搜档网
当前位置:搜档网 › 电力系统电压调整及控制

电力系统电压调整及控制

电力系统电压调整及控制
电力系统电压调整及控制

13.1基本概念及理论

电压控制:通过控制电力系统中的各种因素,使电力系统电压满足用户、设备和系统运行的要求。

13.1.1电压合格率指标

我国电力系统电压合格指标:

35kV及以上电压供电的负荷:+5% ~ -5%

10kV及以下电压供电的负荷:+7% ~ -7%

低压照明负荷: +5% ~ -10%

农村电网(正常) +7.5% ~ -10%

(事故) +10% ~ -15%

按照中调调规:

发电厂和变电站的500kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%;

发电厂的220kV母线和500kV变电站的中压侧母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%;异常运行方式时为系统额定电压的-5% ~ +10%。

220kV变电站的220kV母线、发电厂和220kV变电站的110kV ~ 35kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的-3% ~ +7%;异常运行方式时为系统额定电压的±10%。

带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线正常运行方式下的电压允许偏差为系统额定电压的0% ~ +7%。

13.1.2负荷的电压静特性

负荷的电压静态特性是指在频率恒定时,电压与负荷的关系,即U=f(P,Q)的关系。

13.1.2.1 有功负荷的电压静特性

有功负荷的电压静特性决定于负荷性质及各类负荷所占的比重。电力系统有功负荷的电压静态特性可用下式表示

13.1. 2.2无功负荷的电压静特性

异步电动机负荷在电力系统无功负荷中占很大的比重,故电力系统的无功负荷与电压的静态特性主要由异步电动机决定。异步电动机的无功消耗为

― 异步电动机激磁功率,与异步电动机的电压平方成正比。

―异步电动机漏抗的无功损耗,与负荷电流平方成正比。

在电压变化引起无功负荷变化的情况下,无功负荷变化与电压变化之比称为

无功负荷的电压调节效应系数()。它等于,其变化范围比的变化范围大,且与有无无功补偿设备有关。

阐述电力系统电压和无功平衡之间的相互关系。

13.1.3.1电压与无功功率平衡关系

电压与无功功率平衡关系:有网络结构与参数确定的情况下,电压损耗与输送的有功功率以及无功功率均有关。由于送电目的地,输送的有功功率不能改变,线路电压损耗取决于输送的无功功率的大小。如果输送无功功率过多,则线路电压损耗可能超过最大允许值,从而引起用户端电压偏低。

13.1.3.2电压降落

因有线路阻抗的存在,所以有电压降落。假设系统不含变压器,以负荷侧电压Ub为正方向,推导线路末端的电压降落:

其中,为电压降落的纵分量。

为电压降落的横分量。

13.1.3.3影响电压的因素

影响负荷端电压的主要因素有:

●???????? 发电机端电压U G或E q

●???????? 变压器变比K1,K2

●???????? 负荷节点的有功、无功负荷P+jQ

●???????? 电力系统网络中的参数R+jX

13.1.3.4电压调整的原则

①无功功率分层、分区、就地、就近平衡;

超高压电网中,X>>R,即无功损耗要远远大于有功损耗,而无功负荷和无功损耗又是造成电压下降的主要原因。因此,无功功率是无法远距离传输和跨越变压器补偿的,这就决定了无功功率必须遵循分层、分区、就地、就近平衡的原则。

②确保稳定性:

深入分析负荷特点,做好负荷预测,通过运行计划优先利用动态响应慢的控制手段,将快速控制手段留作备用。

③兼顾经济性

合理安排电网中的无功电源和补偿装置的配置及运行计划,降低整个系统运行时的线损,提高系统运行的经济性。

13.1.3.5电压中枢点和监测点选择

把监测电力系统电压值和考核电压质量的节点,称为电压监测点。而把电力系统中重要的电压支撑节点称为电压中枢点。

根据中调调规规定:

1.用于监测电力系统电压值的节点,称为电压监测点。中调设立统调电网电压监测点的原则是:

(1)500kV变电站的500kV和220kV母线。

(2)220kV变电站的220kV母线。

(3)接于220kV及以上电压等级统调发电厂高压侧母线。

(4)所设立的监测点能反映电网电压水平。

电压监测点允许的电压偏移范围,应根据有关导则、标准、规定进行确定,并满足正常条件下的下级供电电压要求。

2.用于控制电力系统电压质量的节点,称为电压控制(考核)点。中调设立电网运行电压控制(考核)点的原则是:

(1)中调负责调度的500kV变电站的500kV、220kV母线。

(2)220kV枢纽变电站的220kV母线。

(3)接于220kV及以上电压等级统调发电厂的高压侧母线。

(4)所设立的控制点能调整控制该供电区域电压水平。

13.1.3.6电压调整方式

逆调压方式:电网高峰负荷时升高配电变压器二次侧母线的电压,低谷负荷时降低配电变压器二次侧母线的电压一种调压方式。

恒调压方式:不必随负荷变化来调整中枢点的电压仍可保证负荷点的电压质量,这种调压方式称为“恒调压方式”。

顺调压方式:在最大负荷时允许中枢点电压低一些,在小负荷时允许中枢点电压高一些的调压方式。

介绍电力系统各种电压调整与控制手段的原理及优缺点。

13.2.1.1发电机PQ曲线

13.2.1.2发电机调压约束

发电机调压约束:通过调整发电机机端电压调整负荷节点电压受到诸多因素的制约,尤其对于线路较长时,由于线路电抗较大,调节效果更不理想,调压范围有限。

13.2.1.3发电机进相运行

所谓发电机进相运行调压是指发电机工作在励磁运行状态,发电机此时发出有功而吸收无功,因此可以降低系统的电压。进相运行一般用在系统“低谷”负荷时间。

13.2.1.4发电机调压方式

发电机调压主要是为了满足就近调压的要求,在最大负荷时,发电机机端电压提高5%,最小负荷时保持额定,这称之“逆调压”。

13.2.1.5发电机调压优缺点

发电机调压优缺点:发电机机端电压有上限,UG幅值不应超过额定电压的5%,因此可能无法满足负荷侧电压不变的要求,调压能力有限。

线损与负荷间近似呈二次曲线关系,负荷增大会使线损迅速增大,而发电机无功出力增大很快,可能超过发电机的允许容量。

讲述变压器调压的原理、方法和应用情况。

13.2.2.1变压器调压原理

通过调整变压器分接头来改变变比来改变负荷节点电压,实质上是改变了无功功率的分布。

13.2.2.2变压器分接头选择原则

变压器分接头选择原则:

①应使实际电压不超过上、下允许的偏移范围。

②大型电厂的升压变压器的分接应尽量放在最高位置。

③地区性受端电厂变压器分接头应尽量保证发电机有最大的有功、无功出力。

④无功电源充足时,应使一次系统的电压在上限运行,用户的电压高电压亦尽可能在上限运行。

⑤系统部分无功充足,部分不足时,如果充足的无功功率能送到不足的地区,充足无功电源的用户电压不应过高;有充足的无功功率无法送到不足的地区,则充足无功地区电压尽量在上限电压运行,不足地区维持在下限运行。

⑥整个系统无功电源不足时,在维持用户低压母线的电压为原有水平的条件下,应尽量将一次系统的电压提高至上限运行。

⑦通常,只不过按最大负荷及最小负荷两种方式选择变压器的分接头,在这个前提,也应考虑事故发生后中枢点的电压是否降到临界电压。如果降到临界电压,应采取其他调压措施或自动切负荷措施。

13.2.2.3双绕组变压器调压

①降压变压器

已知V1,V2,求一次侧档位

其中:是实际的变压器变比,即高压侧绕组分接头电压

和低压绕组额定电压之比。

升压变压器

②变比选择计算方法

分别计算最大负荷和最小负荷的电压降落

分别计算最大负荷和最小负荷下所要求的分接头抽头电压;

