搜档网
当前位置:搜档网 › 概率统计习题及答案(2)

概率统计习题及答案(2)

概率统计习题及答案(2)
概率统计习题及答案(2)

作业2(修改2008-10)

4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面

都出现为止所需投掷的次数,求X 的概率分布.

解 对于2,3,

k =,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次

出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布

11()(1)(1)k k P X k p p p p --==-+-,2,3,

k =.

5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布.

第1个能正确回答的概率是5/8,

第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 【

前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=.

设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布

6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是,问一天中他至少收到4位朋友的电子邮件的概率是多少试用二项分布公式和泊松近似律分别计算.

解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算

3

1001000(4)1(4)10.04(10.04)0.5705k

k k k P X P X C -=≥=-<=--=∑.

2) 用泊松近似律计算 331004

1000

04(4)1(4)10.04(10.04)10.5665!

k

k k k

k k P X P X C e k --==≥=-<=--≈-=∑

.

8. 设X 服从泊松分布,分布律为

(),0,1,2,

!

k

P X k e k k λλ-==

=.

问当k 取何值时{}P X k =最大

解 设()/(1)k a P X k P X k ===-,1,2,

k =,则

1/!/(1)!k k k e k a k

e k λλλλλ+--==-,

数列{}k a 是一个递减的数列. 若11a <,则(0)P X =最大.

若11a ≥,则当1k a ≥且11k a +≤时,{}P X k =最大. 由此得 !

1) 若1λ<,则(0)P X =最大.

2) 若1λ≥,则{}/1/(1)11P X k k k k λλλλ=?≥+≤?-≤≤最大且. 由上面的1)和2)知,无论1λ<或1λ≥,都有

[]

{}1P X k k λλλλλ?=?=?-?不是整数最大或是整数

.

12. 设随机变量X 的概率密度为[0,1)[1,2]()()(2)()p x xI x x I x =+-.求X 的分布函数()F x ,并作出()p x 与()F x 的图形. 解 ()

(,0)[0,1)0

()()()0()

0x x

x

F x p v dv I x dv I x dv vdv -∞-∞

-∞

-∞

==?+?+?

??

?

()01

[1,2)1()0(2)x I x dv vdv x dv -∞

-∞

+?++-??

?

()

12[2,)

1

2

()0(2)0I x dv vdv v dv dv +∞

+∞-∞

+?++-+??

???

()()

1

1

2

[0,1)[1,2)[2,)0

1

1

()()

(2)()

(2)x x

I x vdv I x vdv v dv I x vdv v dv +∞=++-++-??

??

?

`

22[0,1)[1,2)[2,)(/2)()(2/21)()()x I x x x I x I x +∞=+--+.

11. 设随机变量X 的概率密度为[0,10]()()p x cxI x =.求常数c 和X 的分布函数,并求概率(16/10)P X X +≤.

解 10

2

100

1()502

cx p x dx cxdx c +∞

-∞

===

=?

?

, 1/50c =.

2[0,10)[10,)[0,10)[10,)0

()()()()()()50100

x

x

v x F x p v dv I x dv I x I x I x +∞+∞-∞

==+=+?

?

. 2(16/10)(10160)(28)P X X P X X P X +≤=-+≤=≤≤

8

28

8

2

22

()3/550100x x p x dx dx ====?

?.

15. 设随机变量X 的密度为2

x

x

ce -+.求常数c .

解 222

1/2(1/2)1/41/41/1x t x x

x t ce

dx c e dx ce e dt ce =++∞+∞+∞-+--+--∞

-∞-∞

====?

?

?

.

由上式得1/41/2c e π--=.

15. 离散型随机向量(,)X Y 有如下的概率分布:

求边缘分布.解 X 有分布

Y 有分布

因为

0(2,0)(2)(0)0.30.1P X Y P X P Y ===≠===?,

所以X ,Y 不独立.

