搜档网
当前位置:搜档网 › 基于单片机的四足机器人

基于单片机的四足机器人

基于单片机的四足机器人
基于单片机的四足机器人

—-可编辑修改,可打印——

别找了你想要的都有!

精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——

全力满足教学需求,真实规划教学环节

最新全面教学资源,打造完美教学模式

深圳大学期末考试试卷

开/闭卷开卷A/B卷N/A

课程编号1303270001

1303270002 课程名称EDA技术与实践(2)学分2.0

命题人(签字) 审题人(签字) 2015 年10 月20 日

设计考试题目:完成一个集成电路或集成系统设计项目

基本要求:2-3位同学一组,完成一个完整的集成电路设计项目或是一个集成系统设计项目。

规格说明:

1.题目自定。

1)集成电路设计项目

i.若为IC设计项目需要完成IC设计的版图。

ii.若采用FPGA实现数字集成电路设计,需要进行下板测试。

2)集成系统设计项目,需使用FPGA开发板或嵌入式开发板,完成一个完整的集成

系统作品。

3)作品需要课堂现场演示,最后提交报告,每个小组单独一份报告,但需阐述各个

成员的工作。

2.评分标准:

2015年第二学期,建议作品内容:

完成一个行走机器人,基本要求

o2-8只脚

o能行走

o可以用单片机,嵌入式,FPGA方案

一、设计目的:

通过设计一个能够走动的机器人来增加对动手能力,和对硬件电路设计的能力,增强软件流程设计的能力和对设计流程实现电路功能的能力,在各个方面提升自己对电子设计的能力。

二、设计仪器和工具:

本设计是设计一个能走动的机器人,使用到的仪器和工具分别有:sg90舵机12个、四脚机器人支架一副、单片机最小系统一个、电容电阻若干、波动开关一个、超声遥控模块一对、杜邦线若干、充电宝一个。

三、设计原理:

本次设计的机器人是通过51单片机控制器来控制整个电路的。其中,舵机的控制是通过产生一个周期为20毫秒的高电平带宽在0.5到2.5ms之间的pwm信号来控制。12路Pwm信号由单片机的定时器来产生。51单片机产生12路pwm信号的原理是:以20毫秒为周期,把这20毫秒分割

成8个2.5ms,因为,每个pwm信号的高电平时间最多为2.5ms,然后在前六个2.5ms中分别输出两个pwm信号的高电平,例如,在第一个

2.5ms中输出第一个和第二个pwm信号的高电平时,首先开始时,把信

号S1、S2都置1,然后比较两个高电平时间,先定时时间短的高电平时间,把高电平时间短的那个信号置0,再定时两个高电平时间差,到时把高电平时间长的按个信号置0,然后,定时(2.5-较长那个高电平时间),在第二个2.5ms开始时,把S3、S4置1,接下来和上面S1、S2一样,以此类推,在六个2.5ms 中输出12路pwm信号来控制舵机。原理图如图1.

通过超声模块来控制机器人前进、后退、向前的左转、向前的右转、向后的左转、向后的右转几个动作。

控制模块电路,D0,D1,D2,D3分别为超声接受模块的输出,输出为高电平,要加NPN作为开关。

四、设计步骤:

1、设计好硬件电路,焊接51单片机的最小系统和各个硬件电路。

2、设计好软件的流程图,如图2。

3、写产生12路控制舵机的pwm信号的程序并在proteus中测试,如

图3。

4、设计出行走步态,四脚机器人的步态是采用对角的相互前进来实现

的,如图4。

5、写出流程图中各个模块的软件,包括前进函数、后退函数、左转和

右转的函数,并逐个烧到单片机中测试。

6、按流程图把各个函数组合到主函数中,完成所有软件的编写,并烧

到单片机中测试,并不断的调试。

图2.流程图

图3.在proteus里测试并调试pwm信号

图4,行走步态

五、遇到的问题及解决:

1、此设计的pwm信号输出使用定时器来产生每个信号的高电平和低

电平,每次定时时间到,都会会关掉定时器并执行中断函数,在此过

程中会消耗一定的时间,等到给定时器赋值下一次定时时间并开始定

时时,就会产生一定的时间延时,造成每次高电平时间都会变长一

点,且总的加起来会使20ms周期变长,因此,需要稍微减小高电平

的定时时间,并结合proteus仿真确定最准确值。

2、由于机器人的四个脚都是自己组装的,可能会有存在不平衡和对

称,当对角的两只脚同时向前迈同一个角度时,会使机器人向一个方

向偏转而不沿直线前进,这时要结合实际测试来调整机器人的各个脚

的前迈角度来使机器人平衡的沿直线前进,比如,一只脚迈多点,另

一边的脚迈少点。

六、心得与体会:

通过这次设计,我更加的熟悉基本的硬件电路和软件的设计,特别是软件的流程图设计。更加熟悉软硬件电路结合的测试与调试。

六、实验实物图:

关于机器人的发展历史

关于机器人的发展历史 库卡公司最早于1898年由Johann Josef Keller和Jakob Knappich在奥格斯堡建立。最初主要专注于室内及城市照明。但与此不久公司就涉足至其它领域(焊接工具及设备,大型容器),1966年公司成为欧洲市政车辆的市场领导者。1973年公司研发了其名为FAMULUS第一台工业机器人。当时库卡公司属Quandt集团旗下,而Quandt家族则于1980年退出。公司成为一个上市公司。1995年库卡机器人技术脱离库卡焊接及机器人有限公司独立成立有限公司,与库卡焊接设备有限公司(即后来的库卡系统有限公司),同属属于库卡股分公司(前身IWKA集团)。现今库卡专注于向工业生产过程提供先进的自动化解决方案。 库卡机器人公司目前全球拥有3150名员工(2012年9月30日数据),其总部在德国奥格斯堡。公司主要客户来自汽车制造领域,但在其他工业领域的运用也越来越广泛。 重要发展 1971 –为Daimler-Benz建成欧洲第一台焊接传输线。 1973 –库卡建成全球第一台六轴机电驱动的工业机器人FAMULUS。1976 – IR 6/60 –全新的机器人类型六轴机电驱动带角手。 1989 –新一代工业机器人诞生–无刷电机的使用降低了维护成本提高了技术可用性。 2007 –库卡…titan“ - 当时最强大的6轴工业机器人,被计入吉尼斯纪录。2010 – KR QUANTEC系列工业机器人贴补了机器人家庭中载重90-300公斤工作范围达3100毫米这一部分的空白。 2012 –最新小型机器人系列KR AGILUS上市。 ABB是全球领先的电力和自动化集团,总部设在瑞士。ABB集团业务遍布全球100多个国家,拥有120,000名员工。在中国的13,000名员工,在60 个不同城市服务于26家本地企业和38个销售与服务分公司。 ABB致力于研发、生产机器人已有30多年的历史并且拥有全球160000多套机器人的安装经验。作为工业机器人的先行者以及世界领先的机器人制造厂商,在瑞典、挪威和中国等地设有机器人研发、制造和销售基地。ABB

四足机器人研究现状及其展望

四足步行机器人研究现状及展望 (郑州轻工业学院机电工程学院河南郑州) 摘要:文章对国内外四足步行机器人研究现状进行了综述,归纳分析了四足机器人质心距离测量系统研究的关键技术,并展望了四足机器人的发展趋势。 关键词:四足步行机器人;研究现状;关键技术;发展趋势 引言:目前,常见的步行机器人以两足式、四足式、六足式应用较多。其中,四足步行机器人机构简单且灵活,承载能力强、稳定性好,在抢险救灾、探险、娱乐及军事等许多方面有很好的应用前景,其研制工作一直受到国内外的重视。1国内外研究四足步行机器人的历史和现状 20世纪60年代,四足步行机器人的研究工作开始起步。随着计算机技术和机器人控制技术的研究和应用,到了 20 世纪 80 年代,现代四足步行机器人的研制工作进入了广泛开展的阶段。 世界上第一台真正意义的四足步行机器人是由 Frank 和 McGhee 于 1977 年制作的。该机器人具有较好的步态运动稳定性,但其缺点是,该机器人的关节是由逻辑电路组成的状态机控制的,因此机器人的行为受到限制,只能呈现固定的运动形式[1]。 20 世纪 80、90 年代最具代表性的四足步行机器人是日本 Shigeo Hirose 实验室研制的 TITAN 系列。1981~1984年Hirose教授研制成功脚部装有传感和信号处理系统的TITAN-III[2]。它的脚底部由形状记忆合金组成,可自动检测与地面接触的状态。姿态传感器和姿态控制系统根据传感信息做出的控制决策,实现在不平整地面的自适应静态步行。 TITAN-Ⅵ[3]机器人采用新型的直动型腿机构,避免了上楼梯过程中各腿间的干涉,并采用两级变速驱动机构,对腿的支撑相和摆动相分别进行驱动。

工业机器人的发展史

郑州领航机器人有限公司 工业机器人发展史 工业机器人最早产生于美国,从发展上来看,大至可以分为三代:第一代机器人,也称作示教再现型机器人,它是通过一个计算机,来控制一个多自由度的机械。它通过示教存储程序和信息,工作时再将信息重现,并发出指令,这样机器人就可以重复示教时的结果,再现出示教时的动作。例如:汽车的点焊机器人,只要把点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道。因此,示教再现型机器人也就存在着很多的缺陷。为解决上述问题,在 20 世纪 70 年代后期,人们开始第二代机器人的研究。 第二代机器人,也称作带感觉的机器人,这种带感觉的机器人是模拟人某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比。有了各种各样的感觉,那么在机器人进行实际工作时,它可以通过感觉功能去感知环境与自身的状况,也形成了机器人本身与环境的协调。尤其是 20 世纪 60 年代末,传感器技术得到了飞速的发展与成熟,这就为带感觉机器人发展和应用带来了契机。在此基础上,第二代机器人的发展与成熟也为第三代机器人的发展打下了基础。 第三代机器人,也是我们机器人学中所追求的一个理想的最高级阶段,叫智能机器人。从理论上来说,智能机器人是一种带有思维能

