搜档网
当前位置:搜档网 › 原子吸收光谱分析实验

原子吸收光谱分析实验

原子吸收光谱分析实验
原子吸收光谱分析实验

原子吸收光谱分析实验

二、【实验目的】

1、了解原子吸收分光光度计的结构及其使用方法

2、掌握以原子吸收分光光度法进行定量测定的方法

3、了解对某一种元素的测定,怎样选择出最佳测试条件

三、【实验要求】

1、要求同学掌握原子吸收分光光度的结构及分析原理,利用所学原子吸收知识,设计出用火焰原子化法对某一种元素的测定,怎样选择出最佳测试条件,即符合比尔定律,又要有较好的灵敏度、精密度、稳定性和抗干扰性。

2、设计出合理的实验方法(两种)测定出饮用水中钙的含

量。

四、【实验原理】

1、基本原理

在原子吸收分光光度法中,一般由空心阴极灯提供特定波长的辐射,即待测元素的共振线。由喷雾-火焰燃烧器或石墨炉等原子化装置使试样中的待则元素分解为气相状态的基态原子。当空心阴极灯的辐射通过原子蒸气时,特定波长的辐射部分地被基态原子所吸收,经单色器分光后,通过检测器测得其吸收前后的强度变化,从而求得试样中待测元素的

含量。如下图

当试样原子化,火焰的绝对温度低于3000k时,可以认为原子蒸气中基态原子的数目实际上接近于原子总数。在固定的实验条件下原子总数与试样浓度C的比例是恒定的,可记为

A=K′C

这就是原子吸收分光光度法定量的基础。

2、主要特点

(1)具有灵敏度高,选择性好,抗干扰能力强,稳定性好。

(2)适用范围广,可测定七十多种金属元素。

(3)仪器结构简单,操作方便。

3、定量方法

(1)标准曲线法

配制一组合适的标准溶液,由低浓度到高浓度,依次喷入火焰,分别测定其吸光度A,以测得的吸光度为纵坐标,待测元素的含量或浓度C为横坐标,绘制A-C标准曲线。在相同的实检条件下,喷入待测试样溶液,根据测得的吸光度,由标准曲线求出试样中待测元素的含量,标准曲线法简便、快速,但仅使用于组成简单的试样。

(2)标准加入法

若试样基体组成较复杂,又没有纯净的基体空白,很难配制相类似的标准溶液时,使用标准加入法是合适的。分取几份等量的被测试样,其中一份不加入被测元素,其余各份试样中分别加入不同已知量C1、C2、C3……Cn的被测元素,然后,在标准测定条件下分别测定它们的吸光度A,绘制吸光度A对被测元素加入量CI的曲线。如果被测试样中不含被测元

素,在正确校正背景之后,曲线应通过原点;如果曲线不通过原点,说明含有被测元素,截距所相应的吸光度就是被测元素所引起的效应。外延曲线与横坐标轴相交,交点至原点的距离所相应的浓度Cx,即为所求的被测元素稀释后的含量。

使用标准加入法时应注意以下几点:

(a)待测元素的浓度与其对应的吸光度应呈线性关系。

(b)为了得到较为精确的外推结果,最少应采用4个点来做外推曲线。

(c)本法能消除基体效应带来的影响,但不能消除背景吸收的影响,这是因为相同的信号,既加到试样测定值上,也加到增量后的试样测定值上,因此只有扣除了背景之后,才能得到待测元素的真实含量,否则将得到偏高结果。

(d)对于斜率太小的曲线(灵敏度差),容易引起较大的误差。

五、【实验条件】

1、仪器:日立180-80型原子吸收分光光度计;

电子天平(0.0001g);空心阴极灯(钙);空气压缩机;乙炔气瓶。容量瓶1000 mL ,100 mL。移液管2 mL ,5 mL,10 mL。烧杯25 mL,50 mL,150 mL。

2、试剂:

(1)、盐酸(优级纯)1mol/L。

(2)、钙标谁溶液的配制Ca=1000μg/mL

准确称取2.5000g(优级纯)CaCO3(在120℃,烘2小时),加去

离子水50mL,滴加1mol/LHCl至CaCO3完全溶解,移入1000mL容量瓶中,用去离子水稀释至刻度,摇匀。

(3)、工作液的配制:Ca=100 μg/mL

取10.0mL钙的贮备标准溶液于100mL容量瓶中,用去离子水稀释至刻度,摇匀。

3、原子吸收分光光度计结构与工作原理

仪器的外部结构见下图

它主要由一个阳极(钨棒)和空心圆柱形阴极组成,与待测元素同种的元素被选为阴极材料或衬在阴极上。将这两个电极密封于充入一种低压的惰性气体(氖、氩、氙、氦),并带有石英窗的玻璃管中。当灯与电源相连接,即在空心阴极内发生放电。由于稀有气体离子的轰击使自由原子从阴极四处溅出,它们又与稀有气体原子碰撞而激发出元素的辐射线。