取它们的算术平均值

根据值可以选择一个与它最接近的分接头,再利用最大负荷和最小负荷校验实际母线电压是否合格。

13.2.2.4三绕组变压器调压

三绕组变压器调压:

①一侧有电源的情况

一侧有电源且电源侧没有分接头,其他两侧分接头可以根据其电压和电源侧电压的情况分别进行选择。

电源侧有分接头时,首先根据电源侧电压的上、下限和没有分接头侧电压的上、下限选出电源侧的分接头,然后在固定此分接头的基础上,根据电源侧电压上、下限和另一无电源而有分接头侧电压的上、下限选出无电源侧的分接头。

②两侧有电源的情况

设三绕组变压器两侧有电源,且其中一个电源侧没有分接头。如果在分接头侧的电源容量较大,即电压主要由系统决定,基本上不受分接头位置的影响时,应首先根据容量较大侧电源的实际电压和没有分接头侧电源电压的情况,选出分接头的基础上,根据容量较大侧电源电压和另一无电源而有分接头侧需要电压的情况,选出无电源侧的分接头。如果无分接头侧的电源容量较大时,则其他两侧分接头可以根据其电压和电源容量较大侧电源电压的情况分别进行选择。

设三绕组变压器两侧有电源、且电源侧都有分接头时,首先须根据电源容量较大侧和无分接头侧电压情况选出电源容量较大侧的分接头,在固定此分接头的基础上,根据电源容量较大侧和电源容量较小侧的电压情况选出电源容量较小侧的分接头。

③三侧有电源的情况

设三绕组变压器三侧都有电源,如果有分接头的一侧电源容量较大,即该侧电压主要由系统决定,基本上不受分接头位置影响时,则首先应根据电源容量较大侧和无分接头侧电压情况选出电源容量较大侧的分接头,在固定此分接头的基础上,再推算出另一侧分接头。如果有分接头的两侧电源容量都较大时,则可以分别根据电源容量较大侧和无分接头侧电压的情况选出两个电源容量较大侧的分接头,但所选出的分接头,还应使无分接头侧的电压值接近。

若无分接头的一侧电源容量较大,则其他两侧分接可以根据其电压和电源容量较大侧电压情况分别进行选择。

13.2.2.5辐射网络变压器分接头选择

辐射网络变压器分接头选择:除按升压和降压变压器的选择原则外,还应考虑分接头能尽量满足各种运行方式的要求。当无法满足这些要求、需要重新调整变压器分接头时,应使被调整分接头的变压器台数最少。选择顺序一般从送电端开始,首先调中枢点,然后是其他电厂等。在无功充足的系统里,首先须求出各电厂间的无功经济分配,然后再选择变压器的分接头。

13.2.2.6环网变压器分接头选择

多电源多环形网络中变压器分接头的选择和多电源单环形网络中变压器分接头的选择一样,但应考虑当一个环路变压器变比改变后对另一环路无功分布的影响。

13.2.2.7 OLTC调压原理及特性

OLTC是有载调压变压器,即在带负荷的情况下改变分接头的变压器。它的主绕组上连接一个具有若干个分接头的调压绕组。

调压原理:它的切换装置有两个可动触头,改变分接头时,先将一个可动触头移动到所选定的分接头上,然后再把另一个可动触头也移到该分接头上。

特性: 当负荷增加,变压器副边电压下降时,通过调整变比来升高电压。但是,由于负荷侧无功电源不足,因此负荷的增加要全部依赖电源侧供给,因此线路和变压器上的潮流增大,损耗增大,使得变压器原边电压降低。当负荷增长到一定程度后,原边电压的下降将抵消变比提高的作用,使得实际上副边的电压下降。

13.2.2.8变压器调压优缺点

变压器调压优缺点:

(1)变压器本身不是无功功率电源,因此从系统角度来看,通过控制变压器变比来改变负荷节点电压,实质上是改变了无功功率的分布。

(2)变压器调压是以电力系统无功功率电源充足为基本条件的,在系统无功功率电源不足的情况下,仅靠改变变比调压是达不到控制电压的效果。

并联电容补偿调压的基本原理。

13.2.3.1调压原理

调压原理:并联电容补偿调压通过改变功率因数,减少通过输电线路上的无功功率来达到调压目的。

13.2.3.2补偿地点和补偿容量确定

为了充分利用补偿容量,一般选择:最小负荷时无功补偿全部退出,最大负荷时无功补偿全部投入。

按最小负荷无补偿时确定变压器的变比:

为最小负荷时低压母线向到高压母线的归算电压。

为最小负荷时,要求保持的实际电压。

选定与Vt最接近的分接头Vt,并确定变比:

按最大负荷时调压的要求计算补偿容量,即:

最后按照变比和选定的容量校验最大、最小负荷时实际的电压变化。

安装地点:并联电力电容器的补偿方式按安装地点可分为( 集中补偿、分散补偿、个别补偿)。

13.2.3.3并联电容调压的优缺点

优缺点:并联补偿是系统中非常有效的无功补偿手段。这些设备一般都是静止元件,具有有功损耗小、适合于分散安装等优点。

普通并联电容器只能对无功功率实施有级调节,SVC等新型补偿设备可以实现对无功的平滑调节。

并联补偿设备的主要问题在于除同步调相机外,均为负调压特性,补偿容量与其装设地点端电压平方成正比,在电压较低时补偿容量下降,不利于电压的恢复。

介绍调相机的基本概念、元件运行特性以及调压原理。

13.2.4.1基本原理

基本原理:调相机在最大负荷时按额定容量过励磁运行,在最小负荷按(0.5~0.65)额定容量欠励磁运行,以达到调压目的

13.2.4.2运行特性

运行特性:调相机的特点是既能过励磁运行,又能欠励磁运行。如果调相机在最大负荷时按额定容量过励磁运行,在最小负荷按(0.5~0.65)额定容量欠励磁运行,那么,调相机的容量将得到最充分的利用。

同步调相机容量选择

最大负荷时调相机发出全部容性无功,最小负荷时吸收感性无

功,(),有:

两式相除:

求解K得到:

按以上公式选择k和。

介绍并联电抗器调压的作用和原理。

13.2.5.1电抗器的作用

①减轻空载或轻载线路上的电容效应,以降低工频暂态过电压。

②改善长距离输电线路上的电压分布。

③使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动,同时也减轻了线路上的功率损失。

④在大机组与系统并列时,降低高压母线上工频稳态电压,便于发电机同期并列。

⑤防止发电机带长线路可能出现的自励磁谐振现象。

⑥当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用单相快速重合闸

13.2.5.2电抗器安装地点

电抗器安装地点:安装地点按主要用途并进行技术经济比较后确定,通常是单电源线路装在线路末端、双电源线路装在线路中段附近或线路两侧,亦可装在系统容量较大的一侧。

13.2.5.3电抗器补偿容量

补偿容量:电抗器容量,主要应按限制工频过电压、潜供电流、消除自励磁和无功分层、分区就地平衡、便于发电机同期并列操作等要求进行技术经济比较后确定。

讲述电力系统调压及AVC系统的基本原理及应用情况。

介绍电力系统人工调压的完整过程。

13.3.1.1调压准备工作

调压准备工作:

①编制全网全网日、周、月、季、年无功负荷曲线;

②编制全网各地区无功平衡表;

③编制与下达主要大型电厂及有调相机的中枢变电所的无功负荷曲线或电

压曲线。

④编制电压监视点的电压曲线。

⑤合理选择各电厂及中枢点变压器的分接点。

⑥根据发电机的温升试验,绘出主要电厂发电机在不同冷却介质温度时的

P-Q曲线。

⑦合理规定主要电厂发电机自动励磁调节装置的调差系数。

⑧绘制各主要地区负荷的电压静态特性曲线。

13.3.1.2平时的电压调整

平时的电压调整:调整通常是有规律的,负荷变化趋势是知道的,这种电压变化的调整是比较容易的。

在无功不足的系统中,当高峰负荷到来之前就应当将系统电压提高至上限。

调高电压时,先将电压最低的地区系统的电厂及无功补偿设备调至最大,并按此顺序由受端系统至主系统的区域性电厂逐步调整。

调低电压时,调压顺序与提高电压时相反,即首先降低主系统电厂及中枢点的电压,然后再减少地区电厂的无功功率。在发电厂无功功率降至最低时,如果电压仍然较高,那么须将电压最高地区的无功补偿设备切除。

