搜档网
当前位置:搜档网 › 电子运动服从量子力学规律

电子运动服从量子力学规律

电子运动服从量子力学规律
电子运动服从量子力学规律

电子运动服从量子力学规律,电子体系的性质由其状态波函数确定。但波函数包含3N个变量(N为电子数目),对于含很多电子的大体系,通过求出波函数计算体系的性质计算量非常大,很难实现。根据密度泛函理论,体系的性质由其电子密度分布唯一确定。电子密度分布是只含三个变量的函数,通过它研究体系的性质可以大大减少计算量,对大体系的量子力学计算就比较容易进行。密度泛函理论研究的基本内容是寻找体系的性质(特别是动能和交换相关能)作为电子密度分布的泛函的精确或近似的形式、相关的计算方法和程序及在各科学领域的应用。目前与密度泛函理论相关的研究有三方面的工作:1.密度泛函理论本身的研究。一部分工作是寻找基态体系性质(特别是动能和交换相关能)作为电子密度分布的泛函的精确形式或者尽可能精确的近似形式;另一部分工作是拓宽密度泛函理论的内涵。2.密度泛函计算方法的研究,包括新算法的提出和程序的优化。用密度泛函理论研究具体体系,必须通过计算才能得到所需结果。大的体系,计算很复杂,是能否用密度泛函理论方法进行研究的瓶颈。因此,发展高效率的计算方法和相关程序是很重要的工作。目前的研究热点是实现对大体系的高精度计算,结合使用密度泛函理论的线性标度算法和分区算法特别受到重视,迄今也已经提出过很多算法,并且推出了相关的计算程序。发展对含重元素体系的相对论密度泛函计算方法也受到重视。3.用以近似能量密度泛函为基础建立的方法研究各种化学和物理问题。密度泛函方法由于其计算量比从头计算方法小得多,可以用来计算大的复杂体系,结果精度可以满足很多研究工作的要求,因此目前已经得到广泛应用。随着更精确的密度泛函形式的发现和更高效率的计算方法和程序的推出,密度泛函理论方法肯定将在化学、物理学、材料科学(纳米科学)、生命科学、药物化学等领域的研究工作中发挥更大的作用。

自从20世纪60年代密度泛函理论(DFT)建立并在局域密度近似(LDA)下导出著名

的Kohn-Sham (KS)方程[1,2]以来,DFT一直是凝聚态物理领域计算电子结构及其特性

最有力的工具。近几年来DFT同分子动力学方法相结合,在材料设计、合成、模拟计算和

评价诸多方面有明显的进展,成为计算材料科学的重要基础和核心技术[3]。特别在量子

化学计算领域,根据INSPEC数据库的记录显示,1987年以前主要用Hartree-Fock(HF)

方法,1990~1994年选择DFT方法的论文数已同HF方法并驾齐驱,而1995年以来,用

DFT的工作继续以指数律增加,现在已经大大超过用HF方法研究的工作[4]。W. Kohn

因提出DFT获得1998年诺贝尔化学奖,非常精确地表明DFT在计算量子化学领域的核

心作用和应用的广泛性。

DFT适应于大量不同类型的应用,因为电子基态能量与原子核位置之间的关系可以

用来确定分子或晶体的结构,而当原子不处在它的平衡位置时,DFT可以给出作用在原子核位置上的力。因此,DFT可以解决原子分子物理中的许多问题,如电离势的计算[5],