? 18. 设随机向量(,)X Y 服从矩形{(,):12,02}D x y x y =-≤≤≤≤上的均匀分布,求条件概率(1|)P X X Y ≥≤.

解 1

()(622)/62/32

P X Y ≤=-??=,

1

(,1)(11)/61/122P X Y X ≤≥=??=,

(,1)1/12

(1|)1/8()2/3

P X Y X P X X Y P X Y ≤≥≥≤===≤.

22. 随机向量(,)X Y 有联合密度

2

2

(,)(,)E p x y x y x y

=

+,

其中222{(,):0}E x y x y R =<+≤.求系数c 和(,)X Y 落在圆222{(,):}D x y x y r =+≤内的概率.

< 解

(

)

2

2

2

cos sin 200

2

2

01(,)2x r y r R

x y R

p x y dxdy d cdr cR x y

θθ

π

θπ==+∞+∞

-∞

-∞

<+≤==

=

=+????

??

因而12c R

π=

.而

222

2

2

{(,)}(,)2D

x y r P X Y D p x y dxdy R x y

π+≤∈==

+????

()

cos sin 20

1

/2x r y r r

d dr r R R θθ

πθπ===

=??

.

27. 设2~(,)X N μσ,分别找出i k ,使得()i i i P k X k μσμσα-<<+=.其中1,2,3i =,

10.9α=,20.95α=,30.99α=.

解1 22()/(2)()2i i k x i i i k P k X k dx μσμσμσ

αμσμσσπ

+---=-<<+=?

2/2

()()2()1

i

i

x t k t i i i k

dt k k k σμ

=+--=

=Φ-Φ-=Φ-?. ()(1)/2i i k αΦ=+. —

代入i α的值查得1 1.64α=,2 1.96α=,3 2.58α=.

解2 设1

~(0,1)2

X Z N -=

,则~(0,1)Z N . ()i i i i i k k X P k X k P μσμμσμμαμσμσσσσ--+--??

=-<<+==<<

???

()()()2()1i i i i i P k Z k k k k =-<<=Φ-Φ-=Φ-. ()(1)/2i i k αΦ=+.

代入i α的值查得1 1.64α=,2 1.96α=,3 2.58α=.

28. 某商品的每包重量2~(200,)X N σ.若要求{195205}0.98P X <<≥,则需要把σ控制在什么范围内. 解 设200

~(0,1)X Z N σ

-=

,则~(0,1)Z N .

195200

205200{195205}(5/)(5/)2(5/)1P X P Z σσσσσ--??<<=≤≤=Φ-Φ-=Φ- ???

.

{195205}0.982(5/)10.98P X σ<<≥?Φ-≥

15/(0.99) 2.335/2.33 2.15σσ-?≥Φ=?≤=.

28. 设X 服从自由度为k 的2χ分布,即X 有密度

/21/2(0,)/2

1()()2

(/2)

k x X k p x x e I x k --+∞=

Γ.

求Y . 解1

当0y <时,()())0Y F y P Y y P y =≤==,()()0Y Y p y F y '==.

当0y >时,22()())()()Y X F y P Y y P y P X ky F ky =≤=≤=≤=,

222/21/22(0,)/21

()()2()2()()2(/2)

k ky Y Y X k p y F y kyp ky ky ky e I ky k --+∞'===?Γ

()

()

2/2

1/22/2/2k k ky k y e k --=

Γ. 因而

()

()

2

/2

1/2

(0,)2/2()()/2k k ky

Y k p y y e I y k --+∞=

Γ.

解2 设(0,)V =+∞,则()1P X V ∈=.

设()y f x ==x V ∈,则f 有反函数

12()f y ky ?-==, y G ∈,

其中{():}(0,)G y f x x V ==∈=+∞.因而Y 有密度 ()|()|(()()Y X G p y y p y I y ??'= \

22/21/22(0,)/21

2()()2(/2)

k ky k ky ky e I ky k --+∞=?Γ()()2/2

1/22/2/2k k ky k y e k --=

Γ.