使用时,灯安放在灯架上,调整上下左右的螺丝,使光斑成像在燃烧器的狭缝上方。

空心阴极灯常采用脉冲供电方式,以改善放电特性,同时便于使有用的原子吸收信号与原子化池的直流发射信号区分开,称为光源调制。在实际工作中,应选择合适的工作电流。使用灯电流过小,放电不稳定;灯电流过大,溅射作用增加,原子蒸气密度增大,谱线变宽,甚至引起自吸,导致测定灵敏度降低,灯寿命缩短。

由于原子吸收分析中每测一种元素需换一个灯,很不方便,现亦制成多元素空心阴极灯,但发射强度低于单元素灯,且如果金属组合不当,易

产生光谱干扰,因此,使用尚不普遍。

对于充氖的空心阴极灯,当发现阴极发光颜色不是纯氖的橙红色时,说明灯内有杂质气体。它会使灯的辐射强度减弱,导致信号对噪声的比例(即信噪比)降低,测量灵敏度下降。要使灯恢复正常,可以将灯通过长时间点燃,或将灯的正负极性反接处理半小时至一小时,直至灯在工作时发出正常光色为止。一般在杂质气体吸收掉后,就能恢复原来性能。

(2)无极放电灯

对于砷、锑等元素的分析,为提高灵敏度,亦常用无极放电灯做光源。无极放电灯是由一个数厘米长、直径5-12厘米的石英玻璃圆管制成。管内装入数毫克待测元素或挥发性盐类,如金属、金属氯化物或碘化物等,抽成真空并充入压力为67-200Pa的惰性气体氩或氖,制成放电管,将此管装在一个高频发生器的线圈内,并装在一个绝缘的外套里,然后放在一个微波发生器的同步空腔谐振器中。这种灯的强度比空心阴极灯大几个数量级,没有自吸,谱线更纯。

原子化器系统

原子化器的功能是提供能量,使试样干燥,蒸发和原子化。在原子吸收光谱分析中,试样中被测元素的原子化是整个分析过程的关键环节。实现原子化的方法,最常用的有两种:

火焰原子化法:是原子光谱分析中最早使用的原子化方法,至今仍在广泛地被应用;

非火焰原子化法:其中应用最广的是石墨炉电热原子化法。

(1)、火焰原子化器:

火焰原子化法中,常用的预混合型原子化器,其结构如下图。这种原子化器由雾化器、混合室和燃烧器组成

雾化器是关键部件,其作用是将试液雾化,使之形成直径为微米级的气溶胶。混合室的作用是使较大的气溶胶在室内凝聚为大的溶珠沿室壁流入泄液管排走,使进入火焰的气溶胶在混合室内充分混合均匀以减少它们进入火焰时对火焰的扰动,并让气溶胶在室内部分蒸发脱溶。燃烧器最常用的是单缝燃烧器,其作用是产生火焰,使进入火焰的气溶胶蒸发和原子化。因此,原子吸收分析的火焰应有足够高的温度,能有效地蒸发和分解试样,并使被测元素原子化。此外,火焰应该稳定、背景发射和噪声低、燃烧安全。

原子吸收测定中最常用的火焰是乙炔-空气火焰,此外,应用较多的是氢-空气火焰和乙炔-氧化亚氮高温火焰。乙炔-空气火焰燃烧稳定,重现性好,噪声低,燃烧速度不是很大,温度足够高(约2300℃),对大多数元素有足够的灵敏度。氢-空气火焰是氧化性火焰,燃烧速度较乙炔-空气火焰高,但温度较低(约2050℃),优点是背景发射较弱,透射性能好。乙炔-氧化亚氮火焰的特点是火焰温度高(约2955℃),而燃烧速度并不快,是目前应用较广泛的一种高温火焰,用它可测定70多种元素。

总之,火焰原子化器比较简单、普遍,但火焰的原子化效率很低。普通雾化器的效率仅为10~30%,试样雾滴在火焰中的停留时间很短,约为10-4秒。在此瞬间产生一系列复杂的反应过程,并且产生的基态原子蒸气可能发生电离作用,还可能和火焰成分或其他随伴成分发生反应,同时原子蒸气在火焰中又被大量气流所稀释。凡此种种,限制了测定灵敏度的提

