搜档网
当前位置:搜档网 › 逐次超松弛迭代法解线性方程组(Matlab程序)

逐次超松弛迭代法解线性方程组(Matlab程序)

逐次超松弛迭代法解线性方程组(Matlab程序)
逐次超松弛迭代法解线性方程组(Matlab程序)

逐次超松弛迭代法解线性方程组(Matlab程序)

%---逐次超松弛迭代法-----

%---successive over-reaxation iteration method

clear;clc;

A=[10,-1,-2;-1,10,-2;-1,-1,5];

b=[72,83,42]';

N=length(b); %解向量的维数

fprintf('库函数计算结果:');

x=inv(A)*b %库函数计算结果

x=zeros(N,1);%迭代初始值

%-----(A=D-E-F)------

D=diag(diag(A));

E=-tril(A,-1);%下三角

F=-triu(A,1);%上三角

w=1.1; %松弛因子,一般0

B=inv(D-w*E)*[(1-w)*D+w*F];g=w*inv(D-w*E)*b;

eps=0.00001;%相邻解的距离小于该数时,结束迭代

%--------开始迭代-------

for k=1:100 %最大迭代次数为100

fprintf('第%d次迭代:',k);

y=B*x+g;

if abs(x-y)

break;

end

x=y

end

x

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

jacobi G-S,超松弛迭代法MATLAB程序

function iteration A=[10,1,2,3,4; 1,9,-1,2,-3; 2,-1,7,3,-5; 3,2,3,12,-1; 4,-3,-5,-1,15]; b=[12,-27,14,-17,12]'; x0=[0,0,0,0,0]'; tol=1e-12; disp('jacobi迭代法的结果和次数如下:') [x,k]=Fjacobi(A,b,x0,tol) disp('G-S迭代法的结果和次数如下:':') [x,k]=Fgseid(A,b,x0,tol) disp('超松弛的结果和次数如下:':') [x,k]=Fsor(A,b,x0,1.2,tol) disp('共轭梯度法的结果和次数如下:':') [x,k]=Fcg(A,b,x0,tol) %jacobi迭代法 function [x,k]=Fjacobi(A,b,x0,tol) max=300; D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); B=D\(L+U); f=D\b; x=B*x0+f; k=1; while norm(x-x0)>=tol x0=x; x=B*x0+f; k=k+1; if(k>=max) disp('μü′ú3?1y300′?£?·?3ì×é?é?ü2?ê?á2'); return; end end %G-S迭代法 function [x,k]=Fgseid(A,b,x0,tol) max=300; D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; x=G*x0+f; k=1; while norm(x-x0)>=tol x0=x; x=G*x0+f; k=k+1; if(k>=max) disp('μü′ú3?1y300′?£?·?3ì×é?é?ü2?ê?á2'); return; end

实验一 用超松弛迭代法求解接地金属槽内电位分布

实验一 用超松弛迭代法求解接地金属 槽内电位分布 学院:自动化学院 姓名: 学号: 一、实验内容: 试用超松弛迭代法求解接地金属槽内电位的分布。 已知:cm a 4=,mm a h 104/== 给定边值如图所示。 给定初值:0)0(,=j i ? 误差范围:510-=ε 计算迭代次数,j i ,?分布。 二.实验设计原理:有限差分法 有限差分法(Finite Differential Method )是基于差 分原理的一种数值计算法。其基本思想:将场域离散为许多 小网格,应用差分原理,将求解连续函数?的泊松方程的问 题换为求解网格节点上?的差分方程组的问题。 编程时已经考虑到题目要求,所以直接将边值编入到程 序中,这样可以省略输入,从而直接输入迭代因子进行求解,可以减少编程的难度。这次编程和以前不同的是将数组和正0=?= V 100 ? 0=?0=?

