搜档网
当前位置:搜档网 › 第四讲-立体几何题型归类总结

第四讲-立体几何题型归类总结

第四讲-立体几何题型归类总结
第四讲-立体几何题型归类总结

第四讲 立体几何题型归类总结

一、考点分析

1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

①????????

→???????→??

???

底面是正多形

棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱★

底面为矩形

底面为正方形

2. 棱锥

棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质:

①球心与截面圆心的连线垂直于截面; ★②r

=d 、球的半

径为R 、截面的半径为r )

★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:234

4,3

S R V R ππ==球

球(其中R 为球的半径)

1.求异面直线所成的角(]0,90θ∈

??:

解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移

另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;

2求直线与平面所成的角[]0,90θ∈

??:关键找“两足”

:垂足与斜足 解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用);

二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。

3求二面角的平面角[]0,θπ∈

解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证:

证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。

俯视图

二、典型例题

1

所示_________________.

第1题

2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.

第2题 第3题

3.一个几何体的三视图如图3所示,则这个几何体的体积为 .

4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 .

第4题 第5题

侧(左)视图

正(主)视图 3 俯视图

5.如图5

是一个几何体的三视图,若它的体积是 a .

6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .

7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3

cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3

第7题 第8题

9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________.

图9

正视图

侧视图

俯视图

俯视图

(主

)

视图

侧(左)视图

10.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm ),则该三棱柱的表面积为_____________.

10

11.

如图11

所示,一个空间几何体的主视图和左视图都是边长为1

的正方形,俯视图是一个直径为1

的圆,那么这个几何

体的全面积为_____________.

图11 图12 图13

12. 如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为_____________.

13.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其表面积是_____________.

14.如果一个几何体的三视图如图14所示(单位长度: cm ), 则此几何体的表面积是_____________.

图14 15.一个棱锥的三视图如图图9-3-7,则该棱锥的全面积(单位:2

cm )_____________.

正视图 左视图 俯视图

图15

正视图 俯视图

俯视图

侧视图

正视图

16.图16是一个几何体的三视图,根据图中数据,可得该几何体的表面积是_____________.

图16 图17

17.如图17,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为______________.

18.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图9-3-14所示,则这个棱柱的体积为______________. 图18

1. 将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了___________.

2. 在正方体的八个顶点中,有四个恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积的比值为___________. 3.设正六棱锥的底面边长为1,侧棱长为5,那么它的体积为_______________.

4.正棱锥的高和底面边长都缩小原来的

2

1

,则它的体积是原来的______________.

5.已知圆锥的母线长为8,底面周长为6π,则它的体积是 . 6.平行六面体1AC 的体积为30,则四面体11AB CD 的体积等于 .

7.如图7,在正方体1111

ABCD A B C D 中,,E F 分别是11A D ,11C D 中点,求异

面直线1

AB 与EF

所成角的角

______________.

8. 如图8所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为

3,E 是SA

的中点,则异面直线BE 与SC 所成角

的大小为_____________.

俯视图 正(主)视图 侧(左)视图

第8题 第7题

9.正方体'

'

'

'

ABCD A B C D -中,异面直线'

CD 和'

BC 所成的角的度数是_________________.

10.如图9-1-3,在长方体

1111

ABCD A B C D -中,已知

1,AB BC CC ==,则异面直线1AA 与1BC 所成的角是

_________,异面直线AB 与1

CD 所成的角的度数是______________

图13

11. 如图9-1-4,在空间四边形ABCD 中,AC BD ⊥ AC BD =,,E F 分别是AB 、CD 的中点,则EF 与AC 所成角的大小为_____________. 12. 正方体1AC 中,

1AB 与平面11ABC D 所成的角为 .

13.如图13在正三棱柱111

ABC A B C -中,

1

AB AA =,则直线

1

CB 与平面

11AA B B

所成角的正弦值为_______________.

14. 如图9-3-6,在正方体ABCD —A1B1C1D1中,对角线BD1与平面ABCD 所成的角的正切值为_______________.