力的机器人,能根据给定的任务去自主的设定完成工作的流程,并不需要人在实现其过程中进行干预。由于受到技术和其它方面的约束,智能机器人目前的发展还是相对的,只是局部的符合这种智能的概念和含义,真正完整意义的这种智能机器人实际上并不存在。 在工业机器人的发展过程中有以下一些里程碑,它们在机器人的发展史上具有重大的意义: 1959 年德沃尔与美国发明家约瑟夫.英格伯格联手制造出第一台工业机器人。随后,成立了世界上第一家机器人制造工厂—Unimation 公司。 1962 年美国 AMF 公司生产出“VERSTRAN”(万能搬运 ),与unimation 公司生产的 Unimate 一样成为真正商业化的工业机器人,并出口到世界各国,掀起了全世界对机器人的研究热潮。 1962 一 1963 年传感器的应用提高了机器人的可操作性。人们试着在机器上安装各种各样的传感器,包括 1961 年恩斯特采用的触觉传感器,托莫维奇和博尼 1962 年在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡 1963 年则开始在机器人中加入视觉传感系统,并在 1965 年帮助 MIT 推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统。 1965 年约翰.霍普金斯大学应用物理实验室研制出 Beast 机器人。 Beast 已经能通过声纳系统、光电管等装置,根据环境校正自己的位置。20 世纪 60 年代中期开始,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等陆续成立了机器人实验室。美国兴起研究第

基于单片机的四足机器人

—-可编辑修改,可打印—— 别找了你想要的都有! 精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务—— 全力满足教学需求,真实规划教学环节

最新全面教学资源,打造完美教学模式 深圳大学期末考试试卷 开/闭卷开卷A/B卷N/A 课程编号1303270001 1303270002 课程名称EDA技术与实践(2)学分2.0 命题人(签字) 审题人(签字) 2015 年10 月20 日 设计考试题目:完成一个集成电路或集成系统设计项目 基本要求:2-3位同学一组,完成一个完整的集成电路设计项目或是一个集成系统设计项目。 规格说明: 1.题目自定。 1)集成电路设计项目 i.若为IC设计项目需要完成IC设计的版图。 ii.若采用FPGA实现数字集成电路设计,需要进行下板测试。 2)集成系统设计项目,需使用FPGA开发板或嵌入式开发板,完成一个完整的集成 系统作品。 3)作品需要课堂现场演示,最后提交报告,每个小组单独一份报告,但需阐述各个 成员的工作。 2.评分标准:

2015年第二学期,建议作品内容: 完成一个行走机器人,基本要求 o2-8只脚 o能行走 o可以用单片机,嵌入式,FPGA方案 一、设计目的: 通过设计一个能够走动的机器人来增加对动手能力,和对硬件电路设计的能力,增强软件流程设计的能力和对设计流程实现电路功能的能力,在各个方面提升自己对电子设计的能力。 二、设计仪器和工具: 本设计是设计一个能走动的机器人,使用到的仪器和工具分别有:sg90舵机12个、四脚机器人支架一副、单片机最小系统一个、电容电阻若干、波动开关一个、超声遥控模块一对、杜邦线若干、充电宝一个。 三、设计原理: 本次设计的机器人是通过51单片机控制器来控制整个电路的。其中,舵机的控制是通过产生一个周期为20毫秒的高电平带宽在0.5到2.5ms之间的pwm信号来控制。12路Pwm信号由单片机的定时器来产生。51单片机产生12路pwm信号的原理是:以20毫秒为周期,把这20毫秒分割

四足机器人步行腿运动学正反解

四足机器人步行腿的运动学正反解摘要:本文设计的步行腿具有3个驱动关节,分析了该步行机器人的机构及其等效简化,给出了运动学正反解,正解问题要比反解问题复杂很多。该分析方法准确率高,为步行腿的运动空间、轨迹规划和位置控制奠定了基础。 关键词:步行腿运动学正反解 abstract: in this paper, the design of walking legs with three drive joint analysis of the institutions of the walking robot and its equivalent simplified kinematics and inverse solution positive solution of the problem is much more complex than the inverse solution. the analytical method with high accuracy, and laid the foundation for walking space for the movement of the legs, trajectory planning and position control. keywords: walking legs kinematics positive and negative solution 0 前言 四足机器人的行走机构是步行腿,它是步行机器人中最为重要也是最复杂的构件[1],步行腿的灵活度这届决定了步行机器人的行走姿态和完成任务的复杂程度。本文设计的步行腿具有三个驱动关节,采用混连机构设计。给出了步行腿的运动正解和反解,是整个四足步行机器人系统设计的基础,也是机器人运动空间分析和尺