29. 由统计物理学知道分子运动的速率遵从麦克斯威尔(Maxwell)分布,即密度为

2

2

2

/(0,)

()()x

X p x I x α-+∞.

其中参数0α>.求分子的动能2/2Y mX =的密度. 解1

当0y <时,2()()(/2)0Y F y P Y y P mX y =≤=≤=,()()0Y Y p y F y '==.

当0y >时,2()()(/2)(Y X F y P Y y P mX y P X F =≤=≤=≤=,

22/()

(0,)

()()y m Y Y X p y F y p I α-+∞'=

222/()2/()

y m y m αα--==

. :

因而

22/()

(0,)()()y m Y p y I y α-+∞=

.

解2 设(0,)V =+∞,则()1P X V ∈=.

设2()/2y f x mx ==, x V ∈,则f 有反函数

1

()f y ?-==y G ∈,

其中{():}(0,)G y f x x V ==∈=+∞.因而Y 有密度 ()|()|(()()Y X G p y y p y I y ??'=

22/()

(0,)

y m X p I α-+∞

22/()

(0,)()y m I y α-+∞=

. |

30. 设X 服从[1,2]-上的均匀分布,2Y X =.求Y 的分布.

解 X 有密度[1,2}1

()()3X P x I x -=.Y 有分布函数

()()Y F y P Y y =≤ 2()P X y =≤

[0,)()(I y P X +∞=

[0,)()()X

I y x dx +∞=

[0,)[1,2]

()()I y x dx +∞-=

[0,1)[1,4)[4,)1()()()3

I y I y I y dy +∞-=++

[0,1)[1,4)[4,)()()()y y I y +∞+. 、

31. 质点随机地落在中心在原点,半径为R 的圆周上,并且对弧长是均匀地分布的.求落点的横坐标的概率密度.

解 设落点极坐标是(,)R Θ,则Θ服从[0,2]π上的均匀分布,有密度

[0,2]1

()()2p I πθθπ

Θ=

. 设落点横坐标是X ,则cos X R =Θ,X 的分布函数为

()()(cos )X F x P X x P R x =≤=Θ≤.

当1x <-时,()0X F x =.当1x >时,()1X F x =.当11x -≤≤时

1()(cos )arccos 2arccos arccos X x x x F x P R x P R R R πππ?

???=Θ≤=≤Θ≤-=- ? ??

???.

因而落点的横坐标X 有概率密度

(1,1)22

()()()X X

p x F x I x R x

π-'==-.

;.

34. 设随机变量X 服从在[0,1]上的均匀分布,求ln Y X =-的分布. 解 设(0,1)V =,则()1P X V ∈=.

设()ln y f x x ==-, x V ∈,则f 有反函数

1()y f y e ?--==, y G ∈,

其中{():}(0,)G y f x x V ==∈=+∞.因而Y 有密度

[0,1](0,)(0,)()|()|(())()()()()y y y Y X G p y y p y I y e I e I y e I y ??---+∞+∞'===.

36. 设X 和Y 独立,密度分别为[0,1]()()X p x I x =和(0,)()()y Y p y e I y -+∞=,求Z X Y =+的密度. 》

解 ()()()Z X Y p z p x p z x dx +∞-∞=-?

()[0,1](0,)()()z x I x e I z x dx +∞--+∞-∞=-? ()[0,1](,)()()z x z I x e I x dx +∞---∞-∞

=?

1

()()[0,1)[1,)0

()()z

z x z x I z e dx I z e dx ----+∞=+?? [0,1)[1,)()(1)(1)()z z I z e e e I z --+∞=-+-.

37. 设系统L 由两个相互独立的子系统12,L L 联接而成,联接的方式分别为串联,并联和备用(当系统1L 损坏时,系统2L 开始工作),如图所示.1L 和2L 的寿命为X 和Y ,分别有密度

(0,)()()x X p x e I x αα-+∞=和(0,)()()y Y p y e I y ββ-+∞=,其中0,0αβ>>且αβ≠.请就这三种

联接方式分别写出系统L 的寿命Z 的密度.

