机械脱水操作,必须先进行调质;通过调质-机械分离,使含油污泥实现油-水-泥的三相分离。污泥脱水过程实际上是污泥的悬浮粒子群和水的相对运动,而污泥的调质则是通过一定手段调整固体粒子群的

含油污泥处理技术与发展方向

30 石油规划设计 第16卷第5期 科 技 * 李巨峰,男,1971年生,工程师。1997年毕业于西南石油学院应用化学专业,中国石油环境监测总站分析与检测室主任,中国石油勘探开发研究院在读博士。通信地址:河北省廊坊市44号信箱,065007 含油污泥处理技术与发展方向 李巨峰* 操卫平 冯玉军 汤 林 中国石油环境监测总站 中国科学院成都有机化学研究所 中国石油天然气股份有限公司勘探与生产公司 李巨峰等. 含油污泥处理技术与发展方向. 石油规划设计,2005,16(5):30~32 摘 要 针对含油污泥的处理现状,分析了国内外含油污泥处理方法存在的不足。提出了含油污泥处理技术的发展方向,包括调质-机械分离处理、高温处理、溶剂萃取处理、生物处理等。同时,文章对含油污泥的综合利用方法进行了论述。 关键词 含油污泥 处理技术 机械分离 高温分离 生物处理 溶剂萃取 含油污泥主要是石油勘探开发业和石油化工行业生产过程中产生的油泥、油砂,具有产生量大、含油量高、重质油组分高、综合利用方式少、处理难度大等特点。含油污泥的存在对周围的环境质量产生着不良的影响,是目前固体废物处理中一个比较大的难题。 含油污泥的特点及处理现状 1 含油污泥的来源及特点 目前,油田开发大部分是采用早期注水的方法 保持地层压力。随着油田的深度开采,采出油中含 水率越来越高。在进行原油脱水中,脱水罐、储油 罐、污油罐等底部存在大量含油污泥。同时,在油 田、炼油厂的污水处理场(如隔油池底、浮选池、 曝气池等)也存在着大量含油污泥。一个日处理 20 000 m 3污水的处理厂每日约产生20 m 3 含油污泥。这些污泥成分复杂,属于多相体系,一般由水包油 (O/W)、油包水(W/O)以及悬浮固体组成,且乳 化充分,黏度较大,固相难以彻底沉降,给污泥处 理带来很大的难度。 2 含油污泥的危害 (1)含油污泥的存在使回注水中悬浮物含量严 重超标,堵塞地层,造成油层吸水能力下降,注水 压力不断升高;同时,使水井增注措施(主要是酸化)有效期下降,增加了处理费用和工作量。 (2)为确保注水水质,防止悬浮物在系统中恶性循环,每天被迫外排大量的污水,既造成了水资源浪费,又污染了环境。 (3)由于大颗粒在沉降罐、净化污水罐、污水池中不断沉积,使清罐周期缩短,清出的大量污泥 含水率高,无处堆放,污染环境,增加了成本投入。 3 含油污泥的处理现状 国内外处理含油污泥的方法一般有:焚烧法、生物处理法[8、9]、热洗涤法、溶剂萃取法[10] 、化学破乳法[11]、固液分离法[12] 等。其中焚烧法耗能大、产生二次污染,油资源也没得到回收利用;生物处理法需将含油污泥混以松散剂、肥料和培菌液,经常颤动并自然通风, 历时41 d 才能将97%的石油烃生物降解,同样油资源也没有得到回收利用;溶剂 萃取法存在的问题是流程长,工艺复杂,处理费用高,只对含大量难以降解的有机物的含油污泥适用;化学破乳法对乳化严重的含油污泥需另加破乳剂和加热;固液分离法对于含油高、污染严重的含油污泥,油回收率低。可见,这些方法由于投资、处理效果及操作成本等原因,未能在国内普及应用。目前,我国含油污泥处理问题一直难以得到有效解决。