新型四足机器人步态仿真与实现

M ac hine B uilding A uto mation,Jun 2008,37(3):21~23,33 作者简介:马东兴(1982— ),男,江苏省丹阳市人,在读硕士研究生,主要从事虚拟样机和四足机器人技术研究。 新型四足机器人步态仿真与实现 马东兴,王延华,岳林 (南京航空航天大学机电学院,江苏南京210016) 摘 要:研究一种背部带关节的新型四足机器人,通过三维建模软件Pr o /E 和机械系统动力学 仿真分析软件ADAMS 建立了四足机器人虚拟样机,规划了四足机器人的步态,并且利用AD 2AM S 仿真软件对该四足机器人进行了步态仿真,同时利用单个AT89C52单片机成功实现对四足机器人5个舵机的独立控制以及舵机的速度控制。仿真与实验结果表明四足机器人能够根据设计步态实现直线行走。 关键词:四足机器人;步态仿真;舵机;单片机中图分类号:TP24 文献标识码:A 文章编号:167125276(2008)0320021203 Ga it S i m ul a ti on and I m plem en t a ti on of a New Quadruped Robot MA Dong 2xing,WANG Yan 2hua,Y UE L in (Co ll ege o f M echan i ca l and E l ec tri ca l Eng i nee ri ng,N a n ji ng U n i ve rs ity o f Ae r o na u ti c s & A s tr o na u ti c s,N a n ji ng 210016,C h i na ) Abstract:A new qua drup e d r obo t w ith w a ist 2j o i nt is d iscu sse d i n this p ap e r .The virtua l p r o t o type o f quad rup ed r obo t is c re a te d by P r o /E a nd ADAM S a nd the ga it o f the r obo t is p l a nne d.The ga it s i m ul a ti o n of the qua drupe d r o bo t is do ne by ADAM S virtua lp r o t o ty 2p i ng so ft w a re.M e a nw hil e ,w e succe s sfull y con tr o l fi ve rudde r se rvo s by a s i ngl e AT89C52SCM a nd a lso rea li ze the ve l o c ity co ntr o l of the rudde r se rvo.The s i m ul a ti o n a nd e xp e ri m e nta l re sults show tha t the qua drup e d r o t w ith w a is t 2j o i n t ca n w a l k s tra i ght s te a dil y thr ough the de s i gned ga it . Key words:qua drup e d r obo t;ga it s i m ul a ti o n;rudde r se rvo;SCM 0 引言 与轮式机器人或履带式机器人相比,由于足式机器人的立足点是离散的点,可以在可能到达的地面上选择最优的支撑点,足式机器人对崎岖路面也具有很好的适应能力,因此足式机器人受到各国研究人员的普遍重视,目前已成功开发了多款足式机器人。例如日本东京工业大学 研发的TI T AN 2V III [1] 机器人,每个腿具有3个自由度,其 中大腿关节具有前后转动和上下转动2个自由度,膝关节具有1个上下转动自由度。采用新型的电机驱动和绳传动。上海交通大学马培荪等人研制的JT UWM 2III 四足机器人[2, 3] ,腿为开链式关节型结构,膝关节为一纵摇自由 度,髋关节为纵摇和横摇2个自由度。每一腿有3个自由度,共12个自由度。机体重心较高,与哺乳类动物相似,适应于动态行走。华中科技大学研发的“4+2”多足步行机器人[4, 5] ,其腿部件由髖关节、大腿关节、小腿关节和踝 关节四部分组成,大、小腿关节之间由线轮传动,每一腿有 3个自由度。但是先前研制的机器人的本体大多是一个 刚性整体,没有考虑机器人的背部关节。 因此,在分析卡内基梅隆大学(Carnegie Mell on Uni 2 versity )研制的RGR 仿壁虎机器人[628] ,以及韩国庆北大学(Kyungpook Nati onal University )设计的E L I RO 2II 四足步行机器人的基础上[9, 10] ,研究了一种新型四足机器人。 该机器人与传统的足式机器人相比,其机器人本体不再是 一个单一的刚性整体,而是在本体上用一个主动关节将机 器人的本体分为前后两个部分,通过背部主动关节的运动来实现四足机器人的直线行走。通过机械系统动力学仿真分析软件(aut omatic dynam ic analysis of mechanical sys 2te m s,ADAMS )对该四足机器人虚拟样机进行步态仿真,同时利用单个AT89C52单片机成功实现对四足机器人5个舵机的独立控制以及舵机的速度变化,四足机器人的直线行走平均速度达到12.14mm /s 。 1 四足机器人虚拟样机 1.1 四足机器人结构 传统的四足机器人每个腿有2个或3个自由度,本文研究的四足机器人结构简单,每个腿只有1个自由度,但是在机器人背部增加了1个自由度。四足机器人的结构如图1所示。该四足机器人有5个主动关节(图中关节1至关节5)和1个被动关节(6点),各关节的运动方向如图1所示。主动关节由舵机驱动。z 轴正方向为四足机器人前进方向。关节1至关节4四个主动关节可以使各腿在xoy 平面上下摆动。关节5可以使前后本体在xoz 平面转动。 1.2 四足机器人接触力 当足与地面之间发生接触时,这两个物体就在接触的 ? 12?