解 X ,Y 独立,分别服从参数为α和β的指数分布,因此分别有分布函数

(0,)()(1)()x X F x e I x α-+∞=-

<

(0,)()(1)()y Y F y e I y β-+∞=-.

1) 联接的方式为串联时,min{.}Z X Y =, (){min(,)}1{min(,)}S F z P X Y z P X Y z =≤=->

()(0,)1()()1[1()][1()](1)()z X Y P X z P Y z F z F z e I z αβ-++∞=->>=---=-,

()(0,)()()()()zs Z Z

p z F z e I z αβαβ-++∞'==+. 2) 联接的方式为并联时,max{.}Z X Y =,

(){max(,)}()()()()Z X Y F z P X Y z P X z P Y z F z F z =≤=≤≤= (0,)(1)(1)()r b r e e I z αβ--+∞=--,

()(0,)()()(())()z z z Z Z

p z F z e e e I z αβαβαβαβ---++∞'==+-+. 3) 联接的方式为备用时,Z X Y =+,

,

()(0,)(0,)()()()()()x z x Z X Y p z p x p z x dx e I x e I z x dx αβαβ+∞+∞---+∞+∞-∞-∞

=-=?-?

?

()()(0,)(0,)0

()()z

z x z x z x I z e e dx e I z e dx αββαβαβαβ------+∞+∞==??.

因此,

当αβ≠时, (0,)()()()z z Z p z e e I z αβαβ

βα

--+∞=

--, 当αβ=时, 2(0,)()()z Z p z ze I z αα-+∞=.

38. ,X Y 相互独立,1~(,)X αβΓ,2~(,)Y αβΓ.证明12~(,)Z X Y a αβ=+Γ+.(提示:称1

110(,)(1)s t B s t u u dx --=-?为β函数,由微积分的知识知(,)()()/()B s t s t s t =ΓΓΓ+)

解 (见命题A.2.1)

43. 设12,,

,n X X X 独立,都服从参数为,m η的威布尔分布,即都有密度

()

/1(0,)()()m

x m m

m

p x x

e

I x ηη--+∞=

.

证明12min(,,,)n X X X 仍服从威布尔分布.

证 i X 1,

i n =有分布函数

()/1(0,)0

()()m

x v m m

m

F x I x v e dv ηη

--+∞=?, ()()()///(0,)(0,)0

()(1)()m m

m

v t

x x t I x e dt e I x ηηη

=--+∞+∞=

=-?

.

12min(,,,)n Z X X X =,

则Z 有分布函数

11()()(min(,,))1(min(,

,))Z n n F z P Z z P X X z P X X z =≤=≤=-≤

11()

()1[1()]n n P X z P X z F x =->>=--.

()()//(,0](0,)(0,)1()()1()m mn

n

x x I x e

I x e I x ηη---∞+∞+∞??=-+=- ???

,

接下来的证明过程可以有两种。 其一:

()Z F z 与()F x 有相同的形式,从而12min(,,,)n Z X X X =仍服从威布尔分布.

其二:

因而Z 有密度函数

()

1

/(0,)()()()mn x Z Z

p z F z mne I x η--+∞'==,

从而12min(,,,)n Z X X X =仍服从威布尔分布.