交函数图像结合起来,所以在考虑输入和输出的时候会有一些难度,因为数组是上面是小的而图像上面越在上,代表坐标就越大。所以在输入和输出的时候要谨慎对待。 迭代时所用公式是和书上一样,为 a[i][j]=b[i][j]+w/4*(b[i+1][j]+b[i][j+1]+a[i][j-1 ]+a[i-1][j]-4*b[i][j]); 其中a代表k+1,而b代表k。 以上分析了迭代程序的实现,但是迭代循环如何终止并未说明。题目中的误差范围ε=0.00001,即当两次迭代结果相差不超过ε时停止,这里只得是九点都满足不超过ε,而并不是其中某一点达到即可。这样可以保证不是陷入死循环,从而输出结果。 这样可以画出流程图如下所示:

MatLab求解线性方程组

MatLab解线性方程组一文通 当齐次线性方程AX=0,rank(A)=r

数值分析大作业 超松弛迭代法如何选取最佳松弛因子

超松弛迭代法如何选取最佳松弛因子 船建学院B1301095 wj 一、课题背景 逐次超松弛迭代法是Gauss-Seidel方法的一种加速方法,是解大型稀疏矩阵方程组的有效方法之一,它具有计算公式简单,程序设计容易,占用计算机内存较少等优点,但需要选择好的加速因子(即最佳松弛因子)。 最佳松弛因子ω的确定是数值代数中的一个理论难题,对于不同的矩阵,其最佳松弛因子往往相差很大,没有统一的计算公式来确定ω。由于对称正定矩阵sor方法收敛的充分必要条件为w在0到2之间,故利用对称正定矩阵一定收敛的性质,本文提供一种针对于系数矩阵为对称正定矩阵时,如何选取合适的最佳松弛因子的方法。 二、课题研究流程图 三、SOR迭代公式 逐次超松弛(Successive Over Relaxation)迭代法,简称SOR迭代法,它是在GS法基础上为提高收敛速度,采用加权平均而得到的新算法,设解方程的GS法记为 (1)

再由与加权平均得 这里ω>0称为松弛参数,将(1)式代入则得 (2) 称为SOR迭代法,[WTBX]ω>0称为松弛因子,当ω=1时(2)式即为GS法,将(2)式写成矩阵形式,则得 即 于是得SOR迭代的矩阵表示 (3) 四、Matlab程序 %sor法确定对称正定矩阵的最佳松弛因子w% clc;clear; n=100; %矩阵的阶数% for num=1:100 X=diag(rand(n,1)); U=orth(rand(n,n)-0.5); a=U'*X*U; %以上是利用随机对角矩阵和随机正交矩阵,产生随机的对称正定矩阵,正交变化不改变特征值% L=zeros(n,n); U=zeros(n,n); %分配L和U的内存空间% step=0.02; %定义w的计算精度% for k=1:(2/step) %由于对称正定矩阵sor方法收敛的充分必要条件为w在0到2之间% w=(k-1)*step; for i=1:n %一个总的for循环给三个矩阵赋值D-L-U=A,% for j=1:i-1 L(i,j)=-a(i,j);%L矩阵的赋值% end for j=i+1:n U(i,j)=-a(i,j);%U矩阵的赋值% end D(i,i)=a(i,i);%D矩阵的赋值% end

求解线性方程组——超松弛迭代法(c)

求解线性方程组——超松弛迭代法 #include #include using namespace std; float *one_array_malloc(int n); //一维数组分配float **two_array_malloc(int m,int n); //二维数组分配float matrix_category(float* x,int n); int main() { const int MAX=100;//最大迭代次数 int n,i,j,k; float** a; float* x_0; //初始向量 float* x_k; //迭代向量 float precision; //精度 float w; //松弛因子 cout<<"输入精度e:"; cin>>precision; cout<>n; a=two_array_malloc(n,n+1); cout<>a[i][j]; } } x_0=one_array_malloc(n); cout<>x_0[i]; } x_k=one_array_malloc(n);

cout<<"输入松弛因子w (1>w; float temp; //迭代过程 for(k=0;k

MATLAB解线性方程组的直接方法

在这章中我们要学习线性方程组的直接法,特别是适合用数学软件在计算机上求解的方法. 3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b)