含油污泥来源与处理方法综述

含油污泥来源与处理方法综述 前言 含油污泥是在石油开采、运输、炼制及含油污水处理过程中产生的含油固体废物。污泥中一般含油率在10~50%,含水率在40~90%,我国石油化学行业中,平均每年产生80万t罐底泥、池底泥[1],胜利油田每年产生含油污泥在10万吨以上,大港油田每年产生含油污泥约15万吨,河南油田每年产生5×104m3含油污泥[2]。含油污泥中含有大量的苯系物、酚类、蒽、芘等有恶臭的有毒物质[3],含油污泥若不加以处理,不仅污染环境,而且造成资源的浪费。含油污泥的处理一 直是困扰油田的一大难题。 1.含油污泥来源 含油污泥的来源主要有以下几种途径: 1.1 原油开采产生含油污泥 原油开采过程中产生的含油污泥主要来源于地面处理系统,采油污水处理过程中产生的含油污泥,再加上污水净化处理中投加的净水剂形成的絮体、设备及管道腐蚀产物和垢物、细菌(尸体)等组成了含油污泥。此种含油污泥一般具有含油量高、粘度大、颗粒细、脱水难等特点,它不仅影响外输原油质量,还导致注水水质和外排污水难以达 标[4]。

1.2 油田集输过程产生含油污泥 胜利油田含油污泥的主要来源于接转站、联合站的油罐、沉降罐、污水罐、隔油池底泥、炼厂含油水处理设施、轻烃加工厂、天然气净化装置清除出来的油沙、油泥,钻井、作业、管线穿孔而产生的落地原油及含油污泥[5]。油品储罐在储存油品时,油品中的少量机械杂质、沙粒、泥土、重金属盐类以及石蜡和沥青质等重油性组分沉积在油罐 底部,形成罐底油泥。 中原油田污泥产生主要是一次沉降罐、二次沉降罐、洗井水回收罐的排污。含油污泥本身成分复杂,含有大量的老化原油、蜡质、沥青质、胶体和固体悬浮物、细菌、盐类、酸性气体、腐蚀产物等,污水处理过程中还加入了大量的凝聚剂、缓蚀剂、阻垢剂、杀菌剂等水 处理药剂[6]。 在3~6年的油罐定期清洗中,罐底含油污泥量约占罐容的1%左右。罐底含油污泥的特点是碳氢化合物(油)含量极高。据调查测试发现,油罐底泥中大约25%为水,5%的无机沉淀物如泥沙,70%左右为碳氢化合物,其中沥青质占7.8%,石蜡占6%,污泥灰分含量 4.8%[3]。 1.3 炼油厂污水处理场产生的含油污泥 炼油厂污水处理场的含油污泥主要来源于隔油池底泥、浮选池浮渣、原油罐底泥等,俗称“三泥”,这些含油污泥组成各异,通常含油

热解技术含油污泥无害化处理与资源化利用

热解技术含油污泥无害化处理与资源化利用 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

热解技术:含油污泥无害化处理与资源化利用 近年来,我国固体废物和危险废物处置能力大幅提升,但非法转移、处置固体废物,尤其是跨省倾倒危险废物的事件仍时有发生。这其中,相当数量的危险废物是含油污泥。 严禁含油污泥非法转移倾倒 含油污泥是石油勘探、开采、炼制、清罐、储运及含油污水处理过程中所产生的含油固体废弃物,具有产量大、含油量高、重质组分高、综合利用方式少,处理难度大等特点。含油污泥中含有大量的有毒有害物质,若不及时加以处理整治,将势必对周围土壤、水体、空气及其生物圈造成严重污染。 含油污泥作为一种常见的暴露污染源,已被列入2016年版《国家危险废物名录》(国家环保部令第39号)。《中华人民共和国清洁生产促进法》要求必须对含油污泥进行无害化处理,严禁非法转移倾倒。 2018年5月,生态环境部启动了“清废行动2018”,并印发《关于坚决遏制固体废物非法转移和倾倒,进一步加强危险废物全过程监管的通知》,加强固废危废处置能力,保障生态环境安全。 含油污泥资源化利用势在必行 据不完全统计,我国每年含油污泥产生量在3,000万吨左右,其资源化利用是油田环境保护与可持续发展的重要问题之一。现行的处理技术有填埋、焚烧、固化处理、热脱附、溶剂萃取、生物处理等,许多方法视含油污泥为废物,忽略了其本身的资源属性,在实际大规模工业应用中存在处理过程成本高、工艺设备复杂、效率低、二次污染等问题。研发经济、环保、安全的技术装备,充分回收油泥中的石油资源,并使处理后固体产物无害化势在必行。 低温热解技术装备经长期商业化运作验证,以其高效低耗、稳定、安全环保优势,在油泥资源化利用领域受到了越来越多的关注与行业认同,并得到了国家政策的大力支持。