机器人发展史

机器人的发展历史及未来的发展方向 一、引言 机器人溯源 科幻作家想象的超人机器人是一台并不新颖的拟人机器日本在Edo时代就有端茶杯的玩偶。这个由弹簧、齿轮、凸轮和连杆组成的玩偶靠发条运动。刨造“Robot”一词不是很久以前的事。1923年捷克作家Kare!Capek发表了科幻尉本((Rossum的万能机器人。Ca pek把捷克语 Robota”写成 Robot,其意思是农奴(属于为中世纪贵族地主从事农业劳动的阶层),预告了机器人的发展对人类社会科学与技术的悲烈性影响,这被当作了机器人的起源。故事的梗概如下: Rossum公司开始把机器人作为人类生产的工业产品推向市场,充当劳动力。机器人按照其主人的命令静悄悄的工作,没有感觉和感情,以呆板的方式从事繁重的不公正的劳动。就功能而言,现代的工业机器人还不如它们,但在没有感情这一点上是类似的。后来,Rossum 公司取得了成功,使机器人具有感情(感知能力和敏感性),导致机器人应用部门迅速增加。在无需感情的工厂劳动和琐碎的家务劳动方面,机器人的存在成了不可避免的事。这个想法已经远远超出了现代工业机器人的用途。机器人立刻宣布人类并不优秀,人类的自私和不公正已变得十分有害,因而它们最后造反了。机器人在体能和智能方面是优异的,因此它们开始屠杀世界各地的人们。但是机器人不知道如何制造它们自己,认为它们自己很快就会灭绝,所以它们搜寻人类的幸存者,但没有结果。最后,一对感知能力优于其它机器人的男女机器人相爱了,并传宗接代。这时,机器人进化为人类,世界又起死回生了。 机器人到底是什么 我们头脑里也许马上会联想到科幻电影里面长的像人的机器。其实那只是机器人的狭意理解。机器人的完整意义应该是一种可以代替人进行某种工作的自动化设备。它可以是各种样子,并不一定长得像人,也不见得以人类的动作方式活动。而国际标准化组织(ISO)对机器人的定义是: 1)机器人的动作机构具有类似于人或其他生物体的某些器官(肢体、感受等)的功能; 2)机器人具有通用性,工作种类多样,动作程序灵活易变; 3)机器人具有不同程度的智能性,如记忆、感知、推理、决策、学习等; 4)机器人具有独立性,完整的机器人系统在工作中可以不依赖人的干预; 二、机器人发展的四个时期 由于机器人在很早以前就有了萌芽,近几十年来又经过了几次变革,因此本人将其发展分为四个时期: 胚胎时期:公元200年至20世纪中期,在这个时期机器人虽未问世,也没有实质性的发展,但已有机器人的雏形。 我国宋代科学家沈括在《梦溪笔谈》一书中,记载有一个“自动木人抓老鼠”的故事,“该木人名钟馗,身高三尺,能左手扼属,右手持铁简毙之,动作灵巧”。 三国时期,诸葛孔明为运送军用物资而发明了木牛流马,相传可以“日行三千、夜走八百”。《三国志·诸葛亮传》记载:“(建兴)九年,亮复出祁山,以木牛运,粮尽退军十二年春,亮悉大众由斜谷出,以流马运,据武功五丈原,与司马宣王对于渭南。” 18世纪瑞士钟表匠德罗斯父子制造了机器人玩具,由弹簧驱动,用凸轮控制,可以写字、弹风琴。 幼儿时期:20世纪五六年代,即第一代示教再现型机器人。它可以感知识别方块,并自动堆积方块而不需人的干预。这一时期机器人有了实质性的发展,但它只能根据事先编好的程

单片机机器人设计

单片机机器人设计 1 引言 轮式移动机器人是机器人研究领域的一项重要内容.它集机械、电子、检测技术与智能控制于一体。在各种移动机构中,轮式移动机构最为常见。轮式移动机构之所以得到广泛的应用。主要是因为容易控制其移动速度和移动方向。因此.有必要研制一套完整的轮式机器人系统。并进行相应的运动规划和控制算法研究。笔者设计和开发了基于5l型单片机的自动巡线轮式机器人控制系统。 摘要:设计了一种自动巡线轮式行走机器人控制系统,采用AT89S52型单片机作为主控CPU,外加一个复杂可鳊程逻辑器件(CPID)协助CPU处理数据,扩展了程序参数存储器,能够进行检测引导线和直流电机、舵机的PWM控制。关键词:控制系统;复杂可编程逻辑器件;

存储器;光电检测;脉冲宽度调制 2 控制系统总体设计 机器人控制系统由主控制电路模块、存储器模块、光电检测模块、电机及舵机驱动模块等部分组成,控制系统的框图如图1所示。 3 主控制模块设计3.1 CPLD设计 在机器人控制系统中.需要控制多个电动机和行程开关.还要进行光电检测.如果所有的任务都由 AT89S52型单片机来完成.CPU的负担就会过重。影响系统的处理速度。因此扩展1个CPLD.型号为EPM7128。它属于.MAX7000系列器件。包括2个通用1/0口.2个专用I/O口,专用I/O口可作为每个宏单元和输入输出引脚的高速控制信号(时钟、清除和输出使能等),电动机的。PWM信号也由其产生。

EPM7128的引脚排列如图2所示。MlP—M4P引脚的输出为PWM脉宽调制信号,M1FB—M4FB引脚为电机的方向控制信号,P00一P07接单片机的PO口,100一1015为扩展的2个通用I/O口,SIl—S17引脚为行程开关输入信号,LI11一LI17引脚为光电探头输入信号。CPLD的编程用VHDL语言,产生1路PWM信号的部分程序源代码如下:

北航adams实验报告-四足机器人

成绩 采用ADAMS和MATLAB建立机械装置或机电装置虚拟样机 ——四足机器人建模与仿真 实验报告 院(系)名称自动化科学与电气工程 专业名称控制工程 学生学号0 学生姓名0 指导教师0 2016年4月

一、实验背景 1. 参照自然界四足哺乳动物如猫狗的运动形式,对四足机器人进行建模,结合虚拟样机技术软件ADAMS,对四足机器人进行步态规划、运动学和动力学分析,使四足机器人模型良好运行。 2. 利用拉格朗日能量法建立四足机器人坐标系并对四足机器人进行运动学分析。 3.在Solidworks中建立四足机器人三维模型,之后将三维模型导入至虚拟样机软件ADAMS中,在ADAMS中建立虚拟样机模型,并利用样条曲线来规划机器人的运动轨迹,进行仿真,实现机器人的直线行走。 二、实验原理 2.1 研究对象背景分析 移动机器人按移动方式大体分为两大类;一是由现代车辆技术延伸发展成轮式移动机器人(包括履带式);二是基于仿生技术的运动仿生机器人。运动仿生机器人按移动方式分为足式移动、蠕动、蛇行、游动及扑翼飞行等形式,其中足式机器人是研究最多的一类运动仿生机器人。 自然环境中有约50%的地形,轮式或履带式车辆到达不了,而这些地方如森林,草地湿地,山林地等地域中拥有巨大的资源,要探测和利用且要尽可能少的破坏环境,足式机器人以其固有的移动优势成为野外探测工作的首选,另外,如海底和极地的科学考察和探索,足式机器人也具有明显的优势,因而足式机器人的研究得到世界各国的广泛重视。现研制成功的足式机器人有1足,2足,4足,6足,8足等系列,大于8足的研究很少。 曾长期作为人类主要交通工具的马,牛,驴,骆驼等四足动物因其优越的野外行走能力和负载能力自然是人们研究足式机器人的重点仿生对象。因而四足机器人在足式机器人中占有很大的比例,四足机器人的研究深具社会意义和实用价值。 2.2 研究对象数学模型分析 四足机器人整体结构由躯体、左前腿、右前腿、左后腿、右后腿五部分组成。