图9-3-6 图9-3-1 图7

15.如图9-3-1,已知ABC ?为等腰直角三角形,P

为空间一点,且AC BC PC AC ==⊥,PC BC ⊥,5PC =,AB 的中点为M ,则PM 与平面ABC 所成的角为

16.如图7,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面AB C 1D 1的距离为__________________.

17.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是______________. 18.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3, 11=AA ,则顶点A 、B 间的球面距离

是_________________.

19.已知点,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB

=AC =8AD =,则,B C

两点间的球面距离是 .

20. 在正方体ABCD —A 1B 1C 1D 1中,M 为DD 1的中点,O 为底面ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成的角是_________________.

21.△ABC 的顶点B 在平面a 内, A 、C 在a 的同一侧,AB 、BC 与a 所成的角分别是30°和45°,若AB=3,BC=24 ,

AC=5,则AC 与a 所成的角为_________.

22.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D , 则四面体ABCD 的外接球的体积为_____________. 23.已知点

,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB

=AC =8AD =,则

,B C 两点间的球面距离是 .

24.正三棱锥的一个侧面的面积与底面积之比为2∶3,则这个三棱锥的侧面和底面所成二面角的度数为________ . 25.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,

AB BC ⊥,1SA AB ==,

BC =O 表面积等于

____________.

26.已知正方体的八个顶点都在球面上,且球的体积为

32

3

π,则正方体的棱长为_________. 27. 一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为_________.

1. 正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点. (Ⅰ) 求证:11B D AE ⊥;

(Ⅱ) 求证:

//AC 平面1B DE ;

(Ⅲ)求三棱锥A-BDE 的体积.

2.已知正方体1111ABCD A BC D -,

O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1

AC ⊥面11AB D .

3.如图,PA

⊥矩形ABCD 所在平面,M

、N 分别是AB 和PC 的中点.

(Ⅰ)求证:MN ∥平面PAD ; (Ⅱ)求证:MN CD ⊥;

(Ⅲ)若45PDA ∠=

,求证:MN ⊥平面PCD .

N

M P

D

B

A

A

1

1

A E

C

D 1O

D

B A

C 1

B 1

A 1

C

4. 如图(1),ABCD 为非直角梯形,点E ,F 分别为上下底AB ,CD 上的动点,且EF CD ⊥。现将梯形AEFD 沿EF 折

起,得到图(2)

(1)若折起后形成的空间图形满足DF BC ⊥,求证:AD CF

⊥;

(2)若折起后形成的空间图形满足,,,A B C D 四点共面,求证://AB 平面DEC ;

5.如图,在五面体ABCDEF 中,FA

⊥平面ABCD,

AD//BC//FE ,AB ⊥AD ,M 为EC 的中点, N 为AE 的中点,AF=AB=BC=FE=

12

AD

(I) 证明平面AMD ⊥平面CDE ; (II) 证明//BN 平面CDE ;

6.在四棱锥P -ABCD 中,侧面PCD 是正三角形, 且与底面ABCD 垂直,已知菱形ABCD 中∠ADC =60°, M 是P A 的中点,O 是DC 中点. (1)求证:OM // 平面PCB ; (2)求证:P A ⊥CD ;

(3)求证:平面P AB ⊥平面COM .

A

B

C

D

E F

图(1)

E

B

C

F D

A

图(2)

A F

E

B

C D

M

N P

D

A

B

C

O

M

7.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .

(1)证明P A //平面EDB ;(2)证明PB ⊥平面EFD

8.正四棱柱ABCD-A 1B 1C 1D 1的底面边长是3,侧棱长是3,点E ,F 分别在BB 1,

DD 1上,且AE ⊥A 1B ,AF ⊥A 1D . (1)求证:A 1C ⊥面AEF ; (2)求二面角A-EF-B 的大小; (3)点B 1到面AEF 的距离.