含油污泥处理技术

含油污泥处理技术 1 含油污泥的处理标准 油气田含油污泥的处理标准,通常取决于处理后污泥的用途,一般来说,国内外对于这类污泥的最终处置都是筑路、填埋,为避免对填埋区土壤造成不良影响,各国都对含油污泥处理后的重金属含量、油含量等提出了严格要求,例如美国、法国对填埋处置的含油污泥要求其含油量≤2%(油的质量分数),对筑路处置的含油污泥要求其含油量≤5%(油的质量分数)。 我国对于含油污泥的处理也制定了相关标准,如《危险废弃物填埋污染控制标准》(GB 18598-2001)等,但并没有针对含油污泥处理后的含油量制定量化指标,只在《农用污泥中污染物控制标准》(GB4284-84)中对污泥中的矿物含油量作出了规定,为≤0.3%(由的质量分数)。对于含油污泥中的重金属含量,《农用污泥中污染物控制标准》(GB4284-84)也作出了规定,如ρ(Cu)为500mg/kg,ρ(As)为75mg/kg等,也对 重金属排放量进行了规定。 2 油气田含油污泥治理技术 2.1 减量处理 减量处理是利用物理化学方法将污泥中的颗粒物分离出来,从而实现污染物减量化的处理措施,该方法具有成本低、易于操作的特点。 2.1.1 机械脱水 机械脱水是对含油污泥进行调质、分选等多种预处理后,然后高速离心,将油、水、泥三者相分离,然后再根据处理效果,利用固化技术、生物技术等进行辅助处理,实现含油污泥的无害化。一般来说其流程如下: 1)用絮凝剂调节含油污泥的颗粒结构,增强含油污泥脱水性。 2)用真空过滤脱水机、高速离心机等设备进行脱水。其中,絮凝剂是难降解的物质,处理不好会导致二次污染,因此选择适用范围广、无毒无害的高效、有机、高分子絮凝剂是需要考虑的关键问题,新出现的微生物分泌的高分子絮凝剂是一个较好的选择。 2.1.2 焚烧 焚烧是污水处理厂处理含油污泥的主要办法。在将含油污泥脱水后,送入浓缩罐内,升温到60 ℃,然后加入絮凝剂,进行搅拌和重力沉降,再分层切水。含油污泥在经过

浅析含油污泥处理

龙源期刊网 https://www.sodocs.net/doc/269788398.html, 浅析含油污泥处理 作者:柴源 来源:《山东工业技术》2019年第16期 摘要:含油污泥属于危险废物,主要来自于石油行业。本文针对石油行业含油污泥处理 现状,通过已应用的含油污泥处理技术对比,对其应用的含油污泥的类别进行分析,选择最佳的处理技术。 关键词:含油污泥;对比;分析;处理技术 DOI:10.16640/https://www.sodocs.net/doc/269788398.html,ki.37-1222/t.2019.16.027 0 前言 含油污泥(砂)成分非常复杂,是一种含泥砂、原油、污水等多相稳定胶态悬浮体系。 其危害环境的主要成分是烃类、石油类、各类化学处理剂残留物等。含油污泥处理应遵循“减量化、无害化、资源化”的原则,采取“科学、安全、无害化”的技术方法。有力、有序、有效的开展含油污泥的处理、处置工作。以保护环境、消除风险和综合利用为最终目的。 1 含油污泥处置总体技术路线 (1)含油污泥来源。1)落地油泥。落地油泥多从油田的井下“测井”、“试井”、“修井”和采油设施的“清淤”得到的固体含油污泥,其特点是:砂石泥土含量大;塑料杂草等纤维物质多;石油含量高(20%左右);化学反应随产地、堆放时间变得极其复杂。2)清罐油泥。采油生产中处理含油污水设施产生的罐底泥、池底泥清罐油泥。其特点是:由水包油、油包水的微细悬浮物组成,比重比水重;稠油、胶质、蜡质含量高;含水高达95%~99.7%,浓缩、过滤困难。3)浮渣。采油生产中处理含油污水设施产生气浮泥其特点是:由水包油、油包水的微细悬浮物组成,比重接近水;含水高达90%以上。 (2)含油污泥处理。含油污泥采用预处理工艺进行分选和清洗,分离出的油水进入联合站现有油水处理系统进行处理,分离出的固相与其它含油污泥进入深度减量化处理工艺。深度减量化处理分别采用精细化学热洗技术、土壤修复技术、间接热解吸技术、水洗法油泥处理技术等。分离出的剩余固相含油率小于2%,符合《陆上石油天然气开采含油固体废弃物资源化综合利用及污染控制技术要求》SY/T7301-2016标准,用于铺垫油田通井路、井场,或者采用非烧结技术制砖,用于建设井场围堰,最终实现含油污泥的资源化利用。 2 精细化学热洗技术 (1)处理油泥类型。含油污泥化学热洗技术广泛应用于含油量高,低乳化原油和油砂。