高,一般不能直接分析固体试样。

(2)、无火焰原子化装置:

无火焰原子化器就是指电热高温石墨或金属原子化器。

石墨炉原子化法的优点是,试样原子化是在惰性气体保护下于强还原性介质内进行的,有利于氧化物分解和自由原子的生成。对于易形成耐热氧化物的元素,因无大量氧气存在,加以石墨提供了大量碳,故能得到较好的原子化效果。且用样量小,样品利用率高,原子在吸收区内平均停留时间较长,绝对灵敏度高。液体和固体试样均可直接进样。缺点是试样组成不均匀性影响较大,有强的背景吸收,测定精密度不如火焰原子化法。

无火焰原化装置有多种,电热高温石墨管、石墨坩埚、石墨棒、钽舟、镍杯、高频感应加热炉、空心阴极溅射、等离子喷焰、激光等等。

分光系统

分光系统的作用是将欲测的吸收线与其他谱线分开。原子吸收所用的吸收线是锐线光源发出的共振线,它的谱线比较简单,因此,对仪器的色散能力、分辨能力要求较低。

光学系统可分为两部分:外光路系统和分光系统(单色器)。

(1)外光路系统使光源发出的共振线能正确地通过被测试样的原了蒸气,并投射到单色器的狭缝上。见下图是应用于单光束仪器的一种类型(双透镜系统)。光源发出的射线成像在原子蒸气的中间,再由第二透镜将光线聚焦在单色器的入射狭缝上。

原子吸收实验报告

原子吸收光谱法 原子吸收光谱法是基于含待测组分的原子蒸汽对自己光源辐射出来的待测元素的特征谱线(或光波)的吸收作用来进行定量分析的。由于原子吸收分光光度计中所用空心阴极灯的专属性很强,所以,原子吸收分光光度法的选择性高,干扰较少且易克服。而且在一定的实验条件下,原子蒸汽中的基态原子数比激发态原子数多的多,故测定的是大部分的基态原子,这就使得该法测定的灵敏度较高。由此可见,原子吸收分光光度法是特效性、准确性和灵敏度都很好的一种金属元素定量分析法。 一.实验目的 1.熟悉原子吸收光度计的基本构造及使用方法。 2.掌握原子吸收光谱仪中的石墨炉原子化法和火焰原子化法。 二.实验原理 原子光谱是由于其价电子在不同能级间发生跃迁而产生的。当原子受到外界能量的激发时,根据能量的不同,其价电子会跃迁到不同的能级上。电子从基态跃迁到能量最低的第一激发态时要吸收一定的能量,同时由于其不稳定,会在很短的时间内跃迁回基态,并以光波的形式辐射现同样的能量。根据△E=hυ可知,各种元素的原子结构及其外层电子排布的不同,则核外电子从基态受激发而跃迁到其第一激发态所需要的能量也不同,同样,再跃迁回基态时所发射的光波频率即元素的共振线也就不同,所以,这种共振线就是所谓的元素的特征谱线。加之从基态跃迁到第一激发态的直接跃迁最易发生,因此,对于大多数的元素来说,共振线就是元素的灵敏线。在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源辐射的共振线的吸收来进行的。 三火焰原子化器与石墨炉原子化器 原子化系统的作用是将待测试液中的元素转变成原子蒸汽。具体方法有火焰原子化法和无火焰原子化法两种,前者较为常用。

吸收实验实验报告

一、 实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数K Y a. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速o u [m/s]为横坐标,单位填料层压降 Z P ?[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量L 0=0时,可知 Z P ?~o u 关系为一直线,其斜率约—2,当喷淋量为L 1时, Z P ?~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。每条折线分为三个区段, Z P ?值较小时为恒持液区, Z P ?~o u 关系曲线斜率与干塔的相同。Z P ?值为中间时叫截液区,Z P ?~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。 Z P ?值较大时叫液泛区,Z P ?~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。在液泛区塔已无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 吸收实验

图2-2-7-1 填料塔层的 Z P ?~o u 关系图 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: m Ya A Y H K N ???Ω?= (1) 式中:N A ——被吸收的氨量[kmolNH 3/h]; Ω——塔的截面积[m 2] H ——填料层高度[m] ?Y m ——气相对数平均推动力 K Y a ——气相体积吸收系数[kmolNH 3/m 3 ·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告 班级:环科10-1 姓名:王强学号:27 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器 ~ mL及5 ~ 50 uL