13.3.1.3节假日电压调整

节假日,部分系统中电压高,个别地区则严重下降。调度运行人员必须事先做好有功功率和无功功率的分区平衡工作,在考虑无功功率平衡时,应考虑无功功率的电压静态特性的影响,并通过计算求出电压可能的升高、降低水平,如果电压可能超出允许范围时,就应预先采取有效措施。在节假日前下负荷时及节日后上负荷时,电压的变化都是很大的,如不随时调整就会出现电压过高或过低的现象。

13.3.1.4调压的相互配合

调压的相互配合:要保证各个地区的电压不超过允许的偏移范围,必须首先采用集中调压措施,因为集中调压比分散调压效果大、投资省,而且合理选择集中调压能够减少分散调压的地点及调压范围。

集中调压通常以调相机、发电机、静止补偿器、并联电抗器和带负荷调压变压器为主,而且总是装在二次母线有很多引出线的中枢变电所中,因为这样可以扩大被调压的地区。

分散调压是在集中调压不能保证电压质量的条件下采用的。它一般用于单电源的长辐射线路上或对电压要求较严的用户变电所和二次变电所中。分散调压主要以并联电容补偿为主,也有的采用串联电容和简单的加压调压变压器。

13.3.2 AVC的基本概念

AVC的基本概念

自动电压控制(Automatic Voltage Control):是通过实时采集电网参数,采用计算机自动控制技术和数字信号处理技术,自动控制各种设备参数改善电网电压水平,使电网处于最佳的运行状态。

分析和阐述厂站级AVC(自动电压控制)的主要目标、技术手段和控制策略。

13.3.3.1厂站调压对象

变电站AVC调压对象:

①主变分接头

②无功补偿装置分组投切

13.3.3.2厂站调压手段

调压手段:考虑发电机组的无功控制,还要兼顾电容器、电抗器以及变压器分接头的投切和控制。

13.3.3.3经典九区图控制

经典九区图控制

在变电站(降压变)的电压调节中,传统的方法是按电压上、下限(U+、U-),无功总负荷(QL-QC)上、下限(Q+、Q-)将运行区域划分为九个区,如图1所示,根据九区进行控制如下:

0区:电压、无功均合格,不控制;

1区:电压合格,无功越上限,发投电容器组指令;

2区:电压越下限,无功越上限,先发投电容指令,再发升压指令;

3区:电压越下限,无功补偿合适,发升压指令;

4区:电压越下限,无功越下限,先发升压指令,再发切电容指令;

5区:电压合格,无功越下限,发切电容的指令;

6区:电压越上限,无功越下限,先发切电容的指令,再发降压指令;

7区:电压越上限,无功补偿合适,发降压指令;

8区:电压越上限,无功越上限,先发降压指令,再发投电容器组指令。

13.3.3.4其他控制方式

AVC协调控制包含:

①无功就地平衡

②电网无功优化

讲述电力系统AVC的三级电压控制体系。

13.3.4.1 基本概念

AVC自动电压控制分三级电压控制:

一级电压控制(PVC,就地控制)

二级电压控制(SVC,区域控制)

三级电压控制(TVC,全局控制,无功实时优化)

13.3.4.2应用情况

目前,国内外实现电压控制的主要模式基本都是以变电站AVC为主,调度中心AVC基本都只在电网的某些区域内实现,全网的实时优化控制大多还处于研究阶段。

以下为国外一些先进的应用状况:

意大利,1993年,一、二、三级控制均已运行;

法国,1986年,二级控制运行,而三级仍是手动、开环的;

比利时,比利时的二级已投入试运行,三级还在研究;

西班牙,正在研究新的电压控制方案。

13.3.4.3一级电压控制

一级电压控制(PVC,就地控制):

基本目标与内容:实现电压的稳定;基于就地测量,对电力系统个别的或有限数量的设备进行自动操作,通常是快速反应的闭环控制。典型响应时间从几毫秒到大约一分钟。

由负荷波动、电网切换和事故引起的快速电压变化,基本都是由一级电压控制进行自动调整的。但是由于一级电压控制根据本地信息采取控制措施,有时对电力系统的电压稳定性可能产生消极作用。

控制手段:一级电压控制通常设置在各厂站中,主要由机组的励磁调节实现,其次靠LTC变压器的自动分接头。

13.3.4.4二级电压控制

二级电压控制(SVC,区域控制):

基本目标:基于在电力系统规定的范围内的控制设备的协调动作,目的在于维系统的安全性(对抗电压稳定)。典型的响应时间是一分钟到几分钟之间,一般也是自动闭环控制。

主要内容:采集区域内各厂、站信息,在调度中心侧进行综合分析,再根据总体的要求进行相应的控制。由于信息的传输、命令的执行均需一定的时间,因此动态过长较长。协调区域各就地一级控制设备的工作,并将个电压安全监视信息送给控制值班人员。

控制手段:二级电压控制通常设置在系统枢纽点或区域控制中心,控制的对象主要是该区域内被选为“控制机组”的部分机组所吸收或发出的无功功率,以及大容量的高压电容器组。

13.3.4.5三级电压控制

三级电压控制(TVC,全局控制,无功实时优化):

主要内容:基于实时测量,在一个电力公司、联营公司或地区范围内用于经济和/或安全性优化的协调动作。典型响应时间大约为10分钟或更长。

浅谈电力系统电压稳定性

太原科技2009年第4期TAIYUAN S CI-TECH 浅谈电力系统电压稳定性 刘宝,李宝国 文章编号:1006-4877(2009)04-0035-02 最近30年来,世界各国的电力系统普遍进入大电网、高电压和大机组时代,巨量的电能需要通过长距离的高压输电线送到负荷中心,电力系统面临的压力越来越大,很多电力系统不得不运行在其稳定极限附近,极易发生失稳事故。这些事故损失是巨大的,引起人们对电压稳定问题的严重关注。可以说电压稳定问题目前已成为世界各国电力工业领域研究的热点。 1电力系统电压稳定的定义及分类 1.1电压稳定定义 电力系统电压稳定性是指给定一个初始运行条件,扰动后电力系统中所有母线维持稳定电压的能力。在发生电压失稳时,可能引起电网中某些母线上的电压下降或升高,从而导致系统中负荷丧失、传输线路跳闸、级联停电及发电机失去同步等。1.2电压稳定分类 目前,文献中可以见到与电压稳定的主要有静态电压稳定、暂态电压稳定、动态电压稳定、中长期电压稳定等,对它们的含义和范畴,至今还没有一个统一的定义。2004年,IEEE/CIGRE稳定定义联合工作组给出了电力系统电压稳定的分类:电力系统电压稳定分为小扰动电压稳定和大扰动电压稳定。 小扰动(或小信号)电压稳定是指电力系统受诸如负荷增加等小扰动后,系统所有母线维持稳定电压的能力。大扰动电压稳定是指电力系统遭受大干扰如系统故障,失去负荷,失去发电机或线路之后,系统所有母线保持稳定电压的能力。 2电力系统电压失稳的机理 对电力系统电压失稳机理的研究是十分重要的,合理解释和明确区分电压失稳现象,可以正确应对预想的事故。静态研究认为电压失稳原因是负荷超过了网络的最大传输极限,从而造成潮流方程无解。随着对电压稳定研究的进一步深入,越来越多的人们开始用非线性动力学系统的理论知识来解释电压失稳的机理。对于电压失稳机理,T.Van Custem提出:电压失稳产生于负荷动态地恢复其自身功率消耗的能力超出了传输网络和发电机系统所能达到的最大极限。把电压稳定问题仅当作静态问题的观念是不周全的;负荷是电压失稳的根源,因此,电压失稳这一现象也可称为负荷失稳,但负荷并不是电压失稳中唯一的角色;发电机不应视为理想的电压源,其模型(包括控制器)的准确性对准确的电压稳定分析十分重要。 3电压稳定性的分析方法 电力系统作为一个复杂的非线性动力系统,考虑其动态因素,数学上可用一组DAE(Differential Algebraic Equations)微分代数方程组来表示。微分方程组主要体现动态元件,代数方程组主要体现网络结构等约束条件。目前,电力系统电压稳定性的分析方法主要有:静态分析方法、动态分析方法、非线性动力学方法。 3.1静态电压稳定分析方法 潮流方程和扩展的潮流方程是静态分析方法的基本立足点。静态分析方法一般认为潮流方程的临界解就是电压稳定的极限静态方法,将一个复杂的微分代数方程组简化为简单的非线性代数方程实数,大体上可以归纳为:连续潮流法、特征值分析法、最大功率法等。 3.1.1连续潮流法 连续潮流法(CPFLOW)又称延拓法,连续潮流法使用包括有预估步和校正步的迭代方案找出随负荷参数变化的潮流解路径。连续潮流法跟踪负荷和发电机功率变化情况下电力系统的稳态行为,通 (辽宁工业大学,辽宁锦州121001) 摘要:介绍了电力系统电压稳定的定义和分类,提出了电压失稳机理和电压稳定的主要研究方法,反映出该领域的研究概貌和最新动向。 关键词:电力系统;电压稳定;静态;动态 中图分类号:TM712文献标志码:A 收稿日期:2009-01-05;修回日期:2009-02-05 作者简介:刘宝(1982-),男,山东滨州人。2006年9月就 读于辽宁工业大学,攻读硕士学位。 研究与探讨