六足机器人的发展史

一、前言 談到足式機器人,當然目前主流大多是聯想到和人相似、有親切感的雙足機器“人”,從某一層面來看,以雙足步行為演化上的一個極為小眾的特例,本身對達到穩定運作控制的困難度很高,從瞭解「生物出生到可以開始自行運動所需的時間」便可以窺知一二。從另一個角度來看,人類所能自在運動的地表也侷限在某一些型態之中,若要探討如何在各式自然地形上運動的法則,勢必得回過頭來探討多足動物的運動機制。而從物理直覺來評析,單就在崎嶇路面上運動的穩定性來探討,採用多足機器人會比較簡單且實際。基於這一些原因,仿生多足機器人的研發便有了背後的動機,模仿經過長時間演化後動物的構造,藉由觀察牠們的運動,了解為什麼有如此的動作,再利用機構或是控制去完成。在自然界中,我們看到體型較大、有優秀運動能力的動物像馬、獵豹、羚羊等等都是四隻腳的哺乳類動物,但考慮到穩定性卻是六足比較佔優勢,只要用簡單的三腳步態(tripod gait)即可讓重心輕易落在支撐的三角形中。四足動物的腳可能需要比較大的力量才能表現出他的特性,但人類尚無法仿造出重要的肌肉和控制系統,以現有機構和馬達組成的系統,重量太重而無法有效運動。這時,自由度的選擇以及機構設計便成了一個很重要的課題。 這二、三十年學業界創造出了許多各式各樣的多足機器人,在後續的文章中便為各位讀者進行介紹[2, 3]。 二、學術界開發仿生多足機器人 (1)Quadruped 圖一 Quadruped[4] 由Prof. Marc Reibert所領導的MIT Leg Lab於1984~1987年製作,重38公斤,整體長度公尺,高度公尺,採用長柱狀的腳,每一隻腳連接身體的關節是由兩個液壓致動器(hydraulic actuators)組成,分別控制腳的前後及左右的旋轉,腳上有一個線性致動器來提供推進力。

基于单片机设计的简易智能机器人

基于单片机设计的简易智能机器人引言 随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数器、并行和串行接口、看门狗、前置放大器、A/D转换器、D/A转换器等多种电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。这种技术促使机器人技术也有了突飞猛进的发展,目前人们已经完全可以设计并制造出具有某些特殊功能的简易智能机器人。 1 设计思想与总体方案 1.1 简易智能机器人的设计思想 本机器人能在任意区域内沿引导线行走,自动绕障,在有光源引导的条件下能沿光源行走。同时,能检测埋在地下的金属片,发出声光指示信息,并能实时存储、显示检测到的断点数目以及各断点至起跑线间的距离,最后能停在指定地点,显示出整个运行过程的时间。 本设计以AT89C5l单片机作为检测和控制核心。采用红外光电传感器检测路面黑线及障

碍物,使用金属传感器检测路面下金属铁片,应用光电码盘测距,用光敏电阻检测、判断车库位置,利用PWM(脉宽调制)技术动态控制电动机的转动方向和转速。通过软件编程实现机器人行进、绕障、停止的精确控制以及检测数据的存储、显示。通过对电路的优化组合,可以最大限度地利用51单片机的全部资源。P0口用于数码管显示,P1口用于电动机的PWM驱动控制,P2,P3口用于传感器的数据采集与中断控制。这样做的优点是:充分利用了单片机的内部资源,降低了总体设计的成本。该方案总体方案见图1。 系统的硬件组成及设计原理

此系统的硬件部分由单片机单元、传感器单元、电源单元、声光报警单元、键盘输入单元、电机控制单元和显示单元组成,如图2所示。 2.1 单片机单元 本系统采用AT89C51单片机作为中央处理器。其主要任务是扫描键盘输入的信号启动机器人,在机器人行走过程中不断读取传感器采集到的数据,将得到的数据进行处理后,根据不同的情况产生占空比不同的PWM脉冲来控制电机,同时将相关数据送显示单元动态显示,产生声光报警信号。其中,P0用于数码管动态显示,P1.0一P1.5控制2个电机,P1.6、P1.7为独立式键盘接口,P2接传