02197概率论与数理统计(二)(试题+答案)-201204

页眉内容 2012年4月全国自考概率论与数理统计(二)参考答案 ()()()()() ()()()()()() (){}{}{}{}{} ()()()()() {}{}()()()() ()()()()()[]()()()()()()()()()()()() n x D n x C x B x A x X x x x N X D C B A X Y X D X D X D C B A p n X D X E p n B X y f x f D y f x f C y f x f B y f x f A Y X y f x f Y X D C B A Y X Y X D C B A X P X P N X x x e X F D x x e X F C x x e X F B x x e X F A X X X P D X P C X P B X P A X P x x f X AB P B P A P D AB P B P A P C AB P A P B B P A P A B A P B A A D A C B B B A A AB B A B A n XY Y X Y X Y X Y X Y X x x x x 92 .32.92.32 ....32~.102.1.0.1-.0.98.03.3.08.4.06.6.04. 44.14.2~.8.2 1..21. .75,1.5,0.1,1.10.~ 12.684.0.68.0.32.0.16.0.084.042~.5.0001..0001..0001..000..472.53.54.21.43. 06331.3....2.....12122-----=>==+++-≤=≤???≤>+=???≤>-=???≤>-=???≤>=≤<≤<≤<≤<≤

概率统计期中考答案版

《_》 期中考试 (一、四) 班级 ______ ___ 姓名 _______学号 _ ___ 一、选择题(共6题,每题3分,共计18分) 1. 事件C 发生导致事件A 发生, 则 B 。 A. A 是C 的子事件 B. C 是A 的子事件 C. A C = D .()()P C P A > 2. 设事件B A ,两个事件,111 (),(),()2310 P A P B P AB ===,则()P A B = B 。 A . 1115 B .415 C .56 D .16 (逆事件概率,加法公式,()1()1[()()()]P A B P A B P A P B P AB =-=-+-U ) 3. 设X ~2(,)N μσ,那么当σ增大时,{2}P X μσ-< C 。 A .增大 B .减少 C .不变 D .增减不定

(随机变量的标准正态化,2(2)1=Φ-) 4. 已知B A ,是两个事件,X ,Y 是两个随机变量,下列选项正确的是(C ) A . 如果 B A ,互不相容,则A 与B 是对立事件 B . 如果B A ,互不相容,且()()0,0>>B P A P ,则B A ,互相独立 C . Y X 与互相独立,则Y X 与不相关 D . Y X 与相关,则相关系数1ρ= 5.已知2,1,(,)1,DX DY Cov X Y === 则(2)D X Y -= ( C ) (A) 3; (B) 11; (C) 5; (D) 7 (考查公式(2)4()()2cov(2,)D X Y D X D Y X Y -=+-) 6.若X,Y 为两个随机变量,则下列等式中成立的是( A ) A.EY EX Y X E +=+)( B.DY DX Y X D +=+)(

09-10-1-概率统计A--期末考试试卷答案

诚信应考 考出水平 考出风格 浙江大学城市学院 2009— 2010学年第 一学期期末考试试卷 《 概率统计A 》 开课单位: 计算分院 ;考试形式: 闭卷; 考试时间:2010年 1 月24日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人 一. 选择题 (本大题共__10__题,每题2分共__20 分) 1、已知()0.87.0)(,8.0)(===B A P B P A P ,,则下列结论正确的是(B ) )(A 事件B A 和互斥 )(B 事件B A 和相互独立 )(C )()()(B P A P B A P += )(D B A ? 2、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( A ) )(A 5/2,5/3-==b a )(B 3/2,3/2==b a )(C 2/3,2/-1==b a )(D 2/3,2/1-==b a 3、设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率() σμ<-X P 满足 ( C ) )(A 单调增大 )(B 单调减少 )(C 保持不变 )(D 增减不定 4、设),(Y X 的联合概率密度函数为?? ???≤+=其他, 01 ,1),(2 2y x y x f π,则X 和Y 为 ( C )的随机变量 )(A 独立且同分布 )(B 独立但不同分布 )(C 不独立但同分布 )(D 不独立 且不同分布 得分 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线… …………………………………………………… 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名________________ …………………………………………………………..装………………….订…………………..线………………………………………………………

2概率论与数理统计试卷及答案

第1页 第2页 概率论与数理统计试卷(20170225) 一、单项选择(每小题3分,共30分,答案按左侧学号规则连线成数码数字,不可涂改,否则影响自动评分 ) 1.每次试验的成功概率为)10(<