1.如图,四棱锥P —ABCD 的底面ABCD 为正方形,PD ⊥底面ABCD ,PD =AD .求证:(1)平面P AC ⊥平面PBD ; (2)求PC 与平面PBD 所成的角;

A

C

2.如图所示,已知正四棱锥S—ABCD侧棱长为2,底面边长为3,E是SA的中点,则异面直线BE与SC所成角的大小为 _____________.

3.正六棱柱ABCDEF-A1B1C1D1E1F1底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E1D与BC1所成的角是

___________________.

4. 若正四棱锥的底面边长为23cm,体积为4cm3,则它的侧面与底面所成的二面角的大小是________.

5. 如图,在底面为平行四边形的四棱锥P-ABCD中,

,

AB AC PA

⊥⊥

平面ABCD,且PA=AB,点E是PD的中点.

(1)求证:AC PB

⊥;(2)求证:PB//平面AEC;

(3)若PA AB AC a

===,求三棱锥E-ACD的体积;(4)求二面角E-AC-D的大小.

1.已知直线l、m、平面α、β,且l⊥α,m

?β,给出下列四个命题:(1)α∥β,则l⊥m (2)若l⊥m,则α∥β

(3)若α⊥β,则l∥m (4)若l∥m,则α⊥β

其中正确的是__________________.

2. m、n是空间两条不同直线,αβ

是空间两条不同平面,下面有四个命题:

,;

m n m n

αβαβ

⊥?⊥

, 

,,;

m n m n

αβαβ

⊥⊥?

 

,,;

m n m n

αβαβ

⊥?⊥

 

,,;

m m n n

ααββ

⊥?⊥

 

其中真命题的编号是________(写出所有真命题的编号)。

3. l为一条直线,αβγ

,,

为三个互不重合的平面,给出下面三个命题:

①αγβγαβ

⊥⊥?⊥

;②

αγβγαβ

⊥?⊥

,∥

;③

l l

αβαβ

⊥?⊥

其中正确的命题有_________________.

4. 对于平面α和共面的直线m 、,n

(1)若,,m m n α⊥⊥则n α∥ (2)若m αα∥,n ∥,则m ∥n

(3)若

,m n αα?∥,则m ∥n

(4)若m 、n 与α所成的角相等,则m ∥n

其中真命题的序号是_____________. 5. 关于直线m 、n 与平面α与β,有下列四个命题:

①若//,//m n αβ

//αβ

,则//m n ; ②若,m n αβ⊥⊥且αβ

⊥,则m n ⊥;

③若

,//m n αβ⊥且//αβ,则m

n ⊥; ④若//,m n αβ⊥且αβ

⊥,则//m n ;

其中真命题的序号是_________________. 6. 已知两条直线,m n ,两个平面,αβ

,给出下面四个命题:

①//,m n m n αα⊥?⊥ ②//,,//m n m n αβαβ??? ③

//,////m n m n αα? ④//,//,m n m n αβαβ

⊥?⊥

其中正确命题的序号是_______________.

7.给出下列四个命题, 其中假命题的个数是______________.

①垂直于同一直线的两条直线互相平行; ②垂直于同一平面的两个平面互相平行. ③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行.

④若直线

12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线.

立体几何大题求体积习题汇总

全国各地高考文科数学试题分类汇编:立体几何 1.[·重庆卷20] 如图1-4所示四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π 3 , M 为BC 上一点,且BM =1 2 . (1)证明:BC ⊥平面POM ;(2)若MP ⊥AP ,求四棱锥P -ABMO 图1-4 2.[·北京卷17] 如图1-5,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点. (1)求证:平面ABE ⊥平面B 1BCC 1;(2)求证:C 1F ∥平面ABE ;(3)求三棱锥E - ABC 3.[·福建卷19] 如图1-6所示,三棱锥A - BCD 中,AB ⊥平面BCD ,CD ⊥BD . (1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A - MBC 的体积.