电力系统电压等级与规定

电力系统的电压等级与规定 1、用电设备的额定电压 要满足用电设备对供电电压的要求,电力网应有自己的额定电压,并且规定电力网的额定电压和用电设备的额定电压相一致。为了使用电设备实际承受的电压尽可能接近它们的额定电压值,应取线路的平均电压等于用电设备的额定电压。 由于用电设备一般允许其实际工作电压偏移额定电压±5%,而电力线路从首端至末端电压损耗一般为10%,故通常让线路首端的电压比额定电压高5%,而让末端电压比额定电压低5%。这样无论用电设备接在哪一点,承受的电压都不超过额定电压值的±5% 2、发电机的额定电压 发电机通常运行在比网络额定电压高5%的状态下,所以发电机的额定电压规定比网络额定电压高5%。具体数值见表4.1-1的第二列。 表4.1-1 我国电力系统的额定电压 网络额定电压发电机额定电压 变压器额定电压 一次绕组二次绕组 3 6 103.15 6.3 10.5 3及3.15 6及6.3 10及10.5 3.15及3.3 6.3及6.6 10.5及11 13.8 15.75 18 20 13.8 15.75 18 20 35 110 220 330 500 35 110 220 330 500 38.5 121 242 363 550 3、变压器的额定电压 根据功率的流向,规定接收功率的一侧为一次绕组,输出功率的一侧为二次绕组。对于双绕组升压变压器,低压绕组为一次绕组,高压绕组为二次绕组;对于双绕组降压变压器,高压绕组为一次绕组,低压绕组为二次绕组。 ①变压器一次绕组相当于用电设备,故其额定电压等于网络的额定电压,但当直接与发电机连接时,就等于发电机的额定电压。 ②变压器二次绕组相当于供电设备,再考虑到变压器内部的电压损耗,故当变压器的短

论电力系统的电压调整

论电力系统的电压调整 发表时间:2018-12-21T17:15:05.133Z 来源:《建筑学研究前沿》2018年第29期作者:赵渐进 [导读] 还会导致照明体系中降低了电灯功率,降低亮度等等问题,更为严重的是比较低电压时还也许会导致电网的崩溃导致人们生活的不方便。 国网湖北省电力公司孝感供电公司 432000 摘要:随着社会的发展和进步,当前我们的生活中已经跟电力有密切的关系,在我们的生活中电的作用的无法替代的,而作为电能展现的关键组成部分的电压,更是严重的影响着电力用户。随着社会的发展,对电能质量用户提出了越来越高的要求。从电力体系电压调整的必要性、对电压调整的基本原理、电压调整的关键形式和适用场合、电压调整的措施几个方面实施了分析,便于更好的服务社会发展。 关键词:电力系统;方式;电压调整 引言 电能质量的关键指标是电压,电网会因为电压的不合格而导致严重的影响。太大的电压偏移,会关系到工农业生产的质量与产量,电力设备会损坏,甚至导致体系性“电压崩溃”,导致大面积停电。所以需要马上使用可靠安全的电压调整方法,通过某些方法进行调整电压,把体系中中枢点的电压校正到拟定的运行区域内或者预定的目标值上,由于非常多负荷都由这些中枢点供电,而且中枢点到各负荷点在最大最小负荷时电压损耗之差不可以大于负荷点许可上下限电压只差,因此如果可以把这些点的电压偏移调整住就可以对体系中大多数负荷的电压偏移进行调整。 1、电力系统电压调整的必要性 1.1电网电压偏低危害 通过多年的建设才达到当前的规模的是中国的电网,而建设早期的电网因为当时设计的不合理构造,造成部分线路供电区域太大,同时因为当时店里电缆太小的直径,导致电压消耗然后是比较低的电压,或者是因为电网补偿的无功功率电源不够或者是由于没有合理的维护设备导致不能应用。电网电压比较低时肯定会导致降低了发电机的出力,异步电动机中定子绕组中增大电流而且缩短了寿命,还会导致照明体系中降低了电灯功率,降低亮度等等问题,更为严重的是比较低电压时还也许会导致电网的崩溃导致人们生活的不方便。 1.2电网电压偏高危害 在当前科学技术与社会经济迅速发展的今天,超高压电网内接入越来越多的大容量机组,大大的提高了电网线路的充电功率,造成超高压电网发生了无功过剩的情况,然后渐渐的提高了电压。在高压状态下,通常会大大的降低了照明灯的寿命,甚至直接报废;电压每增减5%,电子设计部就会降低50%的电子阴极的寿命。 2、电压调整的基本原理 第一,电力体系中电压的运行情况关键看无功功率的平衡。当体系中各类无功电压的无功输出大于或者等于体系负荷与网络消耗状况下额定电压对无功功率的需求量时,相对稳定的电压。相反,电压会渐渐偏离额定值,出现电压偏离。电力体系中确保可靠的运行电力,一般要配置一些无功备用容量,使无功功率满足增长。当体系的无功电量足够时,体系能在相对高的电压水平上运行,反之,体系的无功电源不足其运行电压水平则偏低,需要把无功补偿设置好进行转变。电力体系供电范围相对宽广,不可以长距离实施传输的无功功率,因此体系负荷所要的无功功率只可以分层分范围的平衡。由此能知道,调整电压一定要从补偿无功电源,使无功网络损耗减少的2个方面开始。 3、电压调整的关键形式和适用场合 在电路体系中,调整电压关键分别有逆调压方式、恒调压方式与顺调压方式3种调压形式,像中枢点供电到各负荷点相对长的线路,各负荷大概一样的变化规律,而且各负荷的改动相对大。中枢点电压以抵偿线路上由于最大负荷而增大的电压损耗则是在最大负荷时要提高。在最小负荷时,则要降低一些中枢点电压以避免负荷点的电压太高。这种中枢点的调压形式称为“逆调压”。通常使用“逆调压”形式的中枢点,在最大负荷时电压比线路额定保持高5%电压;在最小负荷时,电压则降低线路的额定电压。这种形式大部分可以让用户要求得到满足,所以通常要使用这种方法。假如相对小的负荷变动,线路上也相对小的电压损耗。这种状况只要把中枢点电压保持在比线路额定电压高(2%~5%)的数值,不用随负荷改变来对中枢点的电压进行调整依然能确保负荷的电压质量,这种调压形式称为“恒调压”,或称“常调压”。当线路上的负载改变比恒调压小时,线路特别小的电压损耗,能够使用顺调压的形式。在最小的负载时,电压要通过中枢点合理的提高,然而不可以超过线路108%的额定电压;在最大的负载时,中枢点的电压要通过合理的降低,然而不可以低于线路103%的额定值。用户处于电压偏移的相对大农业电网时,也能使用顺调压的形式。顺调压通常是在无功调整方法不足时才加以应用的,通常不使用这种方法。 4、电压调整的措施 4.1运用发电机调压 调压发电机是运用发电机励磁调节体系,经过对发电机端电压实施负反馈通过励磁机励磁来保持端电压的,负荷对电压质量的要求能完成逆调压来得到满足,不用附加投资。在全世界这种方法都已广泛的使用,然而有局限性,通常只适合在发电机不通过升压直接向用户供电的简单体系中应用。当发电机通过多级变压向负荷供电时,只是通过发电机调压就不能满足体系中各点的电压要求,一定要和别的调压方法相配合。 4.2转变变压器变比调压 从整个体系来看,无功电源不是变压器本身,在无功充裕或者无功平衡的电力体系中,转变变压器变比调压就是依据电压要求合理的选择分接头,简单方便的维护检修,要优先使用;然而对于无功不足的电力体系,不能使用变压器电压比调压,由于它也许会造成“电压崩溃”。绕组间匝数之比就是变压器的变压比,转变变压器的变比就是经过转变绕组间匝数比来完成。双绕组变压器的高压绕组与三绕组变压器的高、中压绕组常常有几个分接头可供选择。当使用一般变压器实施调压,电压损耗不可以减少,二次电压的改变幅度不可以减少,只在电压改变幅度不是非常大而不需要逆调压的场合下适用,并且供电还会造成不连续。对于电压改变幅度大或者要求逆调压或需要常常性