振动谱研究,化学反应问题,生物分子的结构[6],催化活性位置的特性[7]等等。在凝聚态

物理中,如材料电子结构和几何结构[8],固体和液态金属中的相变[9~10]等。现在,这些方

法都可以发展成为用量子力学方法计算力的精确的分子动力学方法[11]。

DFT的另一个优点是,它提供了第一性原理或从头算的计算框架。在这个框架下可

以发展各式各样的能带计算方法。虽然在DFT的所有实际应用中,几乎都采用局域密度

近似(LDA),这是一种不能控制精度的近似,因而DFT方法的有效性在很大程度上要看

其结果与实验相一致的能力。人们没有任何直接的方法可以改善LDA的精度。然而

DFT允许发展别的方法作为补充,在这个方向上,已提出了例如广义梯度近似(GGA)等

方法[12~16],把密度分布n(r)的空间变化包括在方法之中,实现了可较大幅度减少LDA

误差的目的。

DFT对于原子及小分子,可以提供比Thomas-Fermi模型好得多的结果,它甚至在许

多方面超过更为复杂的Hartree-Fock(HF)方法。例如对分子键强度的计算优于HF方

法。不过在许多化学家看来,这只是偶然的成功,因为这些体系只有较弱的电子关联,在

平均意义上与均匀电子气相似。化学家宁愿用传统的量子化学方法,如组态相互作用(CI)方法[17]计算小体系的多体量子态,以便获得精确的结果。但是,对于较大的分子,CI

方法的工作量太大,DFT的确是一种不可替代的工具。一般说来,DFT可以处理数百个

原子的体系,而CI方法仅限于计算几个原子的体系。

凝聚态物理是DFT明显成功的应用领域,例如对于简单晶体,在LDA下可以得到误

差仅为1%的晶格常数。由此可以相当精确地计算材料的电子结构及相应的许多物理性质。

在DFT获得巨大成功的背后,也存在着一些令人关注的弱点和困难。针对这些问题

已经发展了许多不同的方法,这些方法可以用Kohn-Sham方程的有效Hamiltonian的各

个部分和波函数构造上的考虑进行归类,如图1所示。本文不可能对所有这些进展做全

面的评述。我们将在下述三方面评述最近的重要进展:(1)激发态能谱问题。由于传统的DFT-LDA是预言多电子体系基态性质的理论,对激发态性质的描述总是存在与实验不

符的情况。为了能较好地描述激发态,已经做了许多努力,我们将主要介绍最具创新意义

的含时间密度泛函理论(TDDFT)[18~19],它有可能为较好地处理激发态和光学性质提供

新的方法和途径。最近的应用表明,TDDFT方法有可能成为计算量子化学的标准工

具[20~26]。(2)强关联问题。本文将在评述若干进展的基础上,着重介绍最近由俄国学者

提出的LDA++方法。这个方法可以处理电子关联强度不同的体系。以上两方面均属

于寻求LDA以外如何构造更好的交换关联势的问题。(3)关于大原子数的复杂体系,近

年来发展了各式各样的线性标度方法,也称为O(N)算法。O(N)算法已可纳入DFT框

架,为研究复杂体系提供了有力的工具。

1DFT与激发态能谱

密度泛函理论(DFT)是描述材料基态性质的理论,推导DFT的过程表明所得到的Kohn-Sham 方程的能量(KS本征值)不具有量子力学严格本征值的物理意义。因此也不

量子力学作业习题

第一章量子力学作业习题 [1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅; ( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率; ( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m2时的窗子所衍射. [2] 用h,e,c,m(电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 ) 经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂 [3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内, ( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0 介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命. [4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由. ( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz实验;( 4 ) Davisson -Ger - mer 实验;散射. [5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器 能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1 2 ;(3)hc

常见运动功能的机构选型汇总

第三部分机械原理与设计课程设计 常用资料与参考图例 第七章常见运动功能的机构选型 第一节连续回转机构选型 能实现连续回转的机构除了教材中讲到的齿轮机构、摩擦轮机构、双曲柄机构、转动导杆机构、双万向铰链机构、反平行四边形机构、带传动、链传动、行星轮系等以外,实际中还用到下面一些机构。 1)平行四边形机构(图7-1) 图7-1中ABCD是一个平行四边形机构,两连架杆AB、CD作同速转动,连杆BC作平动。图示机构为多个平行四边形机构的组合,在多头钻床中就应用了此机构。

图7-1 图7-2 2)摆动齿轮行星减速机构(图7-2) 图7-2中主动件1与导杆3,上的内齿轮3固联,而齿轮2从动。当曲柄1匀速回转时,齿轮2变速回转,其平均转速为: 式中为主动件1的转速,、为齿轮2、3的齿数。 3)极限四杆机构(图7-3) 图7-3中构件长度l1= l2,l3= l4。构件1和3的转向相同。杆1转一周时,杆3转两周。 图7-3 图7-4 4)以曲柄滑块为基础的转动导杆机构(图7-4) 图7-4中的曲柄滑块机构ABC与导杆机构CDE串接在一起。当