4.[·新课标全国卷Ⅱ18] 如图1-3,四棱锥P -ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点. (1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P -ABD的体积V= 3 4,求A到平面PBC的距离. 5.[·广东卷18] 如图1-2所示,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2,作如图1-3折叠:折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF. (1)证明:CF⊥平面MDF;(2)求三棱锥M -CDE的体积. 图1-2图1-3 6.[·辽宁卷19] 如图1-4所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点. (1)求证:EF⊥平面BCG;(2)求三棱锥D -BCG的体积.

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

立体几何题型归类总结

立体几何题型归类总结(总8 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r =d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ== 球球(其中R 为球的半径)

俯视图 二、【典型例题】 考点一:三视图 1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 2 2 侧(左)视图 2 2 2 正(主)视 3 俯视图 1 1 2 a

立体几何题型的解题技巧适合总结提高用

第六讲 立体几何新题型的解题技巧 考点1 点到平面的距离 例1(2007年福建卷理)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 例2.( 2006年湖南卷)如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4. (Ⅰ)证明PQ ⊥平面ABCD ; (Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离. 考点2 异面直线的距离 例3已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 考点3 直线到平面的距离 例4.如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 考点4 异面直线所成的角 例5(2007年北京卷文) 如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ; (II )求异面直线AO 与CD 所成角的大小. 例6.(2006年广东卷)如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE //AD . (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角. 考点5 直线和平面所成的角 例7.(2007年全国卷Ⅰ理) B A C D O G H 1 A 1 C 1D 1 B 1O Q B C P A D O M A B C D 1 A 1 C 1 B O C A D B E

立体几何题型归纳

立体几何题型归纳 题型一线面平行的证明 例 1 如图,高为 1 的等腰梯形 ABCD 中,AM =CD =1 AB =1.现将△AMD 沿 MD 折起,使平面 AMD ⊥ 3 平面 MBCD ,连接 AB ,AC . 试判断:在 AB 边上是否存在点 P ,使 AD ∥平面 MPC ?并说明理由 【答案】当 AP =1 AB 时,有 AD ∥平面 MPC . 3 理由如下: 连接 BD 交 MC 于点 N ,连接 NP . 在梯形 MBCD 中,DC ∥MB ,DN =DC =1 , NB MB 2 在△ADB 中,AP =1 ,∴AD ∥PN . PB 2 ∵AD ?平面 MPC ,PN ?平面 MPC , ∴AD ∥平面 MPC . 【解析】线面平行,可以线线平行或者面面平行推出。此类题的难点就是如何构造辅助线。构造完辅助线, 证明过程只须注意规范的符号语言描述即可。本题用到的是线线平行推出面面平行。 【易错点】不能正确地分析 DN 与 BN 的比例关系,导致结果错误。 【思维点拨】此类题有两大类方法: 1. 构造线线平行,然后推出线面平行。 此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。在 此,我们需要借助倒推法进行分析。首先,此类型题目大部分为证明题,结论必定是正确的,我们以此 为前提可以得到线面平行。再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行 于该直线,而交线就是我们要找的线,从而做出辅助线。从这个角度上看我们可以看出线线平行推线面 平行的本质就是过已知直线做一个平面与已知平面相交即可。如本题中即是过 AD 做了一个平面 ADB 与平面 MPC 相交于线 PN 。最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。即先证AD 平行于 PN ,最后得到结论。构造交线的方法我们可总结为如下三个图形。

最新高中立体几何题型分类训练(附详细答案)(1)

立体几何题型分类解答 第一节空间简单几何体的结构与三视图、直观图 及其表面积和体积 一、选择题 1.(2009年绵阳月考)下列三视图所对应的直观图是( ) 2.(2010年惠州调研)下列几何体(如下列图)各自的三视图中,有且仅有两个视图相同的是( ) A.①②B.①③C.①④D.②④ 3.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( ) ①长方体②圆锥③三棱锥④圆柱 A.④③② B.②①③ C.①②③ D.③②④ 4.(2009年常德模拟)用单位立方块搭一个几何体,使它的主视图和俯视图如下图所示,则它的体积的最小值与最大值分别为( ) A.9与13 B.7与10 C.10与16 D.10与15 5.(2009年山东卷)一空间几何体的三视图如图所示,则该几何体的体积为( )