关于电力系统电压稳定的探讨

关于电力系统电压稳定的探讨 现如今,社会经济的发展越来越快,人们对电力的需求量也越来越多,电力系统的电压稳定性不仅与整个电力系统运行的稳定、安全密切相关,还会影响到人们的生产和生活,因而变得越来越重要。本文首先对电力系统电压稳定性问题进行了分析,然后阐述了电力系统的电压稳定分析方法及其控制措施。 【关键词】电力系统电压稳定 电力系统是一个庞大复杂的多变量非线性动态系统,确保电力系统正常运行的基本条件是安全以及稳定。随着电力市场化改革的不断深入,电网规模越来越大,远距离重负荷输电的局面会越来越明显,使得电力系统越来越频繁地在接近网络极限输送能力的状态下运行。所以,加强电压稳定性的研究具有非常重要的理论意义与现实意义。 1 电压稳定性问题的分析 电压稳定性问题是电力研究工作中发展比较晚的分支,电压的稳定性开发研究工作是发电机在所有情况下同步运行的分析,但是在电力系统产生电压的时候无法满足于负荷无功需求时的稳定情况,所以电压的稳定与否主要是由电力系统的无功不足引起的。电力系统属于动态系统,对于电压稳定性可以从以下几个方面进行研究:

(1)电压小干扰时候电力系统的稳定性; (2)电压大干扰时候电力系统稳定性以及系统电压失稳过程; (3)电力系统中稳态平衡点能够存在的可能性; (4)分析系统中电压稳定性的概率,因此对系统中电压是否稳定的分析方法也有很多种。 2 电力系统电压稳定分析方法 对电力系统电压稳定性进行预防与控制的基础条件就是分析电力系统的电压稳定性,电力系统电压稳定性的分析方法包括动态电压法以及静态电压法两类。 2.1 静态电压稳定分析 在静态电压稳定分析方法中比较常用的方法主要有奇异值分解(特征值分析)法、潮流多解法、灵敏度分析法、最大功率法、崩溃点法这几种,它们都是在潮流方程或者是经过修改的潮流方程的基础上的,静态电压稳定的临界点在本质上都由电力网络的潮流极限来做,在线性化当前运行点处后再进行分析和计算;不同的地方是使用极限运行状态下不同特征的电压崩溃的判据与采用的求取临界点的方法。静态电压稳定分析法的好处是用一个简单的非线性代数方程实数解的存在性研究代替复杂的微分方程解的性态研究,它的坏处是把小干扰电压稳定的极限点用电力系统的潮流极限来做,并且静态电压分析法无法反映各元件的动态特性。

电力系统电压调整的方式与措施样本

电力系统电压调节方式与办法 系统电压是电能质量首要指标,其过高或过低对电网及顾客均有危害。随着发展,电力顾客对电能质量规定越来越高。本文从系统电压调节必要性、办法及分时段调节办法几种方面进行阐述,以便能更好地服务社会。 【核心词】电压调节电力系统电能质量 1 电力系统电压调节必要性 电压是电能质量重要指标。电压偏移过大,就会直接影响工业、农业生产产量和质量,会对电力设备导致损坏,严重会引起系统"电压崩溃”,引起大范畴停电严重后果。 1.1 系统电压偏高 1.1.1 系统电压偏高因素 随着着电网发展,超高压电网中大容量机组直接并入,和超高压线路投入,其充电功率大,致使超高?旱缤?内无功增大,导致主网系统电压升高。 1.1.2 电压过高构成危害 将促使接入电网电气设备绝缘老化速度加快,减少使用寿命。当电压过高时会导致变压器、电动机等铁芯过饱和,铁损增大,温度上升,减少寿命;也会影响产品质量,致使生产出不合格产品等。

1.2 系统电压偏低 1.2.1 系统电压偏低因素 由于初期设计供电及配电网络构造不尽合理,特别是一某些线路送电距离较长,供电半径较大,导线截面积较小,增大了线路电压损耗。系统无功补偿设备投入局限性是系统电压水平减少主线因素。变压器超负荷运营也会引起电压下降。不合理地摆放变压器分接头位置、不合理电网结线,负荷功率因数低,运营方式变化及异常方式等,均能引起电网电压下降。 1.2.2 系统电压偏低危害 对发电机也许引起定子电流增大。对异步电动机引起温升增长,减少效率,缩短寿命。会导致照明亮度局限性等。会导致冶金等行业产品不合格。系统电压过低还也许导致系统振荡、解列以至于大范畴停电,直接影响人们生活和社会安全。 2 系统调节电压方式与办法 2.1 系统调节电压方式 2.1.1 顺调压方式 所谓顺调压方式是指在高峰负荷时容许系统中枢点电压稍有减少,在低谷负荷时容许系统中枢点电压稍有升高。与逆调压相对,在供电线路较短、负荷较稳定中枢点可以采用顺调压方式。普通顺调压容许系统负荷高峰时中枢点电压

电力系统自动装置原理复习资料(完整版!)