高斯-赛德尔迭代法matlab程序

disp('划分为M*M个正方形') M=5 %每行的方格数,改变M可以方便地改变剖分的点数 u=zeros(M+1);%得到一个(M+1)*(M+1)的矩阵 disp('对每个剖分点赋初值,因为迭代次数很高,所以如何赋初值并不重要,故采用对列线性赋值。') disp('对边界内的点赋初值并使用边界条件对边界赋值:') for j=1:M-1 for i=1:M-1 u(i+1,j+1)=100*sin(pi/M*j)/M*(M-i);%对矩阵(即每个刨分点)赋初值 end end for i=1:M+1 u(1,i)=100*sin(pi*(i-1)/M);%使用边界条件对边界赋值 u(1,M+1)=0; end u tic %获取运行时间的起点 disp('迭代次数为N') N=6 %迭代次数,改变N可以方便地改变迭代次数 disp('n为当前迭代次数,u为当前值,结果如下:') for n=1:N for p=2:M i=M+2-p; for j=2:M u(i,j)=0.25*(u(i,j-1)+u(i+1,j)+u(i-1,j)+u(i,j+1));%赛德尔迭代法 end end n %输出n u %输出u end disp('所用的时间:') t=toc %获取算法运行需要的时间 [x,y]=meshgrid(0:1/M:1,0:1/M:1); z=u(1,:); for a=2:M+1 z=[z;u(a,:)];%获取最终迭代的结果,幅值给z,z的值代表该点的点位值 end mesh(x,y,z)%绘制三维视图以便清楚地显示结果 mesh(x,y,z,'FaceColor','white','EdgeColor','black') %绘制三维视图以便清楚地显示结果

SOR迭代法超松弛因子选取

《计算方法》实验报告(二) 实验名称:SOR 迭代法松弛因子的选取 班级: 数学1402班 姓名: 高艺萌 学号:14404210 一、 实验目的 通过本实验学习线性方程组的SOR 迭代解法以及SOR 迭代法的编程与应用。对比分析不同条件下的超松弛因子w 的取值大小会对方程组的解造成影响,通过这个实验我们可以了解的w 不同取值会对方程组的解产生的影响。培养编程与上机调试能力。 二、 实验题目 用逐次超松弛(SOR )迭代法求解方程组b Ax =,其中 ?????????? ????????????=????????????????????????????????????????????=555555122-12-122-112-122-112-122-112-122-12-12201918321 x x x x x x A (1)给定迭代误差,选取不同的超松弛因子1>ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论; (2)给定迭代误差,选取不同的超松弛因子1<ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论; 三、 实验原理 1.逐次超松弛迭代法可以看作Gauss-Seidel 迭代法的加速, b D Ux D Lx D x k k k 1)(1)1(1)1(--+-+++= 2.SOR 迭代计算格式 b D L wD I w x U wD I w L wD x k k 111)(111)1()(])1[()-1(------+-++-= 其中,w 叫松弛因子,当w>1时叫超松弛,0

lu分解法、列主元高斯法、jacobi迭代法、gaussseidel法的原理及matlab程序

一、实验目的及题目 1.1 实验目的: (1)学会用高斯列主元消去法,LU 分解法,Jacobi 迭代法和Gauss-Seidel 迭代法解线性方程组。 (2)学会用Matlab 编写各种方法求解线性方程组的程序。 1.2 实验题目: 1. 用列主元消去法解方程组: 1241234 123412343421233234x x x x x x x x x x x x x x x ++=??+-+=??--+=-??-++-=? 2. 用LU 分解法解方程组,Ax b =其中 4824012242412120620266216A --?? ?- ?= ? ?-??,4422b ?? ? ?= ?- ?-?? 3. 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解方程组: 123234 1231234102118311210631125x x x x x x x x x x x x x -+=-??-+=-??-+=??-+-+ =? 二、实验原理、程序框图、程序代码等 2.1实验原理 2.1.1高斯列主元消去法的原理 Gauss 消去法的基本思想是一次用前面的方程消去后面的未知数,从而将方程组化为等价形式: 1111221122222n n n n nn n n b x b x b x g b x b x g b x g +++=??++=????= ? 这个过程就是消元,然后再回代就好了。具体过程如下: 对于1,2, ,1k n =-,若() 0,k kk a ≠依次计算