含油污泥来源与处理方法方案

前言 含油污泥是在石油开采、运输、炼制及含油污水处理过程中产生的含油固体废物。污泥中一般含油率在10~50%,含水率在40~90%,我国石油化学行业中,平均每年产生80万t罐底泥、池底泥,胜利油田每年产生含油污泥在10万吨以上,大港油田每年产生含油污泥约15万吨,河南油田每年产生5×104m3含油污泥。含油污泥中含有大量的苯系物、酚类、蒽、芘等有恶臭的有毒物质,含油污泥若不加以处理,不仅污染环境,而且造成资源的浪费。含油污泥的处理一直是困扰油田的一大难题。 1.含油污泥来源 含油污泥的来源主要有以下几种途径: 1.1 原油开采产生含油污泥 原油开采过程中产生的含油污泥主要来源于地面处理系统,采油污水处理过程中产生的含油污泥,再加上污水净化处理中投加的净水剂形成的絮体、设备及管道腐蚀产物和垢物、细菌(尸体)等组成了含油污泥。此种含油污泥一般具有含油量高、粘度大、颗粒细、脱水难等特点,它不仅影响外输原油质量,还导致注水水质和外排污水难以 达标。

1.2 油田集输过程产生含油污泥 胜利油田含油污泥的主要来源于接转站、联合站的油罐、沉降罐、污水罐、隔油池底泥、炼厂含油水处理设施、轻烃加工厂、天然气净化装置清除出来的油沙、油泥,钻井、作业、管线穿孔而产生的落地原油及含油污泥。油品储罐在储存油品时,油品中的少量机械杂质、沙粒、泥土、重金属盐类以及石蜡和沥青质等重油性组分沉积在油罐底部,形成罐底油泥。 中原油田污泥产生主要是一次沉降罐、二次沉降罐、洗井水回收罐的排污。含油污泥本身成分复杂,含有大量的老化原油、蜡质、沥青质、胶体和固体悬浮物、细菌、盐类、酸性气体、腐蚀产物等,污水处理过程中还加入了大量的凝聚剂、缓蚀剂、阻垢剂、杀菌剂等水处理药剂。 在3~6年的油罐定期清洗中,罐底含油污泥量约占罐容的1%左右。罐底含油污泥的特点是碳氢化合物(油)含量极高。据调查测试发现,油罐底泥中大约25%为水,5%的无机沉淀物如泥沙,70%左右为碳氢化合物,其中沥青质占7.8%,石蜡占6%,污泥灰分含量4.8%。 1.3 炼油厂污水处理场产生的含油污泥 炼油厂污水处理场的含油污泥主要来源于隔油池底泥、浮选池浮渣、原油罐底泥等,俗称“三泥”,这些含油污泥组成各异,通常含