绪论 1、葛洲坝水电厂,输送容量达120万科kW;大亚湾核电厂单机容量达90万kW;上海外高桥火电厂装机容量320万kW,最大单机容量90万kW。我国交流输电最高电压等级达500kV。 2、电能在生产、传输和分配过程中遵循着功率平衡的原则。 3、发电厂转换生产电能,按一次能源的不同又分为火电厂,水电厂,核电厂 3、自动控制装置对送来的信息进行综合分析,按控制要求发出控制信息即控制指令,以实现其预定的控制目标。 3、电力系统自动监视和控制,其主要任务是提高电力系统的安全、经济运行水平。 4、发电厂、变电所电气主接线设备运行的控制与操作的自动装置,是直接为电力系统安全、经济和保证电能质量服务的基础自动化设备。 5、同步发电机是转换产生电能的机械,它有两个可控输入量——动力元素和励磁电流。 6、电气设备的操作分正常操作和反事故操作。 7、发电厂、变电所等电力系统运行操作的安全装置,是为了保障电力系统运行人员的人身安全的监护装置。 8、电压和频率是电能质量的两个主要指标。 9、同步发电机并网运行操作是电气设备正常运行操作的重要内容。 10、电力系统自动装置有两种类型:自动调节装置和自动操作装置 11、计算机控制技术在电力系统自动装置中已广泛应用,有微机控制系统、集散控制系统、以及分布式控制系统等。 12、频率是电能质量的重要指标。有功功率潮流是电力系统经济运行和系统运行方式中的重要问题。 13、电力系统自动低频减载及其他安全自动控制装置:按频率自动减载装置是电力系统在事故情况下较为典型防止系统事故的安全自动装置。 第一章 14、自动装置的首要任务是将连续的模拟信号采集并转换成离散的数字信号后进入计算机,即数据采集和模拟信号的数字化。 15、自动装置的结构形式主要有三种,微型计算机系统、工业控制计算机系统、集散控制系统和现场总线系统。 16、(简答)微型计算机系统的主要部件 1)传感器 2)模拟多路开关 3)采样/保持器 4)A/D转换器 5)存储器 6)通信单元 7)CPU 16、传感器的作用是把压力、温度、转速等非电量或电压、电流、功率等电量转换为对应的电压或电流的弱电信号。 17、采样/保持器一般由模拟开关、保持电容器和缓冲放大器组成 18、A/D转化器是把模拟信号转换为数字信号,影响数据采集速度和精度的主要因素之一。 19、一般把运算器和控制器合称中央处理单元(CPU)。/ 20、工业控制计算机系统一般由稳压电源、机箱和不同功能的总线模板,以及键盘等外设接口组成。 21、定时器是STD总线的独立外设,具有可编程逻辑电路、选通电路和输出信号,可完成定时、计数以及实现“看门狗”功能等。 22、键盘显示板主要有键盘输入、显示输出、打印机接口等部分。 23、路由器的功能主要起到路由、中级、数据交换等功能。 24、采样过程:对连续的模拟信号x(t),按一定的时 间间隔 S T,抽取相应的瞬时值。 25、采样周期Ts决定了采样信号的质量和数量。 26、香农采样定理指出采样频率必须大于原模拟信号

电力系统电压稳定的研究

毕业设计 学生姓名学号 系(部) 机电工程系 专业电气自动化技术 题目电力系统电压稳定的研究指导教师

摘要:电力系统是一个具有高度非线性的复杂系统,随着电力工业发展和商业化运营,电网规模不断扩大,对电力系统稳定性要求也越来越高。在现代大型电力系统中,电压不稳定/电压崩溃事故已成为电力系统丧失稳定性的一个重要方面。因此,对电压稳定性问题进行深入研究,仍然是电力系统工作者面临的一项重要任务。 从国内外一些大的电力系统事故的分析来看,发生电压崩溃的一个主要原因就是无法预计负荷增长或事故发生后可能导致的电压失稳的程度和范围,难以拟定预防和校正的具体措施。所以,我们有必要在负荷模型基础上考虑采用更好的方法来进行电压稳定性评的研究。矚慫润厲钐瘗睞枥庑赖。 关键词:电力系统,电压崩溃,电压失稳,稳定性 Abstract:Power system is a highly complex systems, nonlinear with the power industry and commercial operation scale constantly expanding, network, the power system stability requirements is also high. in large power system, voltage instability of the voltage of power system of stability has become an important aspect. therefore, the voltage stability problems and in-depth study is still the power systems are faced with an important task.聞創沟燴鐺險爱氇谴净。From home and abroad some big power systems analysis of the accident, there is a major cause of the voltage is not expected to load up or after the accident may lead to the loss of degree and scope, to work out specific measures to prevent and correct. Therefore, we have to consider adopting the model on the basis of better ways to make a stability assessment study.残骛楼諍锩瀨濟溆塹籟。 Keywords:Power systems,V oltage collapse,In a voltage,Stability酽锕极額閉镇桧猪訣锥。

电力系统电压调整及控制

13.1基本概念及理论 电压控制:通过控制电力系统中的各种因素,使电力系统电压满足用户、设备和系统运行的要求。 13.1.1电压合格率指标 我国电力系统电压合格指标: 35kV及以上电压供电的负荷:+5% ~ -5% 10kV及以下电压供电的负荷:+7% ~ -7% 低压照明负荷: +5% ~ -10% 农村电网(正常) +7.5% ~ -10% (事故) +10% ~ -15% 按照中调调规: 发电厂和变电站的500kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%; 发电厂的220kV母线和500kV变电站的中压侧母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%;异常运行方式时为系统额定电压的-5% ~ +10%。 220kV变电站的220kV母线、发电厂和220kV变电站的110kV ~ 35kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的-3% ~ +7%;异常运行方式时为系统额定电压的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线正常运行方式下的电压允许偏差为系统额定电压的0% ~ +7%。 13.1.2负荷的电压静特性

负荷的电压静态特性是指在频率恒定时,电压与负荷的关系,即U=f(P,Q)的关系。 13.1.2.1 有功负荷的电压静特性 有功负荷的电压静特性决定于负荷性质及各类负荷所占的比重。电力系统有功负荷的电压静态特性可用下式表示 13.1. 2.2无功负荷的电压静特性 异步电动机负荷在电力系统无功负荷中占很大的比重,故电力系统的无功负荷与电压的静态特性主要由异步电动机决定。异步电动机的无功消耗为 ― 异步电动机激磁功率,与异步电动机的电压平方成正比。 ―异步电动机漏抗的无功损耗,与负荷电流平方成正比。 在电压变化引起无功负荷变化的情况下,无功负荷变化与电压变化之比称为 无功负荷的电压调节效应系数()。它等于,其变化范围比的变化范围大,且与有无无功补偿设备有关。 阐述电力系统电压和无功平衡之间的相互关系。 13.1.3.1电压与无功功率平衡关系 电压与无功功率平衡关系:有网络结构与参数确定的情况下,电压损耗与输送的有功功率以及无功功率均有关。由于送电目的地,输送的有功功率不能改变,线路电压损耗取决于输送的无功功率的大小。如果输送无功功率过多,则线路电压损耗可能超过最大允许值,从而引起用户端电压偏低。

关于电力系统电压稳定性的研究

龙源期刊网 https://www.sodocs.net/doc/1f3864454.html, 关于电力系统电压稳定性的研究 作者:赵崇宇阎惊奇 来源:《中国科技博览》2015年第35期 [摘要]随着我国经济的飞速发展,电力作为经济发展的强劲推动力,对于其的研究已经比较深入。由于人们物质生活水平的不断提高,对于电力的需求更加的严格,而电力系统的电压稳定性更是我们现如今研究的重点,而如何有效的解决实际运营过程中电压不稳定的现象,是我们需要积极研究的课题。文章首先系统的分析了电力系统电压稳定性的基本理论与方法,以及一些电力系统运营的现状,然后对如何提高电力系统的稳定性作了一定的分析和探讨,最后分析得到一些提高电压稳定性的对策。 [关键词]电力系统电压稳定性电力需求 中图分类号:TM421.1 文献标识码:A 文章编号:1009-914X(2015)35-0328-01 伴随着人们对于电力的极大需求,使得现代化的电网产生了巨大的经济效益,也给电力系统的发展提供了契机。但是由于现在的电网规模的日益巨大,结构越来越复杂,使得其电力系统的不稳定性问题逐渐显现出来。由于电力系统在人们的日常的生产生活过程中已经占据了举足轻重的地位,一旦电力系统出现稳定性的破坏,一定会给正常的生产生活产生巨大的影响,导致严重的经济损失。电压稳定性作为电力系统稳定问题中最为重要的研究课题,目前在电力工业的飞速发展过程中,由于电压稳定问题导致的财产损失已经不胜枚举,使得电力系统所面临其稳定性的强大挑战,如何解决这一问题已经日益迫切了。 1 电力系统的电压稳定性 本节主要对电力系统的电压稳定性做了比较准确的定义和分析。考虑到部分的工程技术人员对于电压稳定问题相对比较不了解,本节会首先对其做一定的描述和分析。 1.1 电压稳定性的基本定义 电力系统维持其自身电压的能力即电压稳定性。电压的安全性主要是指在一些可控的运行问题中,还能够保证系统的稳定运行的能力。 1.2 电压崩溃的过程 由于系统在实际的运营过程中,其所负荷的电压会不断地变化和传递引起的衰落,当保证系统运营的工作人员无法控制这些电压变化时,就会使得系统电压进入一个极不稳定的工作状态,甚至导致电力系统的崩溃,即我们常说的电压崩溃。电压崩溃的主要特征是失去电力负载能力,无法自身恢复系统的正常电压以及其导致的区域化的停电情况。只有将用户工作点的电压保持在一个相对稳定的水平,才能保证系统的稳定性需求。