()() (1)()()(1)()()/,,1, ,k k ik ik kk k k k ij ij ik kj k k k i i ik k m a a a a m a b b m b i j k n ++==-=-=+ 然后将其回代得到: ()() ()()()1/()/,1,2,,1 n n n n nn n k k k k k kj j kk j k x b a x b a x a k n n =+?=??=-=--? ? ∑ 以上是高斯消去。 但是高斯消去法在消元的过程中有可能会出现() 0k kk a =的情况,这时消元就无法进行了,即使主元数() 0,k kk a ≠但是很小时,其做除数,也会导致其他元素数量级的严重增长和舍入误差的扩散。因此,为了减少误差,每次消元选取系数矩阵的某列中绝对值最大的元素作为主元素。然后换行使之变到主元位置上,再进行销元计算。即高斯列主元消去法。 2.1.2直接三角分解法(LU 分解)的原理 先将矩阵A 直接分解为A LU =则求解方程组的问题就等价于求解两个三角形方程组。 直接利用矩阵乘法,得到矩阵的三角分解计算公式为: 1111111 11 1,1,2,,/,2,,,,,1,,,2,3, ()/,1,2, ,i i i i k kj kj km mj m k ik ik im mk kk m u a i n l a u i n u a l u j k k n k n l a l u u i k k n k n -=-===?? ==?? =-=+??=??=-=++≠?? ∑∑且 由上面的式子得到矩阵A 的LU 分解后,求解Ux=y 的计算公式为 11 111,2,3,/()/,1,2, ,1 i i i ij j j n n nn n i i ij j ii j i y b y b l y i n x y u x y u x u i n n -==+=??? =-=?? =??? =-=--?? ∑∑ 以上为LU 分解法。

超松弛迭代法及其松弛因子的选取

2013届学士学位毕业论文 超松弛迭代法及其松弛因子的选取 学号:09404307 姓名:程启远 班级:信息0901 指导教师:崔艳星 专业:信息与计算科学 系别:数学系 完成时间:2013年5月

学生诚信承诺书 本人郑重声明:所呈交的论文《超松弛迭代中松弛因子的选取方法》是我个人在导师崔艳星指导下进行的研究工作及取得的研究成果.尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料.所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意. 签名:日期: 论文使用授权说明 本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文. 签名:日期: 指导教师声明书 本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性. 指导教师签名:时间

摘要 本文首先给出了超松弛迭代法解线性方程组的基本概念,引进了关于超松弛迭代法收敛性判别的一些定理.再基于超松弛迭代法收敛性快慢与松弛因子的选择密切相关,本文给出了能准确快速地确定最优松弛因子的方法逐步搜索法和黄金分割法,并且写出了其Matlab 程序(附录),最后通过实例验证了方法的准确性,快速性. 关键词线性方程组;超松弛迭代;Matlab程序;松弛因子

Abstract This paper firstly introduces the basic concept of the super relaxation iteration method for solving linear equations, introduced on some criterion theorem Overrelaxation iterative convergence, gives a simple Matlab program super relaxation iteration (Appendix 1). Then Overrelaxation iterative convergence speed and relaxation factor is selected based on the close relation is proposed in this paper, the rapid and accurate method of determining the optimal relaxation factor of the direct search method and the golden section method, and write the Matlab program (Appendix 2), finally the method is accurate, rapid. Key word:Linear equations; Successive Over Relaxation; Matlab program; relaxation factor