2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长: nm 灯电流:3 mA 狭缝宽度: nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、 mL、 mL、 mL浓度为100 ng/mL的镉标准溶液,再各添加 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。 取水样500 mL于烧杯中,加入5 mL浓硝酸溶液,加热浓缩后转移至50 mL 容量瓶,以Milli-Q去离子水稀释至刻度,摇匀,此待测水样供原子吸收测定用。3.吸光度的测定 设置好测定条件参数,待仪器稳定后,升温空烧石墨管,用微量分液器由稀到浓向石墨管中依次注入40 uL标准溶液及待测水样,测得各份溶液的吸光度。 五、数据记录:

物质对伽马射线的吸收实验报告

近代物理实验报告指导教师:得分: 实验时间: 2009 年 12 月 14 日,第十六周,周一,第 5-8 节 实验者:班级材料0705 学号 5 姓名童凌炜 同组者:班级材料0705 学号 7 姓名车宏龙 实验地点:综合楼 507 实验条件:室内温度℃,相对湿度 %,室内气压 实验题目:物质对伽马射线的吸收 实验仪器:(注明规格和型号) 射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。 仪器组成如下图所示: 实验目的: 1.了解掌握射线与物质相互作用的性质和特点 2.学习掌握物质对射线的吸收规律 3.测量射线在不同物质中的吸收系数 4. 实验原理简述: 当原子核发生α和β衰变时,通常衰变到原子 核的激发态,由于处于激发态的原子核是不稳定的, 它要向低激发态跃迁,同时往往放出γ光子,这一现 象称为γ衰变。γ光子会与下列带电体发生相互作 用,原子中的束缚电子,自由电子,库伦场及核子。 这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。如右所示为为γ射线与物质相互作用的示意图

图中的三种状况分别为: 1. 低能时以光电效应为主。 2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。 3. 若入射光子的能量超过,则电子对的生成成为可能 从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。 本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。射线束有一定宽度,只要没有散射光子,就可称之为“窄束”。 射线强度随物质厚度的衰减服从指数规律,即x e I I μ-=0 I 和0I 分别是穿透物质前后的γ射线强度;x 是γ射线穿过物质的厚度是光电、康普顿、电子对三种 效应截面之和;N 是吸收物质单位体积中的原子数;μ是物质的吸收系数, 反映了物质吸γ收射线能力的大小, 并且可以分解成这样几项: p c ph μμμμ++= γ射线与物质相互作用的三种效应的截面都随入射γ射线的能量γE 和吸收物质的原子序数Z 而改变。 如右所示, 图中给出了铅对γ射线的吸收系数与γ射线能量的线性关系图。 实际中通常用质量厚度)(2 -??=cm g x R m ρ来表示 吸收体的厚度,以消除密度的影响, 则射线强度的表达式修改为:ρ μ/0)(m R m e I R I -= 计数率N 总是与该时刻的射线强度成正比,因此可得:0InN R InN m +- =ρ μ 将对数形式的吸收曲线表达为图像, 得到这样的一条直线, 如右图所示. 并且可以从这条直线的斜率求出