电力系统的电压等级

电力系统的电压等级 额定电压:各用电设备、发电机、变压器都是按一定标准电压设计和制造的。当它们运行在标准电压下时,技术、经济性能指标都发挥得最好。此标准电压就称为~。 一、电力系统的额定电压等级 1、电力系统的额定电压等级(输电线路的额定线电压) 220,kV 3,kV 6,kV 10,kV 35,kV 60,kV 110,kV 220,kV 330,kV 500,kV 750,kV 1000一般来说:110kv 以下的电压等级以3倍为级差:10kv 35kv 110kv 110kv 以上的电压等级,则以两倍为级差:110kv 220kv 500kv 确定额定电压等级的考虑因素: 三相功率S 和线电压U 、线电流I 的关系是UI S 3=。 当输送功率一定时,输电电压越高,电流越小,导线等载流部分的截面积越小,投资越小;但电压越高,对绝缘的要求越高,杆塔、变压器、断路器等绝缘的投资也越大。所以,对应于一定的输送功率和输送距离应有一个最合理的线路电压。 但从设备制造的角度考虑,线路电压不能任意确定。规定的标准电压等级过多也不利于电力工业的发展。 2、发电机、变压器、用电设备的额定电压的确定 1)用电设备的额定电压=线路额定电压 允许其实际工作电压偏离额定电压% 5±2)线路的额定电压: 指线路的平均电压(Ua+Ub )/2, 线路首末端电压损耗为10%;因为用电设备允许的电压波动是±5%,所以接在始端的设备,电压最高不会超过5%;接在末端的设备最低不会低于-5%; 3)发电机的额定电压 总在线路始端,比线路额定电压高5%;3kv 的线路发电机电压为3.15kv。

4)变压器的额定电压 一次侧:相当于用电设备 A、直接与发电机相连,额定电压与发电机一致。 B、直接与线路相连,额定电压与线路额定电压相同; 二次侧:相当于电源 A、二次侧位于线路始端,比线路额定电压高5%。计及自身5%的电压损耗,总共比线路额定电压高10%。 B、二次侧直接接用电设备(负荷)时,只需考虑自身5%的电压损耗。

电力系统电压调整的方式与措施精编

电力系统电压调整的方式 与措施精编 Jenny was compiled in January 2021

电力系统电压调整的方式与措施 系统电压是电能质量的首要指标,其过高或过低对电网及用户均有危害。随着发展,电力用户对电能质量的要求越来越高。本文从系统电压调整的必要性、措施及分时段的调整的方法几个方面进行论述,以便能更好地服务社会。 【关键词】电压调整电力系统电能质量 1 电力系统电压调整的必要性 电压是电能质量的重要指标。电压偏移过大,就会直接影响工业、农业生产的产量和质量,会对电力设备造成损坏,严重会引起系统的"电压崩溃”,引发大范围停电的严重后果。 系统电压偏高 系统电压偏高的原因 伴随着电网的发展,超高压电网中大容量机组的直接并入,和超高压线路的投入,其充电功率大,致使超高旱缤内无功增大,导致主网系统电压升高。 电压过高构成的危害 将促使接入电网的电气设备绝缘老化速度加快,减少使用寿命。当电压过高时会造成变压器、电动机等铁芯过

饱和,铁损增大,温度上升,降低寿命;也会影响产品质量,致使生产出不合格产品等。 系统电压偏低 系统电压偏低的原因 由于早期设计的供电及配电网络结构不尽合理,尤其是一部分线路送电距离较长,供电的半径较大,导线截面积较小,增大了线路电压损耗。系统无功补偿设备投入不足是系统电压水平降低的根本原因。变压器超负荷运行也会引起电压下降。不合理地摆放变压器分接头位置、不合理的电网结线,负荷的功率因数低,运行方式改变及异常方式等,均能引起电网电压下降。 系统电压偏低的危害 对发电机可能引起定子电流增大。对异步电动机引起温升增加,降低效率,缩短寿命。会导致照明亮度不足等。会导致冶金等行业产品不合格。系统的电压过低还可能造成系统振荡、解列以至于大范围停电,直接影响人们的生活和社会安全。 2 系统调整电压的方式与措施 系统调整电压的方式 顺调压方式 所谓顺调压方式是指在高峰负荷时允许系统中枢点电压稍有降低,在低谷负荷时允许系统中枢点的电压稍有升

电力系统电压稳定问题的初步研究

绪论 电力系统是由电能生产、传输、使用的能量变换、传输系统和信息采集、加工、传输、使用的信息系统组成的。电力系统稳定性问题可以分为角度稳定、电压稳定和频率稳定三个方面。电压稳定性问题与发电系统,传输系统和负荷系统都有关系。电压稳定性是指电力系统在正常运行或经受扰动后维持所有节点,电压为可接受值的能力 引起电压不稳定的主要因素是电力系统没有能力维持无功功率的动态平衡和系统中缺乏合适的电压支持;电压不稳定性受负荷特性影响很大。电压崩溃通常是由以下几种情况引发的:①负荷的快速持续增长;②局部无功不足;③传输线发生故障或保护误动; ④不利的OLTC的动态调节;⑤电压控制设备限制器(如发电机励磁限制)动作。这些情况往往是互相关联的,持续恶化的相互作用将最终导致电压崩溃的发生。 电压安全是指电力系统的一种能力,即不仅在当前运行条件下电压稳定,而且在可能发生的预想事故或负荷增加情况下仍能保持电压稳定。它意味着相对可信的预想事故集合,电力系统当前运行点距离电压失稳点具有足够的安全裕度。 为了防止电压失稳/崩溃事故,最为关心的问题是,当前电力系统运行状态是不是电压 稳定的,系统离电压崩溃点还有多远或稳定裕度有多大。因此必须制定一个确定电压稳定程度的指标,以便运行人员做出正确的判断和相应的对策 电压稳定性研究的方法:非线性动力学方法、概率分析方法、静态分析方法和动态分析方法。 电力系统是非线性动力系统,稳定本身属于动态范畴,电压失稳或电压崩溃本质是一个动态过程。当我们深入研究电压不稳定发生的原因、机理及其变化过程时,特别是要研究因电压过低而导致系统的动态稳定破坏时,静态分析方法难以完整计及系统动态元件的影响,因此无法深入研究电压失稳的机理及其演变过程。必须在计及元件动态作用的前提下,建立恰当的数学模型,采用合适的动态方法进行研究才能真正揭示电压失稳的发展机制。 负荷特性在电压稳定研究中起着重要作用,它直接影响分析的结果,但由于负荷的随机性、分散性及多样性,严格统一负荷特性尚无法确立,这使得负荷特性成为电压稳定研 页脚内容1