ε,下列不等式中正确的是( ) (1) 98)91(≥<X P ,则=a ( ) (1) 5 (2) 7 (3) 8 (4) 6 8. 设321,,X X X 为取自同一总体X 的简单随机样本,下列统计量中方差最小的是( ) (1) 321535252X X X ++ (2)321213161X X X ++ (3)32114914371X X X ++ (4)3213 13131X X X ++ 9. 设随机变量ΛΛn X X X ,,,21相互独立且同分布,它的期望为μ,方差为2 σ,令∑==n i i n X n Z 1 1,则 对任意正数ε,有{}= ≥-∞ →εμn n Z P lim ( ) (1)0.5 (2) 1 (3) 0 (4) 上述都不对 10. 设随机变量21,X X 独立,{}5.00==i X P ,{}5.01==i X P ,2,1=i ,下列结论正确的是( ) (1)21X X = (2)1}{21==X X P (3)5.0}{21==X X P (4)以上都不对 二、填空(每小题3分,共18分,右侧对应题号处写答案) 1. 设事件A 与B ,7.0)(=A P ,3.0)(=-B A P ,则=)(AB P ① . 2.已知离散型随机变量X 分布律为{},k P X k C == 1,2,k N =L ,则=C ② ______ 3.总体2~(,)X N μσ,其中2σ已知,则均值μ的置信度为1α-置信区间为 ③ ____________________________________________________________________ 4. 设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望)(2X E 为④_________________ 5. 设(621,,,X X X Λ)是来自正态分布)1,0(N 的样本,26 4 2 3 1 )()(∑∑==+=i i i i X X Y , 若 cY 服从2χ分布,则C=⑤_______ 6. 从数1,2,3,4中任取一个数,记为X ,再从X ,,1Λ中任取一个数,记为Y ,则 ==}2{Y P ⑥ (7分)三、 某厂有三条流水线生产同一产品,每条流水线的产品分别占总量的40%,35%,25%,又这三条流水线的次品率分别为0.02, 0.04,0.05。现从出厂的产品中任取一件,问恰好取到次品的概率是多少? (7分)四、 设随机变量X 的密度函数为()f x X ,1+=X Y ,求Y 的概率密度函数. (8分)五. 注意:学号参照范例用铅笔工整书写和填涂,上方写学号,下方填涂,一一对齐;每六点连线确定一个数字,连线不间断,不得涂改;数字1可连左边或右边,请认真完成。本卷共4页,须在虚线框内完成作答。选择题通过填涂选项编号数字作答。 右侧为选择题答案填涂区(答案选项用铅笔连成数字) ,其中选第1项涂1, 选第2项涂2, 以此类推;填涂规 则见学号范例, 六点一个数字,数字1可连接左边或右边三点。注意:框架内只填涂答案,不可书写其他内容,不涂改。

概率B期中考试A卷答案

上海海洋大学试卷答案 学年学期 20 14 ~ 20 15 学年第 2 学期 考核方式 闭卷 课程名称 概率论与数理统计期中考答案 A/B 卷 (期中 )卷 一、填空题(每小题3分,共27分) 1.已知P(A)=0.4,P(B)=0.3,P(A ∪B)=0.7,则()P AB = 0.4 ,(|)P A B = 3/7 2.对事件A 、B 、C 满足=)A (P 41)()B (P = =C P ,16 1 )()(p ==BC P AC ,则A 、B 、C 都不发生的概率为 3/8 3.离散型随机变量X 只取π,2,1-三个可能值,取各相应值的概率分别为22,,a a a -, 则=a -1/2 4. 袋中装有10个球,其中3个黑球,7个白球,先后两次从袋中各取一球(不放回). 已知第二次取出的是黑球,则第一次取出的也是黑球的概率为 2/9 5.每次试验成功率为p (0 < p < 1),进行重复试验,则直到第十次试验才取得三次成功的概率为 36p 3 (1-p) 7 6.设随机变量K 在区间(0, 5)上服从均匀分布,则方程210x Kx ++=无实根的概率为 2/5 7. 已知~(5,16),X N 且}{}{c X P c X P <=>,则c = 5 8. 设X ~ B(2, p), Y ~ B(3, p), 若5 {1}9 P X ≥= ,则{1}P Y ≥= 19/27 9. 设X 与Y 相互独立,X 的密度函数为22,0 ()0 x X e x f x -?>=??其它,Y 的分布律为 3 3{},0,1,2, ,k P Y k e k k -===! 且32Z X Y =--,则()E Z =-21/2,()D Z = 109/4