时,导杆5可作整周转动。 5)齿轮-连杆机构(图7-5) 图7-5a)中的四杆机构ABCD上装有一对齿轮2'和5。行星齿轮2'和连杆2固联,而中心轮5与曲柄1共轴线并可分别自由转动。当主动曲柄1以ω1等速转动时,从动齿轮5作非匀速转动,其角速度为: 式中为连件2的角速度,、为齿轮2'、5的齿数。 通过改变杆长和齿轮节圆半径,可是从动齿轮5作单方向的非匀速转动,或作瞬时停歇的转动或带逆转的转动。 图7-5b)所示为用于铁板传输机构中的齿轮-连杆组合机构。齿轮1与曲柄固联,齿轮2、3、4及构件DE组成差动论系。该轮系的中心论2由齿轮1带动,而系杆DE由四杆机构带动作变速运动,因此,使从动轮4实现变速转动。

量子力学作业答案

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5

如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 1.4 利用玻尔——索末菲的量子化条件,求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子轨道的可能半径。 已知外磁场H=10T ,玻尔磁子124109--??=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。 解 玻尔——索末菲的量子化条件为 ?=nh pdq 其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。 (1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有 2 22 12kx p E +=μ 这样,便有 )2 1(22kx E p - ±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据 221 kx E = 可解出 k E x 2± =± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有 ?? -+ + - =--+-x x x x nh dx kx E dx kx E )2 1 (2)()21(222μμ

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

《无机化学》电子教案

第 1 章原子结构与元素周期系 [ 教学要求] 1 .掌握近代理论在解决核外电子运动状态问题上的重要结论:电子云概念,四个量子数的意义,s 、p 、d 原子轨道和电子云分布的图象。 2 .了解屏蔽效应和钻穿效应对多电子原子能级的影响,熟练掌握核外电子的排布。 3 .从原子结构与元素周期系的关系,了解元素某些性质的周期性。 [ 教学重点] 1 .量子力学对核外电子运动状态的描述。 2 .基态原子电子组态的构造原理。 3 .元素的位置、结构、性质之间的关系。 [ 教学难点] 1 .核外电子的运动状态。 2 .元素原子的价电子构型。 [ 教学时数] 8 学时 [ 教学内容] 1 .核外电子运动的特殊性:核外电子运动的量子化特征(氢原子光谱和玻尔理论)。核外电子运动的波粒二象性(德布罗衣的预言,电子的衍射试验,测不准关系)。 2 .核外电子运动状态的描述:波函数、电子云及其图象表示(径向与角度分布图)。波函数、原子轨道和电子云的区别与联系。四个量子数(主量子数n ,角量子数l ,磁量子数m ,自旋量子数ms )。 3 .核外电子排布和元素周期表;多电子原子的能级(屏蔽效应,钻穿效应,近似能级图,原子能级与原子序数关系图)。核外电子排布原理和电子排布(能量最低原理,保里原理,洪特规则)。原子结构与元素周期性的关系(元素性质呈周期性的原因,电子层结构和周期的划分,电子层结构和族的划分,电子层结构和元素的分区)。 4 .元素某些性质的周期性,原子半径,电离势,电子亲和势,电负性。 1-1 道尔顿原子论 古代自然哲学家对物质之源的臆测:本原论(元素论)和微粒论(原子论) 古希腊哲学家德谟克利特(Democritus, 约460—370 B C ):宇宙由虚空和原子构成,每一种物质由一种原子构成。 波意耳:第一次给出了化学元素的操作性定义---- 化学元素是用物理方法不能再分解的最基本的物质组分,化学相互作用是通过最小微粒进行的,一切元素都是由这样的最小微粒组成的。 1732 年,尤拉(Leonhard Euler, 1707—1783 ):自然界存在多少种原子,就存在多少种元素。 1785 年,法国化学家拉瓦锡(Antoine L. Lavoisier 1743—1794 ):提出了质量守衡定律:化学反应发生了物质组成的变化,但反应前后物质的总质量不变。 1797 年,里希特(J. B. Richter 1762—1807 ):发现了当量定律。 1799 年,法国化学家普鲁斯特(Joseph L. Proust 1754—1826 ):发现定比定律:来源不同的同一种物质中元素的组成是不变的。 1805 年,英国科学家道尔顿(John Dalton 1766—1844 ):把元素和原子两个概念真正联系在一起,创立了化学原子论:每一种化学元素有一种原子;同种原子质量相同,不同种原子质量不同;原子不可再分;一种不会转变为另一种原子;化学反应只是改变了原子的结合方式,使反应前的物质变成反应后的物质。