原子吸收光谱仪品牌比较

原子吸收光谱仪品牌比较-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

原子吸收光谱仪品牌比较 国内市场上常见的原子吸收光谱仪品牌大概有二、三十种。进口厂商方面,包括PE、热电(原UNICAM)、瓦里安、耶拿、GBC(照生公司代理)、日本岛津、日立(天美公司代理)、美国利曼、威格拉斯以及加拿大AURORA(路易公司代理)等;国产厂商方面,主要有北京瑞利(原北二光)、普析通用、东西电子、上海精科(原上分厂)、科创海光、瀚时制作所、上海天美、北京华洋、博晖创新、上海光谱等。基本上涵盖了国内外主流的原子吸收光谱仪生产厂家。 2004年,中国原子吸收光谱仪市场的销售总量接近2000台,其中国产原子吸收光谱仪所占份额在70%以上。从产品性能上看,国产仪器已接近国外中档原子吸收水平,火焰原子吸收基本上已达到进口仪器水平,且价格便宜,具有很强的竞争力。与进口高档原子吸收光谱仪相比,国产仪器主要是在自动进样器、石墨管寿命、综合扣背景能力以及自动化程度等方面还存在着一定的技术差距,有待进一步提高。 就原子吸收市场占有量而言,进口厂商方面,来自美国的三家公司:PE、热电和瓦里安应该是排名在前三位的厂家。 据我们保守估计,这三家公司2004年的原子吸收销售量之和应该占到中国进口原子吸收光谱仪市场的五分之三。此外,德国耶拿和日本日立的原子吸收在中国市场的表现也不错,尤其是在某一行业或地区,如:耶拿在中国的地质行业,日立在中国的华南市场都有着不错的原子吸收市场占有率。国产厂商方面,普析通用已取代了北京瑞利,成为中国国产原子吸收光谱仪的最大供货商,紧随其后的是北京瑞利和另一家民营企业——东西电子。这三家原子吸收2004年的销售台数总和大致在900~1000台左右。此外,上海精科和科创海光在国产原子吸收市场上也占据了不小的份额。就原子吸收光谱仪产品而言,PE的 AA800、耶拿的ZEEnit700、热电的M6、瓦里安的AA280以及GBC的Avanta Ultra Z等可以称得上是进口高档原子吸收光谱仪的杰出代表。 可以说,当今原子吸收光谱仪上几乎所有最先进的技术在这一档次的仪器身上均不同程度地得到了体现。譬如:横向加热石墨炉技术、多功能石墨炉背景校正技术、火焰-石墨炉一体化设计(原子化器无需切换)、石墨炉可视技术、单/双光束自动切换、火焰快速序列式分析模式、固体进样技术、固态检测器等等。当然,这一档次的原子吸收仪器的价格也是比较昂贵的,平均价格大致在五万美金左右。在国产仪器方面,普析通用的TAS-990、东西电子的 AA7003、北京瑞利的WFX-210、和瀚时制作所的CAAM—2001代表了国产原子吸收仪器发展的最高水平。这些仪器在一些主要技术指标方面(如:分辨率、基线稳定性、检出限等)已和国外同档次产品非常接近,同时也具有一些各自的特点。 TAS-990/986是国产目前唯一采用横向加热石墨炉技术的商品化原子吸收光谱仪;AA7003则将火焰原子化器和石墨炉原子化器固定在同一个可推拉平台上,通过推拉运动,在瞬间完成火焰/石墨炉的切换;WFX-210采用全新富氧火焰专利技术替代氧化—乙炔火焰分析高温元素,使火焰温度在2300℃-2900℃之间连续可调,对不同元素可选择最佳原子化温度条件;CAAM—2001则是以火焰原子吸收分析法为主、兼有流动注射氢化物原子吸收法(有内置流动注射氢化物发生器)、石墨炉原子吸收法、火焰发射法、可见/紫外溶液分子吸收法、流动注射在线富集法等多种功能的原子吸收光谱仪。价格方面,单火焰的国产原子吸收仪器的成交价格大致在 6~9万人民币,如果再配置石墨炉原子化器的话,成交价格则在10~15万人民币左右。(依具体配置不同而定 2

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基本原理; (2)了解原子吸收分光光度计的基本结构及其使用方法 (3)学习原子吸收光谱法操作条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量分析的方法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子变成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度符合比尔定律A=Kc 利用吸光度与浓度的关系,用不同浓度的铜离子标准溶液分别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样

(10)烧杯 四、实验步骤 (1)溶液的配制 准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml 容量瓶中,用去离子水稀释至刻度,使其浓度分别为0.25、0.50、 1.00、 2.50、 3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量1:1 燃烧器高度7.0nm 波长324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操作步骤进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,按照标准溶液浓度由稀到浓的顺序逐个测量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,测量水样的吸光度,并从标准曲线上查得水样中Cu的含量。 五、实验数据处理

仪器分析笔记《原子吸收光谱法》..

第四章原子吸收光谱法 ——又称原子吸收分光光度法§4.1 原子吸收分光光度法(AAS)概述 4.1.1 概述 1、定义 原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。 2、特点 ?灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。检出限可达10—9 g /mL (某些元素可更高) ?几乎不受温度影响:由波兹曼分布公式 00 q E q q KT N g e N g - =知,激发态原子浓度与基态原子浓度的比 值 q N N 随T↗而↗。在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的0 1% q N N =。也就是说, q N随温度而强烈变化,而 N却式中保持不变,其浓度几乎完全等于原子的 总浓度。 ?较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。另试样处理简单。RSD 1~2%,相对误差0.1~0.5%。 ?选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。分析不同元素时,选用不同元素灯,提高分析的选择性 ?应用范围广:可测定70多种元素(各种样品中)。 ?缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。 3、操作 ①将试液喷入成雾状,挥发成蒸汽; ②用镁空心阴极灯作光源,产生波长285.2nm特征谱线; ③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱; ④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 ?确定待测元素。 ?选择该元素相应锐线光源,发射出特征谱线。 ?试样在原子化器中被蒸发、解离成气态基态原子。 ?特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。 ?根据吸光度与浓度间线性关系,定量分析。 5、与发射光谱异同点 ①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象; ②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多; ③原子吸收法的选择性、灵敏度和准确性都好。