线性方程组求解matlab实现

3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果 请注意:因为RA=RB> A=[4 2 -1;3 -1 2;11 3 0]; b=[2;10;8]; [RA,RB,n]=jiepb(A,B) 运行后输出结果 请注意:因为RA~=RB ,所以此方程组无解. RA =2,RB =3,n =3 (4)在MATLAB 工作窗口输入程序

实验一用matlab求解线性方程组

实验1.1 用matlab 求解线性方程组 第一节 线性方程组的求解 一、齐次方程组的求解 rref (A ) %将矩阵A 化为阶梯形的最简式 null (A ) %求满足AX =0的解空间的一组基,即齐次线性方程组的基 础解系 【例1】 求下列齐次线性方程组的一个基础解系,并写出通解: 我们可以通过两种方法来解: 解法1: >> A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; >> rref(A) 执行后可得结果: ans= 1 -1 0 0 0 0 -1 1 0 0 0 0 由最简行阶梯型矩阵,得化简后的方程 ??? ??=+--=+--=-+-0 22004321 43214321x x x x x x x x x x x x

取x2,x4为自由未知量,扩充方程组为 即 提取自由未知量系数形成的列向量为基础解系,记 所以齐次方程组的通解为 解法2: clear A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; B=null(A, 'r') % help null 看看加个‘r’是什么作用, 若去掉r ,是什么结果? 执行后可得结果: B= 1 0 1 0 0 1 0 1 ?? ?=-=-0 04321x x x x ?????? ?====4 4432221x x x x x x x x ??? ??? ??????+????????????=????? ???????1100001142 4321x x x x x x , 00111????? ? ??????=ε, 11002????? ???????=ε2 211εεk k x +=

超松弛迭代法求解两点边值问题(二)

超松弛迭代法求解两点边值问题(二) 摘要 本文是在matlab环境下熟悉的运用计算机编程语言并结合超松弛变量超松弛迭代法的理论基础对方程组求解。 首先,本文以微分方程边值问题为例,导出了离散化后线性方程组即稀疏线性方程组,转化对稀疏线性方程组求解问题。其次,用超松弛( SOR) 迭代法编写matlab程序,对产生的稀疏线性方程组进行迭代法求解。然后,分别改变松弛因子ω和分段数n的值,分析其收敛性和收敛速度,做出各个方面的分析和比较得到相关结论。最后,将超松弛迭代算法在计算机上运用matlab语言实现, 得出了一组与精确解较接近的数值解,并画图比较,验证逐次超松弛( SOR) 迭代法的精确性。 关键词:稀疏线性方程组;逐次超松弛迭代法;松弛因子;matlab编程 OVERRELAXATION ITERATIVE METHOD FOR SOLVING TWO-BOUNDARY VALUE PROBLEM(TWO) ABSTRACT This is familiar with the use of computer programming in matlab language and overrelaxation variable overrelaxation iteration method of the theoretical basis of solving equations. First of all, as an example, based on differential equation boundary value problem is derived after discretization is sparse system of linear equations of linear equations, the transformation of sparse linear equations to solve the problem. Second, use write matlab program over relaxation (SOR) iteration method, the iteration method solving sparse linear equations. Then, change the values of relaxation factor and section number n omega, analyzes its convergence and convergence speed, all aspects to make the analysis and comparison of related conclusions. Finally, the over-relaxation iteration algorithm is implemented on a computer using matlab language and obtained a set of numerical solution with exact solution is close to, and draw the comparison, verification of successive overrelaxation (SOR) the accuracy of iterative method. Key words: Sparse linear system of equations;Successive over relaxation iteration method; Relaxation factor;Matlab programming 目录 1 绪论 (1)

Matlab线性方程组求解(Gauss消去法)