国内外四足机器人发展及普及

摘要:对四足机器人研究应用的历史与现状做了介绍,列举出国内外主要研究机构及其主要研究成果,对四足机器人研究的热点和难点问题进行了归纳总结,并展望了四足机器人的发展趋势。 关键词:四足机器人;研究与应用;历史与现状;难点与热点;发展趋势 1. 引言 移动机器人按移动方式大体分为两大类;一是由现代车辆技术延伸发展成轮式移动机器人(包括履带式);二是基于仿生技术的运动仿生机器人。运动仿生机器人按移动方式分为足式移动、蠕动、蛇行、游动及扑翼飞行等形式,其中足式机器人是研究最多的一类运动仿生机器人。 自然环境中有约50%的地形,轮式或履带式车辆到达不了,而这些地方如森林,草地湿地,山林地等地域中拥有巨大的资源,要探测和利用且要尽可能少的破坏环境,足式机器人以其固有的移动优势成为野外探测工作的首选,另外,如海底和极地的科学考察和探索,足式机器人也具有明显的优势,因而足式机器人的研究得到世界各国的广泛重视。现研制成功的足式机器人有1足,2足,4足,6足,8足等系列,大于8足的研究很少。 曾长期作为人类主要交通工具的马,牛,驴,骆驼等四足动物因其优越的野外行走能力和负载能力自然是人们研究足式机器人的重点仿生对象。因而四足机器人在足式机器人中占有很大的比例。长期从事足式机器人研究的日本东京工业大学的広濑茂男等学者认为:从稳定性和控制难易程度及制造成本等方面综合考虑,四足机是最佳的足式机器人形式[1],四足机器人的研究深具社会意义和实用价值。 2. 国内外四足机器人研究历史与现状 四足机器人的研究可分为早期探索和现代自主机器人研究两个阶段。 2.1 四足机器的早期探索 中国古代的“木牛流马”以及国外十九世纪由Rygg设计的“机械马”,是人类对足式行走行机器的早期探索。而Muybridge在1899年用连续摄影的方法研究动物的行走步态,则是人们研究足式机器人的开端。20世纪60年代,机器人进入了以机械和液压控制实现运动的发展阶段。美国学者Shigley(1960)和Baldwin(1966)都使用凸轮连杆机构设计了机动的步行车[2]。这一阶段的研究成果最具代表性的是美国的Mosher于1968年设计的四足车“Walking Truck” [3](图1)。 图1 Walking truck 80年代,随着计算机技术和机器人控制技术的广泛研究和应用,真正进入了具有自主行为的现代足式机器人的广泛研究阶段。

基于单片机的智能机器人的设计

基于单片机的智能机器人的课程设计 班级:自动化09-2班 姓名: 学号:

摘要 随着数字技术的快速发展,数字技术被广泛应用于智能控制的领域中。单片机以体积小、功能全、价格低廉、开发方便的优势得到了许多电子系统设计者的青睐。它适合于实时控制,可构成工业控制器、智能仪表、智能接口、智能武器装置以及通用测控单元等。 本文以STC89C52单片机为核心设计了智能机器人系统,本机器人实现了能在人一区域内沿引导线行走,自动绕鄣,在有光源引导的条件下能沿光源行走。同时,能检测埋在地下的金属片,发出声光知识信息,并能实时储存,显示检测到的断点数目以及各断点至起跑线间的距离,最后能停在指定地点,显示整个运行的时间。 关键词单片机传感器L298 A/D LCD12864

Abstract With the development of the digital technology, digital technology has been widely applied in the field of intelligent control. MCU with small volume, complete functions, low price, convenient development advantage by many electronic system designers favor. It is suitable for real-time control, can form industrial controllers, intelligent instruments, intelligent interface, intelligent weapon device and universal measurement and control unit. To STC89C52 microcontroller as the core design of intelligent robot system, this robot can walk in a region along the guide line, automatic winding Zhang, walking along the light conditions of a light guide. Able to detect buried in the underground metal sheets, audible and visual knowledge and information, and real-time storage, display the number of breakpoints detected and the distance between each breakpoint to the starting line, the final stop at the designated locations, to show the entire run time. Key words Singlechipmicrocomputer Sensor L298 A/D LCD12864 目录

外文翻译---四足机器人的步态适应

附录 Gait Adaptation in a Quadruped Robot 1. Introduction A short time after birth a foal can walk and then run. It is remarkable that the animal learns tocoordinate the many muscles of the legs and trunk in such a short period of time. It is not likely that any learning algorithm could program a nervous system ab initio with so few training epochs. Nor is it likely that the foal?s locomotor controller is completely determined before birth. How can this a- bility be explained? How can this ability be incorporated into the control system of a walking machine? Researchers in biology have presented clear evidence of a functional unit of the central nervous system, the Central Pattern Generator (CPG), which can cause rhythmic movement of the trunk and limb muscles(Grillner and Wall′en, 1985). In adult animals, the output of these cells can generate muscle activity that is very similar to activity during normal walking, even when sensory feedback has been eliminated (Grillner and Zangger, 1975). The CPG begins its ac- tivity before birth, although its activity does not appear to imitate the details of a particular walking animal, it is apparently correlated with the animal?s class, i.e., amphibian, reptile, mammal, etc. (Bekoff, 1985; Cohen, 1988).Apparently, the basic structure of the CPG network is laid down by evolution. How is this basic structure adapted to produce the detailed coordination needed to control a walk- ing animal? The answer to this question is important to robotics for the following reason. CPGs have been well studied as a basic coordinating mechanism (Cohen et al., 1982; Bay and Hemami, 1987; Matsuoka, 1987; Rand et al., 1988; Taga et al., 1991; Collins and Stewart, 1993; Murray, 1993; Zielinska, 1996; Jalics et al., 1997; Ito et al., 1998; Kimura et al., 1999). However, the details of how this system can automatically adapt to control a real robot are not clear. A good goal would be to describe a general strategy for matching a generic CPG to a particular robot in real-time, with a minimal amount of interaction with the environment.