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:2010012127 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅 5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干

燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100l。固体直接进样石墨炉原子吸收法仅需~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10l即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。

化工原理吸收实验报告

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系

2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式: m p X A x V a K G ???= m p A x X /V G a K ?=? 2 211ln ) 22()11(e e e e m x x x x x x x x x --?---= )x -L(x G 21A = Ω?=Z V p 相关的填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z ?=-Ω=?12 OL OL N Z H = 其中, m x x e OL x x x x x dx N ?-= -=?2 11 2 Ω=a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=0.1m,吸收塔径φ=0.032m ,填料层高度0.8m (陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和0.83m (金属θ环)。

填料塔吸收实验报告

实验6 填料吸收塔实验报告 第四组成员:王锋,郑义,刘平,吴润杰 一、 实验名称 填料吸收塔实验 二、 实验目的 1、 了解填料吸收塔的构造并实际操作。 2、 了解填料塔的流体力学性能。 3、 学习填料吸收塔传质能力和传质效率的测定方法。 三、实验内容 测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。 四、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示: 图6-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点” ,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程 图6-2 填料吸收塔实验装置流程图 1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力 实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL 已知浓度的硫酸作为吸收尾气中氨之用。吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 六、实验操作方法及步骤 1、测量干填料层(△P/Z)─u关系曲线: 先全开调节阀 2,后启动鼓风机,用阀 2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,测量12~15组数据?然后在双对数坐标纸上以空塔气速 u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。 2、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为30L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为30L/h下(△P/z)─u?关系曲线,确定液泛气速并与观察的液泛气速相比较。 3、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为50L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为50L/h下(△P/z)─u?关系曲线,确定液泛气速

仪器分析实验报告原子吸收铜

华南师范大学实验报告 课程名称:仪器分析实验实验项目:原子吸收光谱法测定水 中的铜含量 原子吸收光谱法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定 量分析的方法。为了能够测定吸收值,试样需要转变成一种在适合的介质中存在的自由原子。化学火焰是产生基态气态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中。产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用的空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响方法的准确性。干扰一般分为四种:物理干扰、化学干扰、电离干扰和光谱干扰。物

理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确测定。干扰可以通过选择适当的实验条件和对试样的预处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 由于试样中基本成分往往不能准确知道,或是十分复杂,不能使用标准曲线法,但可采用另一种定量方法——标准加入法,其测定过程和原理如下。 取笑体积的试液两份,分别置于相同溶剂的两只容量瓶中。其中一只加入一定量待测元素的标准溶液,分别用水稀释至刻度,摇匀,分别测定其吸光度,则: Ax=kfx Ao=k(fo十fx) 式中,fx,为待测液的浓度;f。为加入标准溶液后溶液浓度的增量;测量的吸光度,将以上两式整理得:Ao分别为两次在实际测定中,采取作图法(图6—6)的结果更为准确。一般吸取四份等体积试液置于四只等容积的容量瓶中,从第二只容量瓶开始,分别按比例递增加人待测元素的标准溶液,然后用溶剂瓶稀释至刻度,摇匀,分别测定溶液fx,cx十fo,fx十2co,cx十3fo的吸光度为Ax,A1,Az,A:,然后以吸光度A对待侧元素标准溶液的加入量作图,得图6—6所示的直线,其纵轴上截距Ax为只含试样fx 的吸光度,延长直线与横坐标轴相交于cX,即为所需要测定的试样中该元素的浓度。