多电压级电力系统

2.4多电压级电力系统 ?电力系统由不同电压的电力网通过变压器联结而成,系统的各设备均处于不同的电压等级中。在进行电力系统计算时必须建立全系统的等值电路。有两种方法: 1、把所有的电流归算到指定的电压等级下 为了减少运算量,一般选元件较多的高压网作为基准级。设乞,忍,…,心为某元件所在电压等级与基准级之间串联的n台变压器的变比。可按下列各式将该电压级中元件的参数及电气量归算到基准级: = B( __________ kg…-S u,==ugk? ?--心) z =z(--- 1———)**以上各式的变压器变比k取为: 指向基准级一侧的电压 = 被归算一侧的电压

2、标幺值表示 >标幺值定义: 标幺值计算的关键在于基准值的选取,遵循两个原则: ?首先各基准值必须应满足各有名物理量之间的各种关系 这样就可以保证标幺值表示的电路公式中各量之间的关系保持不变。在实际系统的计算中,一般先选定S B和4,其它的基准值可按电路公式求出: ?其次,基准值的选取应尽可能使标幺值直观,易于理解。 注意:嗣如目幽銅越舷區連蜩翊豳U岛艇初越舷凰

2.5简单电力系统的运行分析 ?电力系统正常运行情况下,运行、管理和调度人员需要知道在给定运行方式下各母线的电压是否满足要求,系统中的功率分布是否合理,元件是否过载,系统有功、无功损耗各是多少等等情况。为了了解上述运行情况所做的计算,称为系统的

?视在功率、有功功率、无功功率及复功率的概念 ,为此引入 u = y[2U COS (COt + 久) i = V2Z cos(N +(p i) =u i = V2t/ cos(E + 久)x V2/ cos(曲+ ? )=Ul cos(0“ —?)+ ui cos(2奴 +(p u + ?)=UI cos 0 +1// cos(2d/ +(p u +(p.y 用来表述有功、 无功和视在功率 三者之间关系的 二 呼=UI厶入一? =VI cos cp + jUI sin (p 了的概念,其定义为: 瞬时功率P为^ I 指的是瞬时功率p在一个周期内的平均值:

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励磁损耗为 0/100Ty TN Q I S =V (Mvar) (5-1-1) 另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S =V (Mvar) (5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综

电力系统电压稳定性的基本概念

电压稳定基本概念 从80年代以来,电网运行越来越接近于极限状态。主要有几个原因: ?环保对电源建设和线路扩建的压力 ?重负荷区域的用电消费增加 ?电力市场下的新的系统负荷方式(潮流方式) ?。。。 无论发达国家还是发展中国家,都存在负荷、线路和电源间的矛盾 用户负荷在增加<——> 电网扩建却面临着更大的问题 由于网络运行在重载情况下,出现了慢速或快速的电压跌落现象,有时甚至产生电压崩溃,电压稳定已成为电力系统规划和运行的主要问题之一。 (介绍电压稳定的三本国际性的书籍:) 那么什么是电压失稳?(在国际上,有多种公认的定义。)在这里,我们观察文献[TVCUTSEM]的定义: 电压失稳产生于动态的负荷功率的恢复在传输网和发电系统的能力之外。作者进一步解释道: ?电压:许多母线的电压发生明显的、不可控的下跌。 ?失稳:超越了最大的传输功率极限,负荷功率的恢复变得不稳,反面降 低了功率的消耗,这是电压失稳的关键。 ?动态:任何稳定问题与动态有关,可以用微分方程(连续变化)或用差 分方程(离散变化)模拟。 ?负荷:是电压失稳的原动力,因此这一现象也被称为负荷失稳,但负荷 不是仅有的角色。 ?传输网:有传输极限,从基本电工理论就可是到这个结论,这一极限是 电压失稳的开始。 ?发电系统:发电机不是理想的电压源,其模型的准确性对正确的电压稳 定十分重要。 与电压稳定相关的另一术语是电压崩溃。电压崩溃可能不是电压失稳的最终结果。

无功功率的角色 可以注意到上述定义中没有引入无功功率。众所周知,在交流网中,电抗线路占主导,电压控制和无功功率有密切的关系。这里作者的目的是不想过于强调无功功率在电压稳定中的作用。的确,有功功率和无功功率二者同时对电压稳定有重要的作用。作者引用了一个例子,表明电压失稳与无功功率没有因果关系。 假设电源电压E 恒定,控制R L ,使功率消耗达到予定值P o : o L L P R I R -=2& 同时,我们知道最大的传输功率发生在R L = R : R E P 42max = 如果需求的P o 大于P max , 负荷电阻会下降比R 更小,电压失稳就会产生了。 这个范例虽然没有无功功率,没有功角稳定问题,但具有电压失稳的主要特征。在交流电力系统中,无功功率使得问题变得更复杂,但不是问题的唯一根源。传输有功功率仍然是电力系统的主要功能,而无功功率的传输和消耗也是的电力系统的不可缺少的一部分。 电压稳定VS 电力系统稳定 可以把电压稳定归到一般的电力系统稳定问题,下表显示根据时间域和失稳原因方式进行的分类。我们应该知道,可以用不同的方法对稳定问题进行分类。这里的分类可有效地分别电压稳定与功角稳定的差异。 快速稳定问题:

电压自动控制系统

自动电压控制系统 姓名:张晓玲学号:1020111139班级:电力1103班 摘要:介绍了变电站电压和无功控制的方法和调控原则,以及电压无功自动控制装置(VQC)的原理以及应用。 引言: 随着对供电质量和可靠性要求的提高,电压成为衡量电能质量的一个重要指标,电压质量对电网稳定及电力设备安全运行具有重大影响。无功是影响电压质量的一个重要因素,保证电压质量的重要条件是保持无功功率的平衡,即要求系统中无功电源所供应的无功功率等于系统中无功负荷与无功损耗之和,也就是使电力系统在任一时间和任一负荷时的无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡,以满足电压质量要求。 1概述 变电站调节电压和无功的主要手段是调节主变的分接头和投切电容器组。通过合理调节变压器分接头和投切电容器组,能够在很大程度上改善变电站的电压质量,实现无功潮流合理平衡。调节分接头和投切电容器对电压和无功的影响为:上调分接头电压上升、无功上升,下调分接头电压下降、无功下降(对升档升压方式而言,对升档降压方式则相反);投入电容器无功下降、电压上升,切除电容器无功上升、电压下降。 2 VQC的基本原理 简单系统接线图如图2.1所示,Us为系统电压;U1、U2为变电站主变高低压侧电压,U L为负荷电压,P L,Q L分别为负荷有功和无功功率,K T为变压器变比,Qc为补偿无功功率,Rs,Xs,R L,X L分别为线路阻抗参数,R T,X T为变压器阻抗参数。

图2.1 变电站等值电路图 (1) 调节有载调压器的变比 由于12T U U K =为可控变量,当负荷增大,降低K T 以提高U 2,从而以提高U 2 来补偿线路上的电压损耗,反正亦然。 (2) 改变电容组的数目 当投入电容量Q c 后,有: 2222()()()S T C S T S P R R Q Q X X U U U ++-+=- (2.1) 比较以上两式可见Qc 的改变会影响系统中各点电压值和无功的重新分配,当负荷增大,通过降低从系统到进站线路上的电压降△U S 以亦可增大U T2,以抵消△U L 的增大。 投入Qc 后网损为: 222222222222() ()()()C C S T S T P Q Q P Q Q S R R j X X U U +-+-?=+++ (2.2) 可见网损随222()C Q Q Q =-,即主变低压侧无功功率的平方而变化,在输送 功率一定的情况下,Q 2越小,网损越小。理论上,当Q 2=0时功率损耗最小,因此,对于简单的辐射形网络,提高功率因数是降低网损的有效措施。 3 VQC 的控制目标 (1) 保证电压合格 主变低压母线电压以必须满足:U L ≤U 2≤U H (U H 、U L 既是规定的母线电压上

相关主题