第十三章 量子力学基础2作业答案

(薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1. (基础训练 10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,2 1 -). (B) (2,0,0,21). (C) (2,1,-1,2 1 -). (D) (2,0,1,21). ★提示:2p 电子对应的量子数n = 2; l = 1,只有答案(C )满足。 [ C ]2. (基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3. (自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4. (自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图19-6所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. ★提示:隧道效应。 二. 填空题 1. (基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是___4___. ★提示:主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如 仅考虑自旋磁量子数2 1 =s m 的量子态,则能够填充的电子数为上述值的一半。 图 19-6

常用机械机构介绍

第4章常用机构 4.1 平面连杆机构 4.1.1 平面连杆机构的组成 我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。 1、构件的自由度 如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。我们把构件作独立运动的可能性称为构件的“自由度”。所以,一个在平面自由运动的构件有三个自由度。可用如图4-1所示的三个独立的运动参数x、y、θ表示。 2、运动副和约束 平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。这种使两构件直接接触并能产生一定运动的联接,称为运动副。两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。 两构件组成的运动副,不外乎是通过点、线、面接触来实现的。根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。 (1)低副两构件以面接触形成的运动副称为低副。按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。 ①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。

②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。 由上述可知,平面机构中的低副引入了两个约束,仅保留了构件的一个自由度。因转动副和移动副都是面接触,接触面压强低,称为低副。我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。 (2)高副两构件以点或线接触形成的运动副称为高副,如图4-3所示。这类运动副因为接触部位是点或线接触,接触部位压强高,故称为高副。 3、构件分类 机构中的构件可分为三类。 (1)机架它是机构中视作固定不动的构件,起支撑其他活动构件的作用。 (2)原动件它是机构中接受外部给定运动规律的活动构件。 (3)从动件它是机构中的随原动件运动的活动构件。 4.1.2平面机构的运动简图 为方便对机构进行分析,可以撇开机构匮与运动无关的因素(如构件的形状、组成构件的零件数目、运动副的具体结构等),用简单线条和符号表示构件和运动副,并按一定比例定出各运动副的位置,以简图表示出机构各构件间相对运动关系,这种简图为机构运动简图。它是表示机构运动特征的一种工程用图) 1、常用运动副的符号(如图4-4)

电子教案(6)