填料吸收塔实验报告

填料吸收塔 一、实验目的 1.熟悉填料吸收塔的构造和操作。 2.测定气体通过干湿填料塔的压力降,进一步了解填料塔的流体力学特征。3.测定填料吸收塔的吸收传质系数。 二、实验原理 填料吸收塔一般要求控制回收率越高越好。填料塔为连续接触式的气液传质设备,填料塔操作时液体从塔顶经分布器均匀喷洒至塔截面上,沿填料表面下流经塔底出口管排出,气体从支承板下方入口管进入塔内,在压力的作用下自下而上的通过填料层的空隙而由塔顶气体出口管排出。填料层内气液两相成逆流流动,在填料表面的气液界面上进行传质,因此两相组成沿塔高边缘变化,由于液体在填料中有倾向塔壁的流动,故当填料层较高时,常将其分为若干段,在两段之间设置液体再分布装置,以利于流体的重新均匀分布。 填料的作用: 1.增加气液接触面积。满足(1)80%以上的填料润湿;(2)液体为分散相,气体为连续相。 2.增加气液接触面的流动。满足(1)合适的气液负荷;(2)气液逆流。 三、实验步骤 (1)将液体丙酮用漏斗加入到丙酮汽化器,液位高度约为液体计高度的2/3以上。 (2)关闭阀V3,向恒压槽送水,以槽内水装满而不溢出为度,关闭阀V5。 (3)启动空气压缩机,调节压缩机使包内的气体达到0.05~0.1Mpa时,打开V2,然后调节气动压力定值器,使进入系统的压力恒定在0.03Mpa。

(4)打开V4,调节空气流量(400L/H~500L/H); 打开V6,调节空气流量 (5)室温大于15℃时,空气不需要加热,配制混合气体气相组成y1在12%~14%mol 左右;若室内温度较低,可预热空气,使y1达到要求。 (6)要改变吸收剂温度来研究其对吸收过程的影响,则打开液体加热电子调节器,温度t3<35℃。 (7)各仪表读数恒定5min以后,既可记录或取样分析有关数据,再按预先设计的试验方案调节有关参数。 (8)A1为取样测y1; A2为取样测y2; (9)阀V10为控制塔底液面高度,以保证有液封。 四、实验记录 测试方案: 1.固定气体流量,改变液体流量; 固定CO2的流量,改变H2O的流量:

原子吸收光谱分析

第8章原子吸收光谱分析 一、选择题 1. 空心阴极灯的主要操作参数是灯电流 2.在原子吸收测量中,遇到了光源发射线强度很高,测量噪音很小,但吸收值很低,难以读数的情况下,采取了下列一些措施,指出下列哪种措施对改善该种情况是不适当的改变灯电流B 调节燃烧器高度C 扩展读数标尺D 增加狭缝宽度 3.原子吸收分析对光源进行调制, 主要是为了消除原子化器火焰的干扰 4. 影响原子吸收线宽度的最主要因素是多普勒变宽 5. 原子吸收法测定钙时, 加入EDTA是为了消除下述哪种物质的干扰? 磷酸 6. 空心阴极灯中对发射线半宽度影响最大的因素是灯电流 7. 在原子吸收分析中,如怀疑存在化学干扰,例如采取下列一些补救措施,指出哪种措施不适当A加入释放剂B 加入保护剂C 提高火焰温度改变光谱通带 8.在原子吸收法中, 能够导致谱线峰值产生位移和轮廓不对称的变宽应是压力变宽 9. 在原子吸收光谱分析中,若组分较复杂且被测组分含量较低时,为了简便准确地进行分析,最好选择何种方法进行分析?标准加入法 10.石墨炉原子化的升温程序如下:干燥、灰化、原子化和净化 11. 原子吸收光谱法测定试样中的钾元素含量,通常需加入适量的钠盐, 这里钠盐被称为消电离剂 12. 空心阴极灯内充的气体是少量的氖或氩等惰性气体 13. 在火焰原子吸收光谱法中, 测定下述哪种元素需采用乙炔--氧化亚氮火焰钽 14. 在原子吸收光谱法分析中, 能使吸光度值增加而产生正误差的干扰因素是背景干扰 15. 原子吸收分光光度计中常用的检测器是光电倍增管 第3章高效液相色谱分析 一、选择题 1.液相色谱适宜的分析对象是高沸点大分子有机化合物 2.在液相色谱中,梯度洗脱适用于分离极性变化范围宽的试样 3.吸附作用在下面哪种色谱方法中起主要作用液一固色谱法 4.在液相色谱中,提高色谱柱柱效的最有效途径是减小填料粒度 5.液相色谱中通用型检测器是示差折光检测器 6.高压、高效、高速是现代液相色谱的特点,采用高压主要是由于采用了细粒度固定相所致 7.在液相色谱中,下列检测器可在获得色谱流出曲线的基础上,同时获得被分离组分的三维彩色图形的光电二极管阵列检测器 8.液相色谱中不影响色谱峰扩展的因素是涡流扩散项、分子扩散、项传质扩散项、柱压效应 9.在液相色谱中,常用作固定相又可用作键合相基体的物质是硅胶 10.样品中各组分的出柱顺序与流动相的性质无关的色谱是凝胶色谱 11.在液相色谱中,固体吸附剂适用于分离异构体 12.水在下述色谱中,洗脱能力最弱(作为底剂)的是反相色谱法 13.在下列方法中,组分的纵向扩散可忽略不计的是高效液相色谱法 14. 下列用于高效液相色谱的检测器示差折光检测器检测器不能使用梯度洗脱。 15. 高效液相色谱仪与气相色谱仪比较增加了梯度淋洗装置