试论含油污泥如何实现无害化处理

试论含油污泥如何实现无害化处理 油田以及炼化企业在生产的过程中往往会产生大量的含油污泥,因此如何更加有效地开展含油污泥的无害化处理显得尤为重要,也成为了近年来相关研究的重点。本文对于含油污泥无害化处理的技术原理进行探討,对于当前含油污泥无害化处理技术进行分析,其中包括了堆肥法处理技术,固化处理技术以及高温处理技术等。通过对于含油污泥无害化处理技术的优缺点进行分析,对于其未来的发展方向进行讨论,希望可以为相关企业的发展和研究提供参考。 标签:含油污泥;无害化处理;发展方向 引言 当前在石油开采以及炼制的过程中,会产生大量的含油污泥,含油污泥中含有取得原有材料,还有污泥中也有许多有害的物质,例如重金属,以及一些有毒性的阴离子和放射物性质,长期存放在空气中,会对环境产生重要的影响和危害,同时也会造成石油资源的浪费,当前国内外含油污泥处理技术方法比较多,但是实用性比较强,难以真正实现无害化处理,因此,对于当前含油污泥无害化处理技术进行分析,对于帮助人们,对于现有含有工具无害化处理技术进行更好的掌握,有着重要的作用,同时能够推动进行无害化深度处理技术的开发。 一、机械分离技术分析 机械分离技术作为一种传统的处理方法,相对来说是比较有效的,这种方法主要就是通过加入调制剂,对于污泥的稳定状态进行破坏,提高脱水效率,也可以使用加热处理和冷冻熔处理法进行调质。开展污泥调质,主要的目的就是通过一定的手段,对于固体粒子群的性状和排列状态进行有效的调整,使其能够适合不同的脱水条件。机械分离技术处理污泥油的回收率比较高,国外这一技术相对来说已经很成熟。当前,国内含油污泥系统中,使用絮凝剂进行调质的比较多。由于不同地区含油污泥成分有一定的差异,需要药剂和脱水机械更好的适应,保证通用优化。如果其中的化学试剂不能够有效处理,容易造成二次污染。机械分离,主要就是把含油污泥中的游离水进行脱离,脱除一些有害杂质,当然,污泥处理后还需要进一步的处理。 二、萃取处理技术分析 含油污泥经过加药和机械脱水后,含油量一般在百分之八十左右,并且其中的水主要是以游离水为主,更多的是以间隙水和内部结合水以及附着水的形式存在。在常规操作中难以实现油、水和固体物的彻底分离。萃取法主要就是把含油污泥溶解,把含油污泥中的原油回收利用。萃取法中包含了相似相溶的原理,选择比较适合的有机溶剂作为萃取剂把含油污泥进行溶解,把含油污泥中的原油进行回收和利用。

含油污泥处理工艺综述

含油污泥处理工艺综述 摘要:含油污泥是油田生产过程中产生的固体废物,已被列入《国家危险废物 名录》,它的处理时国内外一个难攻克的难题。通过介绍不同的处理工艺技术, 对目前的技术路线进行对比。 关键词:含油污泥技术对比 原油在开采、炼制、储存等过程中会产生大量的油泥,其特点是含有多种有毒有害物质,含水率高,固体颗粒小,油水固乳化严重,脱水困难,其处置问题一直是石化企业的老大难 问题。2008年国家对危险废物名录进行修改,将含油污泥划为危险废物。随着国家危废名录 的出台,地方环保部门也加大了石化企业油泥外委处置的监管力度,有些地方环保部门严格 限制油泥出厂。由此可见,油泥处理已成为各级环保部门的一大关注热点。随着国家环保法 规的日益严格和公众环保意识的增强,环保执法力度的增大,油泥无害化处置将是石化企业 继污水达标处理和废气达标处理之后的又一项环保要求【1】。 一、油泥类型 根据成因不同,油泥通常分为:落地油泥、罐底油泥、地面溢油、炼油厂含油污泥等。 (1)落地油泥 在油田采油生产、原油输送、装置检修及拆油井过程中,井喷和防喷后总有后一些石油 无法回收,再加上由于事故、跑冒滴漏等原因会有或多或少的原油流到地上,从而形成落地 油泥。 (2)罐底油泥 油品储罐在储存油品特别是原油时,存放时间一般较长,特别是战略储备时储存时间更长,这时原油及油品中高熔点蜡、沥青质、胶质和所夹带的沙粒、泥土、重金属盐类等无机 杂质因密度差便会和水一起沉降积累在油罐底部,形成又黑又稠的胶状物质,即罐底油泥, 其数量一般高达该储罐容量的1%~2%。 (3)地面溢油 油气田地面溢油中的地面,主要指油气田区域范围农用或可农用的土壤,也包括沿海滩 潦土壤、沙石土壤等;溢油主要指落地原油,也包括落地的煤油、汽油等成品油成品油。油 气田产生地面溢油的环节很多,钻井过程中起下钻作业、试井、井喷、清理钻井设备;采油 过程中抽油管的断裂、采油树机泄漏、抽油机停车进行作业检修;原油集输过程中集输管线 断裂引起的泄漏以及原油炼制加工等环节均能产生地面溢油,从而形成油泥。 (4)炼油厂含油污泥 炼油厂的污水处理系统产生的污泥主要来自隔油池的底泥、浮选池浮渣、剩余活性污泥、统称为“三泥”。炼油厂含油污泥的性质复杂,黏度较大,难以沉降,且浓缩困难,脱水和处 理技术难度大,一直是困扰炼油行业的环保难题【2】。 二、油泥的性质及特征 油泥的成分极其复杂,随地质条件、生产工艺的不同而各异,一般由水、泥土、油类有 机物等组成。油泥主要有以下几个特征:水含量高、体积大;成分复杂、处理难度大;含有 大量污油和可燃物质;有害成分多数超过排放标准。 三、国内外油泥净化处理技术 从80年代中期开始,美国、日本、德国、前苏联等发达国家开始研究高效低耗处理油泥的方法和工艺。现今国内外处理含油污泥的方法一般有:焚烧法、生物处理法、热洗涤法、 溶剂萃取法、化学破乳法、固液分离法等。尽管处理的方法很多,但都因针对性不强、处理 成本高等缺点没有推广。对含油污泥进行无害化、清洁化并回收其中资源的综合处理,成为 国内外环境保护和石油工业的重点之一。 (1)焚烧法 法国、德国的石化企业多采用焚烧的方式,污泥先经过调制和脱水预处理,浓缩后的污 泥再经设备脱水干燥,将泥饼送至焚烧炉进行焚烧,灰渣用于修路或埋入指定的灰渣填埋场,焚烧产生的热能用于供热发电。