第六章 原子结构与周期系 6.1 引言 6.1.1 物质结构的研究对象 物质结构主要是研究物质(原子、分子、晶体等)的组成、结构和性能。 这里所说的结构,既包括物质的“几何结构”(如分子中原子,晶体中粒子的结合排布方式等),也包括物质的电子结构(如原子的电子层结构,分子、固体中的化学键,以及分子间作用力等)。 物质结构知识的理论基础是量子力学(研究微观粒子运动规律的科学)。实验基础是合成化学和结构化学等,它们提供了大量实验事实,需要理论解释,从而推动了理论化学的发 展。物质结构知识是化学三大重要理论之一。 6.1.2学习目的 1.了解化学反应的本质 例1.汽车尾气的治理。 例2.反应H 2 + I 2 = 2HI 的速率方程为v=kc (H 2)c (I 2),是二级反应。 在1967年前,人们一致认为这是一个二级基元反应。但是1967年人们通过实验发现这是一个复杂反应,如果用分子轨道理论中的前线轨道理论,很容易得到解决。 例3.“相似互溶原理” 从热力学观点来看,溶解过程的ΔS>0,而一般情况下ΔH>0(即吸热),而根据ΔG=ΔH-T ΔS ,要使ΔG<0,则 H ?应尽量小。为什么结构相似H ?就小呢? 2.发现、制取符合人类一定需要的物质 例4.“硬质合金” 硬质合金广泛应用于火箭材料、高速切削材料、以及高级磨料等。一般是由IV 、V 、VI 副族金属元素,加少量C 、N 、B 等元素制成。为什么? 例5.金属表面扩渗稀土元素 按过去金相学的观点,稀土原子的半径较大,不能扩散进入金属表面层。但实验结果确实进入了,这又为什么? 例6.C 60的发现 例7.活性炭 泽林斯基认为:棉花和泥土有吸收气体的能力,是因为暴露在固体表面的固体分子只受到内层及左右两旁分子的吸引,吸引力没有完全抵消掉。如右示意图所示←·→ ,表面分子受到一个指向固体内部的作用力,即还有剩余吸引力可以吸引来到它近旁的气体分子。 ↓ 于是,泽林斯基得出结论:完全用不着为每一种毒气去找它们的防御品。只要能选择一种比棉花或泥土有更大的比表面的固体,就能够对付所有的毒气了。 泽林斯基为了加强木炭吸附化学物质的能力,经过不断的研究,终于在1917年得到了一种特殊物质——“活性炭”。 制成的活性炭,具有质轻、疏松、多孔等特点。每一克就有几百平方米的比表面积。因为吸附气体的能力特别强,当然防毒效果也就更好了。 3.对化学发展起重要作用 第一次革命性飞跃发生在1804年,道尔顿提出了原子论(即一切物质都是由原子组成的)。它合理地解释了当时许多化学现象和规律。标志着近代化学的开始。因此,道尔顿被

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

第22章量子力学基础教案

第二十二章量子力学基础知识 1924年德布罗意提出物质波概念。1926年薛定谔给出物质波的波函数基本动力学方程—薛定谔方程, 玻恩对波函数统计解释。1927年海森堡提出著名的不确定关系。 海森堡、狄拉克、薛定谔各建立矩阵力学、新力学和波动力学, 形成了完整的量子力学理论。--------------------------------------------------------------------------- 教学要求: * 了解实物粒子的波动性及实验,理解物质波的统计意义; * 能用德布罗意关系式计算粒子的德布罗意波长; * 了解波函数统计意义及其标准化条件和归一化条件,

会简单计算粒子的概率密度及归一化常数; * 理解不确定关系并作简单的计算; * 了解薛定谔方程及一维定态薛定谔方程 * 了解一维无限深势阱中粒子的波函数求解步骤, 学会用波函数求概率密度和发现粒子的概率。 教学内容: §22-1 波粒二象性 §22-2 波函数 §22-3 不确定关系 §22-4 薛定谔方程(简略,一维定态薛定谔方程) §22-5 一维无限深势阱中的粒子 §22-6 势垒隧道效应 * §22-7 谐振子 * 教学重点: 实物粒子的波粒二象性及其统计意

义; 概率密度和发现粒子的概率计算; 实物粒子波的统计意义—概率波; 波函数的物理意义及不确定关系。 作业 22-01)、22-03)、22-05)、22-07)、 22-09)、22-11)、22-13)、22-15)、 22-17)、22-18)、 ---------------------------------- --------------------------------- §22-1 波粒二象性 1924年,法国德布罗意在博士论文中提出:“整个世 纪以来,在辐射理论方面,比起波动的研究方法来, 是过于忽略了粒子的研究方法;那么在实物理论上, 是否发生了相反的错误,把粒子的图象想象得太多, 而过于忽略了波的图象?”德布罗意根据光与实物的

量子力学练习题

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E= kT 2 3(k 为 玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能 量E n = ,相应的波函数=)(x n ψ() a x a x n a n <<=0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6.132 -=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() ) +-'+'+∑ ≠0 2 0m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+ ∑ ≠00 2 0m m n n m mn n E E H ψ ψ , 其中微扰矩阵元 ' mn H =()() ?'τψψ d H n m 00?; 而 ' nn H 表示的物理意义是 。该方法的适用条件是 本征值, 。