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

伽马射线的吸收实验报告

实验3:伽马射线的吸收 实验目的 1. 了解γ射线在物质中的吸收规律。 2. 测量γ射线在不同物质中的吸收系数。 3. 学习正确安排实验条件的方法。 容 1. 选择良好的实验条件,测量60 Co (或 137 Cs )的γ射线在一组吸收片(铅、 铜、或铝)中的吸收曲线,并由半吸收厚度定出线性吸收系数。 2. 用最小二乘直线拟合的方法求线性吸收系数。 原理 1. 窄束γ射线在物质中的衰减规律 γ射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应 和电子对效应(当γ射线能量大于1.02MeV 时,才有可能产生电子对效应)。 准直成平行束的γ射线,通常称为窄束γ射线。单能的窄束γ射线在穿过物质时,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度的衰减服从指数规律,即 x Nx e I e I I r μσ--==00 ( 1 ) 其中I I ,0分别是穿过物质前、后的γ射线强度,x 是γ射线穿过的物质的厚度(单位为cm ),r σ是三种效应截面之和,N 是吸收物质单位体积中的原子数,μ是物质的线性吸收系数(N r σμ=,单位为1 =cm )。显然μ的大小反映了物质吸收γ射线能力的大小。 由于在相同的实验条件下,某一时刻的计数率n 总是与该时刻的γ射线强度I 成正比,因此I 与x 的关系也可以用n 与x 的关系来代替。由式我们可以得到 x e n n μ-=0 ( 2 ) ㏑n=㏑n 0-x μ ( 3 ) 可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直线的斜率的绝对值就是线性吸收系数μ。

由于γ射线与物质相互作用的三种效应的截面都是随入射γ射线的能量γE 和吸收物质的原子序数Z 而变化,因此单能γ射线的线性吸收系数μ是物质的原子序数Z 和能量γE 的函数。 p c ph μμμμ++= ( 4 ) 式中ph μ、c μ、p μ分别为光电、康普顿、电子对效应的线性吸收系数。其中 5 Z ph ∝μ Z c ∝μ ( 5 ) 2 Z p ∝μ 图2给出了铅、锡、铜、铝对γ射线的线性吸收系数与γ射线能量的关系曲线。 物质对γ射线的吸收系数也可以用质量吸收系数m μ来表示。

火焰原子吸收光谱法

火焰原子吸收光谱法测定自来水中的钙.镁含量

实验目的 z1、了解原子吸收分光光度计的基本结构和原理。z2、掌握火焰原子吸收光谱分析的基本操作。 z3、熟悉用标准曲线法进行定量测定的方法。

实验原理 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I = -lgT= KCL 式中I为透射光强度,I 0为发射光强度,T为透射比, L为光通过原子化器光程由于L是不变值所以A=KC。 原子吸收分光光度分析具有快速.灵敏.准确.选择性好.干扰少和操作简便等优点。

操作要点 z标准溶液的配制 (1)钙标准溶液系列;准确吸取2.00.4.00.6.00.8.00.10.0ml钙的标准使用液(100ug/ml)分别置于5只25ml容量瓶中,用去离子水稀释至刻度。 (2)镁标准溶液系列;准确吸1.00.2.00.3.00.4.00.5.00ml镁的标准使用液(50ug/ml)分别置于5只25ml 容量瓶中,用去离子水稀释至刻度。 (3)配制自来水样溶液;准确吸取5ml自来水置于25ml容量瓶中,用去离子水稀释至刻度。 根据实验条件将原子吸收分光光度计按仪器操作步骤进行调节,待仪器电路和气路系统达到稳定时,即可进样。 分别测定各标准溶液系列溶液的吸光度和自来水样的吸光度。

实验数据及处理 z从计算机上列表记录钙.镁标准溶液系列溶液的吸光度,然后,分别以吸光度为纵坐标,标准溶液系列浓度为横坐标,用坐标纸绘制标准曲线。 z测定自来水样的吸光度,然后,在上述标准曲线上查得水样中钙.镁浓度(ug/ml),经稀释需乘上倍数,求得原始自来水中钙.镁含量。

相关主题