含油污泥处理技术

含油污泥处理技术及资源化利用途径* 匡少平1,2,3宋峰2 (1.清华大学环境工程博士后流动站,北京100084; 2.青岛科技大学化学与分子工程学院,山东青岛266042; 3. 中原油田博士后工作站,河南濮阳457001) 摘要石油开采和加工过程中产生的大量含油污泥,对生产和生态环境产生极大危害,同时又是一种宝贵的二次资源,对其既必须进行无害化处理又可以进行资源化利用。国内外主要的含油污泥处理技术有:调质-机械脱水、生物处理、固化处理、焚烧、填埋与干化和综合利用等。介绍了各技术的原理、特点和研究应用进展。目前较受重视的技术是调质-机械脱水、生物处理、固化处理和综合利用。调质-机械脱水可有效的分离油-水-泥,但产生的泥饼需进一步处理;生物处理可以将含油污泥中的有机物彻底降解为CO2和H2O,但降解效率有待提高;固化可以大大降低有害物质的渗出率;资源化利用将成为含油污泥处理技术的发展趋势。 关键词含油污泥调质-机械分离生物处理固化资源化 Treatment and comprehensive utilization of oily sludge Kuang Shaoping1, 2, 3, Song Feng2. (1. Post-Doctor Station, Tsinghua University, Beijing 100084;2. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao Shandong 266042;3. Post-Doctor Work Station, Zhongyuan Oilfield Branch, Puyang Henan 457001) Abstract:Oily sludge produced in the course of exploitation and processing does great harms to the production and the environment. Oily sludge must be treated harmlessly and be utilized comprehensively. Oily sludge treating techniques include sludge quality adjustment and mechanical dewatering, biological treatment, solidification, combustion, natural drying and burial method, and comprehensive utilization, and so on. This paper expatiated on the principles, characteristics and applications of different methods. Quality adjustment and mechanical dewatering, biological treatment, solidification and comprehensive utilization are regarded as important treating techniques. Oily sludge can be divided into oil, water and mud through quality adjustment and mechanical dewatering, but the sludge cake must be treated finally; Microorganism can degrade the organic substance of oily sludge into CO2 and H2O, but efficiency of biodegradation need to be enhanced; Solidification can decrease the exudation of injurant. Comprehensive utilization will be the dominant technique for oily sludge treatment in the future. Keywords:Oily sludge Quality adjustment and mechanical dewatering Biological treatment Solidification Comprehensive utilization 油田和炼油厂的污水处理系统以及原油生产储运系统会产生大量含油污泥。目前我国每年产生的含油污泥总量达500余万t[1]。随着大多数油田进入中后期开采阶段,采出油中含水率越来越高,含油污泥量还会继续增加。人们对含油污泥的处理进行了大量的研究,但至今没有一种成熟有效的处理方法。笔者对目前国内外含油污泥处理技术和资源化利用途径进行了探讨。 1 含油污泥的性质与危害 含油污泥成分极其复杂,主要由乳化油、水、固体悬浮物等混合组成, 其成分与地质 第一作者:匡少平,男,1966年生,教授,主要从事环境科学与工程的教学与研究工作,研究方向为固体废物资源化处理、工业废水处理。 *山东省教育厅科技发展项目(J05D51);中原油田博士后基金资助项目(2005418)。

相关主题