农业机器人发展史

农业机器人发展史 自古以来,我国便是一个农业大国,依靠着大量人工人力,促使着我国在农耕时代屹立于世界,农耕文化至今还影响着我国。 随着时代的发展,农耕已不足以支撑起一个大国,西方国家文明改革,工业自动化生产渐渐地占据主要优势和地位,进而农业也渐渐地朝着自动化方向发展。 农业机器人类型 农业机器人种类繁多,按作业对象不同可以分为以下四类(1)可完成各种繁重体力劳动的农田机器人,如插秧、除草、施肥及施药机器人等(2)可实现蔬菜水果自动收获、分选、分级等工作的果蔬机器人,如采摘苹果,蔬菜嫁接机器人等(3)可替代人养牲畜,挤牛奶等机器人(4)可替代人实现伐木、整枝、造林等工作的机器人,如林木球果采集、伐根清理机器人等 农业机器人与工业机器人有很多共同之处,主要结构均包括五官、头脑、神经等部位,但与工业机器人又有如下明显不同 (1)作业对象的娇嫩和复杂性;(2) 作业环境的易变性和难预测性,要求机器人要 有足够的适应性;(3)使用对象与价格的特殊性,农业机器人必须具有简单、 可靠性,且制造成本应尽量低。 国内外农业机器人研发概况 发达国家对农业机器人的研制起步早、投资大、发展快,这些国家拥有规模化、多样化、精确化的农业生产设施,有效的促进了农业机器人与其他智能化农业机械的发展。 自20世纪80年代开始,发达国际根据本国实际,纷纷开始农业机器人的研发,并相继研制出嫁接机器人、移栽机器人和采摘机器人等多种农业生产机器人,如澳大利亚的剪羊毛机器人、荷兰的挤奶机器人、日本和韩国的插秧机器人、英国的柑橘采摘机器人等;近年来,东南亚一些国家对农业机器人的研发也表示出较大的兴趣。由于农业生产环境、作业对象及使用者等与工业生产领域截然不同,发达国家研发成功的农业机器人目前尚未实现商品化生产和大面积普及。 中国的农业机器人研发起步晚、投资少、发展慢,与发达国家相比差距还很大,目前还处于起步阶段。20世纪90年代中期,国内才开始农业机器人技术的研发。中国农业大学为中国大陆农业机器人技术早期研发中心之一,研制出来的自动嫁接机器人已成功进行了试验性嫁接生产,解决了蔬菜幼苗的柔嫩性、易损性和生长不一致性等难题,可用于黄瓜,西瓜和甜瓜等幼苗的嫁接,形成了具有自主知识产权的自动化嫁接技术。随后南京农业大学、东北林业大学等其他高校也相继开展相关研究,取得了不错的成果。 中国机器人技术与发达国家相比差距明显,农业机器人差距更大,但随着中国科技和经济的快速发展,尤其是国家不断加大农业机械化发展扶持力度,中国农业机械化事业进入了前所未有的良好发展时期,也为农业机器人提供了良好的发展机遇,农业机器人技术的先进性和先导性决定了其必将成为未来中国农业技术装备研发的重要内容之一。 农业机器人的发展,对解放工人,提高生产效率具有重大意义。

四足机器人设计报告

四足机器人设计报告 摘要:本文介绍了四足机器人(walking dog )的设计过程,其中包括控制系统软硬件的设计、传感器的应用以及机器人步态的规划。 一、本体设计: walking dog 的单腿设置髋关节和踝关节两自由度,能在一个平面内自由运动(见图1.1)。采用舵机作为机器人的关节驱动器,其单腿结构图见(图1.2)。为了便于步态规划,设计上下肢L1、L2长均为65mm 。四肢间用铝合金框架连接,完成后照片见(图1.3)。walking dog 的每只脚底均有一个光电传感器,能有效检测脚底环境的变化。walking dog 的头部为一个舵机,携带光电反射式传感器,能探测前方180度75cm 内的障碍物。 图1.1 四足机器人模型 图1.2 单腿结构 图1.3:完成后照片 二、控制系统设计 为了使机器人能灵活地搭载各种传感器以及实现不同的步态,将底层驱动单元与上层步态算法平台分开。因为walking dog 的各关节均为舵机,特设计了16路舵机驱动器作为底层驱动单元,用来驱动机器人全身各关节。并设计了上层算法平台,将各关节参数通过UART 实时地发送到底层驱动单元。图2.1为系统框图。

图2.1:系统框图 1、底层驱动单元设计 图2.2给出了舵机的工作原理框图,电动机驱动减速齿轮组,并带动一个线性的电位器作位置检测,控制电路将反馈电压与输入的控制脉冲信号作比较,产生偏差并驱动直流电动机正向或反向转动,使齿轮组的输出位置与期望值相符。 图2.2:舵机工作原理框图 针对舵机这一特性,设计底层驱动器的系统结构图见图2.3。Mage8的16位定时器分时产生16次定时中断,中断子程序产生移位脉冲,通过4N25光偶隔离输入到移位寄存器,实现各路PWM信号高电平部分的分时产生。图2.4为定时产生脉冲的中断处理流程,图2.5例举了产生4路PWM信号的波形图。实际电路原理图见附录1。 图2.3:16路舵机驱动器结构图

相关主题