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ? ),故: 2e E P /(2)=μ 69 h /p h / hc / 1.2410/0.7110 m 0.71nm --λ====?=?=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 10 2.07K 1K J 10 381.12 32 323 1 23 ---?=????= = kT E 于是有 一维谐振子处于2 2 /2 ()x x Ae α ψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x 2 (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ===α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 2 2 22 2 2 22 22 22 22 2 * 2x /2 x /22 2 2 x /2 x /2 2 2 x /2 2x /2 2 222x 2x /2 2 2 24 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞-∞ ∞-α-α-∞∞-α-α-∞ ∞ ∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=- μ =- -αμ=- -α- -αμ = α = μμ ? ?? ? ? ? =(= = 22 2 2 2 2 4 x 22 24 x x 2 2 22 24 21()xd(e ) 21A (){xe e dx}221A ()2442∞-α-∞ ∞ ∞-α-α-∞ -∞ α- α =α- -- μααα- - μ α μ μ α ? ? 若αT 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 2 22 d 1H x 2dx 2 =- + μωμ 它的基态能量01E 2 = ω 选择 为参量,则: 0dE 1d 2 = ω ; 2 2 2 d H d 2d 2()T d dx 2dx =- = - = μμ d H 20 0T d = 由F-H 定理知: 0dE d H 210 T d d 2= ==ω 可得: 1T 4 = ω

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射

大学物理量子力学习题附答案

1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ] 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 [ ] 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定 粒子动量的精确度最高的波函数是哪个图?

量子力学简明教程

量子力学教案 主讲周宙安 《量子力学》课程主要教材及参考书 1、教材: 周世勋,《量子力学教程》,高教出版社,1979 2、主要参考书: [1] 钱伯初,《量子力学》,电子工业出版社,1993 [2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000 [3] 曾谨言,《量子力学导论》,科学出版社,2003 [4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984 [5] 咯兴林,《高等量子力学》,高教出版社,1999 [6] L. I.希夫,《量子力学》,人民教育出版社 [7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999 [8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990 [9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999 [10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979) [11]https://www.sodocs.net/doc/214189454.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论 量子力学的研究对象: 量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。 §1.1经典物理学的困难 一、经典物理学是“最终理论”吗? 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明: 机械运动(v<

最新常用机械机构介绍

常用机械机构介绍

第4章常用机构 4.1 平面连杆机构 4.1.1 平面连杆机构的组成 我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。 1、构件的自由度 如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。我们把构件作独立运动的可能性称为构件的“自由度”。所以,一个在平面自由运动的构件有三个自由度。可用如图4-1所示的三个独立的运动参数x、y、θ表示。 2、运动副和约束 平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。这种使两构件直接接触并能产生一定运动的联接,称为运动副。两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。 两构件组成的运动副,不外乎是通过点、线、面接触来实现的。根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。 (1)低副两构件以面接触形成的运动副称为低副。按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。 ①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。

②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。 由上述可知,平面机构中的低副引入了两个约束,仅保留了构件的一个自由度。因转动副和移动副都是面接触,接触面压强低,称为低副。我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。 (2)高副两构件以点或线接触形成的运动副称为高副,如图4-3所示。这类运动副因为接触部位是点或线接触,接触部位压强高,故称为高副。 3、构件分类 机构中的构件可分为三类。 (1)机架它是机构中视作固定不动的构件,起支撑其他活动构件的作用。 (2)原动件它是机构中接受外部给定运动规律的活动构件。 (3)从动件它是机构中的随原动件运动的活动构件。 4.1.2平面机构的运动简图 为方便对机构进行分析,可以撇开机构匮与运动无关的因素(如构件的形状、组成构件的零件数目、运动副的具体结构等),用简单线条和符号表示构件和运动副,并按一定比例定出各运动副的位置,以简图表示出机构各构件间相对运动关系,这种简图为机构运动简图。它是表示机构运动特征的一种工程用图) 1、常用运动副的符号(如图4-4)

相关主题