Matlab线性方程组求解 1. Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); %计算行列式 end det=det*a(n,n); for k=n:-1:1 %回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 2. 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0; %选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n

matlab 迭代法[精品]

matlab 迭代法[精品] 1. 矩阵 122,211,,,,,,,,,A,111A,222, 11,,,,,,,,221,,112,,,, 证明:求解以为系数矩阵线性方程组的Jacobi迭代式收敛的,而A1 Gauss-Seidel方法是发散的;求解以为系数矩阵线性方程组的A2实验名称Gauss-Seidel是收敛的,而Jacobi方法是发散的. 2. 矩阵 1aa,,,,Aaa,1 ,,,,aa1,, (a) 参数取什么值时,矩阵是正定的. a (b) 取什么值时,求以为系数矩阵线性方程组的Jacobi迭代式收aa 敛的. 1、根据迭代收敛性的充分必要条件来判断Jacobi迭代式与Gauss-Seide 迭代式的收敛性,迭代收敛性仅与方程组系数矩阵有关,与右端无关;而且不依赖于初值的选取。实验目的 2、根据矩阵的判断定理求得矩阵元素a的取值,同时根据矩阵线性方程组的Jacobi迭代式收敛的充分条件(严格对角占优)来求a得取值。 1、(1)检验线性方程组的Jacobi迭代式的收敛性: function jacobi(A) D=zeros(3); for i=1:3 D(i,i)=A(i,i); 实验内容end (算法、程B=D^(-1)*(D-A); 序、步骤和k=max(abs(eig(B))) 方法) if k<1

'该线性方程组的Jacobi迭代式是收敛的' else k>=1 '该线性方程组的Jacobi迭代式是发散的' end (2)检验线性方程组的Gauss-Seide迭代式的收敛性: function Gauss(A) D=zeros(3); L=zeros(3); U=zeros(3); for i=1:3 D(i,i)=A(i,i); end L(2:3,1)=A(2:3,1); L(3,2)=A(3,2); U(1,2:3)=A(1,2:3); U(2,3)=A(2,3); B=-(D+L)^(-1)*U; k=max(abs(eig(B))) if k<1 '该线性方程组的Gauss-Seidel迭代式是收敛的' else k>=1 '该线性方程组的Gauss-Seidel迭代式是发散的' end 2、(1)参数取什么值时,矩阵是正定的.(矩阵的特征值全为正) a >> syms a >> A=[1 a a;a 1 a;a a 1]; >> eig(A) ans = 2*a+1 1-a

Matlab求解线性方程组非线性方程组

求解线性方程组 solve,linsolve 例: A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1]; %矩阵的行之间用分号隔开,元素之间用逗号或空格 B=[3;1;1;0] X=zeros(4,1);%建立一个4元列向量 X=linsolve(A,B) diff(fun,var,n):对表达式fun中的变量var求n阶导数。 例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式 diff(F); %matlab区分大小写 pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式 非线性方程求解 fsolve(fun,x0,options) 为待解方程或方程组的文件名;fun其中 x0位求解方程的初始向量或矩阵; option为设置命令参数 建立文件fun.m: function y=fun(x) y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ... x(2) - 0.5*cos(x(1))+0.3*sin(x(2))]; >>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve')) 注: ...为续行符 m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。Matlab求解线性方程组 AX=B或XA=B 在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如: X=A\B表示求矩阵方程AX=B的解; 的解。XA=B表示矩阵方程B/A=X. 对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。 如果矩阵A不是方阵,其维数是m×n,则有: m=n 恰定方程,求解精确解; m>n 超定方程,寻求最小二乘解; m

线性方程组求解Matlab程序(精.选)

线性方程组求解 1.直接法 Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); end

det=det*a(n,n); for k=n:-1:1 %回代 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k); end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法

[n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0;% 选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n z=a(k,j);a(k,j)=a(r,j);a(r,j)=z; end z=b(k);b(k)=b(r);b(r)=z;det=-det; end

相关主题