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02,

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

概率论与数理统计期末考试

一 填空 1.设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 2. 设B A 、是两相互独立事件,4.0)(,8.0)(==A P B A P ,则._____)(=B P 3. .__________)3(,3)(,2)(=-==Y X D Y X Y D X D 独立,则、且 4. 已知._________)20(,533.0)20(4.06.0=-=t t 则 5. n X X X ,,,21 是来自正态总体),(2σμN 的样本,S 是样本标准差,则 ________)( 2 2 =σ nS D 6. 设._______}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式 7. 假设一批产品中一、二、三等品各占%10%20%70、、 ,从中随意取一种,结果不是三等品,则取到的是一等品的概率是____________. 8、m X X X ,,,21 是取自),(211σμN 的样本,n Y Y Y ,,,21 是来自),(2 22σμN 的样本,且这两种样本独立,则___ ___ Y X -服从____________________. 9. 设____}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式得. 10、已知.__________)12(2)(=-=X D X D ,则 11、已知分布服从则变量)1(___________),1(~),,(~22--n t n Y N X χσμ 12设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 。 13.已知1 1 1(),() ,()432 P A P B A P A B ===,则()P AB = , ()P A B = 。 14.若()0.5,()0.4,()0.3,P A P B P A B ==-=则()P A B = 。 15.若随机变量X 服从(1,3)R -,则(11)P X -<<= 。 16.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )= 。 17.设随机变量,X Y 相互独立,且X 服从(2)P ,Y 服从(1,4)N ,则(23)D X Y -= 。

《概率论与数理统计》期末考试题及答案

西南石油大学《概率论与数理统计》期末考试题及答案 一、填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 2、设事件A 与B 独立,A 与B 都不发生的概率为 1 9 ,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为: ,0 ()1/4,020,2 x Ae x x x x ??

概率论与数理统计(二)试题及答案

概率论与数理统计B 一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12 () ,()23 P A P B == 则()P AB 可能为()(A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A) 12; (B) 225; (C) 4 25 ; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A) 518; (B) 13; (C) 1 2 ; (D)以上都不对 4.某一随机变量的分布函数为()3x x a be F x e += +,(a=0,b=1)则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对 5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分) 1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = . 2.设随机变量~(,), ()3, () 1.2B n p E D ξ ξξ==,则n =______. 3.随机变量ξ的期望为() 5E ξ=,标准差为()2σξ=,则2()E ξ=_______. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为 2 ()22 a f x x x = ++,a 为常数,则P (ξ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 四.(本题10分) 设随机变量ξ的分布密度为 , 03()10, x<0x>3 A x f x x ?? =+???当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是 (1) ξ与η是否相互独立? (2) 求ξ η?的分布及()E ξη?; 六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少? 七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望. 八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?(注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明A B 与 C 相互独立. 某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________. 十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

概率论与数理统计试题及答案2[1]

概率论与数理统计B 二.填空题(每小题3分,共15分) 1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = . 2.设随机变量~(,), ()3, () 1.2B n p E D ξ ξξ==,则n =______. 3.随机变量ξ的期望为() 5E ξ=,标准差为()2σξ=,则2()E ξ=_______. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为 2()22 a f x x x = ++,a 为常数,则P (ξ ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 四.(本题10分) 设随机变量ξ的分布密度为 , 03()10, x<0x>3 A x f x x ?? =+???当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是 (1) ξ与η是否相互独立? (2) 求ξη?的分布及()E ξη?; 六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少? 七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望. 八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明A B 与C 相互独立. 某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为 ________. 十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃): 1820,1834,1831,1816,1824 假定重复测量所得温度2~(,)N ξ μσ.估计10σ=,求总体温度真值μ 的0.95的置信区间. (注:

最新概率论与数理统计期中考试试题1

概率论与数理统计期中考试试题1 一.选择题(每题4分,共20分) 1.设,,A B C 为三个随机事件,,,A B C 中至少有一个发生,正确的表示是( ) A. ABC B. ABC C. A B C D. A B C 2.一个袋子中有5个红球,3个白球,2个黑球,现任取三个球恰为一红,一白,一黑的概率为 ( ) A. 12 B. 14 C. 13 D. 15 3.设,A B 为随机事件,()0.5,()0.6,(|)0.8P A P B P B A ===,则()P A B =( ) A .0.7 B. 0.8 C. 0.6 D. 0.4 4. 一电话总机每分钟收到呼唤的次数服从参数为2的泊松分布,则某一分钟恰有4次呼唤的概率为( ) A. 423e - B. 223e - C. 212e - D. 312 e - 5.若连续性随机变量2 (,)X N μσ,则X Z μσ -= ( ) A .2(,)Z N μσ B. 2(0,)Z N σ C. (0,1)Z N D. (1,0)Z N 二. 填空题(每题4分,共20分) 6. 已知1 ()2 P A =,且,A B 互不相容,则()P AB = 7. 老张今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年内因意外死亡,则公司赔付30万元;若投保人因其他原因死亡,则公司赔付10万元;若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其他原因死亡的概率为0.0050,则保险公司赔付金额为0元的概率为 8. 设连续性随机变量X 具有分布函数 0,1()ln ,11,x F x x x e x e

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

概率论与数理统计模拟试卷2及答案

北京语言大学网络教育学院 概率论与数理统计模拟试卷2 第I 卷(客观卷) 一、单项选择题(每题3分,共45分) 1、设A,B 是两个对立事件,P (A )>0 ,P (B )>0,则( )一定不成立。 (A )P (A)=1-P (B ) (B )P (A│B)=0 (C )P (A│B )=1 (D )P (A B )=1 2、已知随机变量X 的概率密度为f X (x ),令X Y 2-=,则Y 的概率密度f Y (y)为( )。 (A )2f X (-2y) (B )f X ()-y 2 (C )- -1 22 f y X () (D ) 1 22 f y X ()- 3、设A,B,C 是三个相互独立的事件,且0

(C ) cos 001 (,)0 x x y x y π ?≤≤≤≤?=? ?其它 (D )1 cos 00(,)20 x x y h x y π? ≤≤≤≤ ?=???其它 6、设F(x)是离散型随机变量的分布函数,若()P b ξ==( ),则 ()()()P a b F b F a ξ<<=- 成立。 (A )()()F a F b - (B )()()F b F a - (C )()()F a F b + (D )1 7、已知随机变量ξ,η的方差D ξ,D η均存在,则下列等式中,( )一定不成立。 (A )D ()ξη-= D ξ—D η (B )D ()ξη-= ()()2 2E E ξηξη---???? (C )D ()ξη-=2cov(,)D D ξηξη+- (D )D ()ξη-=()()2 E E E ξξηη---???? 8、设随机变量ξ的期望E ξ,方差D ξ及2E ξ都存在,则一定有( )。 (A )E ξ≥0 (B )D ξ≥0 (C )()2 E ξ≥2E ξ (D )2E ξ≥E ξ 9、设有独立随机变量序列12,,,,n X X X L L ,… 具有如下分布律: 1 2121 n X a a n n P n n -+++ 则( )契比雪夫定理。 (A )不满足 (B )满足 (C )不一定 (D )以上都不对

相关主题