A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+23 3 二、填空题 6.在下列图的几何体中,有________个是柱体. 7.(2009年全国卷)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC=120°,则此球的表面积等于__________. 8.一个长方体共顶点的三个面的面积分别为2、3、6,这个长方体对角线的长是________. 三、解答题 9.如右图所示,在正三棱柱ABC —A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N.求: (1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长. 10.一几何体的表面展开图如右图,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的体积. 参考答案 1.C 2.解析:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D.

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

立体几何常见重要题型归纳-高考立体几何题型归纳

立体几何常见重要题型归纳 阳江一中 利进健 题型一 点到面的距离 常见技巧:等体积法 例1:如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点. (1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1; (2)证明:平面D 1AC ⊥平面BB 1C 1C ; (3)求点D 到平面D 1AC 的距离. 解析:(1)11//,,,//,22 CD AB CD AB AF AB CD AF CD AF ==∴= ∴ 四边形AFCD 为平行四边形 ∴//CF AD 又AD ?面11ADD A ,CF ?面11ADD A ∴//CF 面11ADD A 2分 在直四棱柱中,11//CC DD , 又AD ?面11ADD A ,CF ?面11ADD A ∴1//CC 面11ADD A 3分 又11,,CC CF C CC CF ?=?面1CC F ∴面1CC F //面11ADD A 又1EE ?面11ADD A ,1//EE ∴面1CC F 5分 (2)122 BC CD AB === ∴ 平行四边形AFCD 是菱形 DF AC ∴⊥ ,易知//BC DF AC BC ∴⊥ 7分 在直四棱柱中,1CC ⊥面ABCD ,AC ?面ABCD 1AC CC ∴⊥ 又1BC CC C ?= AC ∴⊥面11BCC B 9分 又AC ?面1D AC ∴面1D AC ⊥面11BCC B 10分 (3)易知11D D AC D ADC V V --= 11分 ∴ 设D 到面1D AC 的距离为d ,则

高考立体几何题型与方法全归纳文科

2019高考立体几何题型与方法全归纳文科 配套练习 1、四棱锥P ABCD -中,PA ⊥底面ABCD ,23PA =,2BC CD ==, 3ACB ACD π ∠=∠=. (Ⅰ)求证:BD ⊥平面PAC ; (Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积。 【答案】 (Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥. 因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故BD ⊥平面PAC 。 (Ⅱ)解:33 2sin 2221sin 21=??=∠??= ?π BCD CD BC S BCD . 由⊥PA 底面ABCD 知232331 31=??=??=?-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 8 1 ,

故:41 32813318131=???=??=?-PA S V BCD BDC F 4 7 412=- =-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点. (Ⅰ)证明:EF P 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ; (Ⅲ)求四棱锥P ABCD -的体积. 【答案】 (Ⅰ)证明:如图,连结AC . ∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP P

立体几何几种常见题型

立体几何几种常见题型 一、求体积,距离型 1.(2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面 中心, A 1O ⊥平面ABCD , 1AB AA == 1 A (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. 1 2.(2013 年高考福建卷(文)如图,在四棱锥 P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=. (1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证 ://DM PBC 面; (3)求三棱锥 D PBC -的体积. D PBC V -=

3.(2013年高考湖南(文))如图2.在直菱柱ABC-A 1B 1C 1中,∠B AC=90°,AB=AC=错误!未找 到引用源。,AA 1=3,D 是BC 的中点,点E 在菱BB 1上运动. (I) 证明:AD⊥C 1E; (II) 当异面直线AC,C 1E 所成的角为60°时,求三菱子C 1-A 2B 1E 的体积. 3 2 4.(2013 年高考课标Ⅰ卷(文))如图,三棱柱 111 ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1 AB AC ⊥; (Ⅱ)若2AB CB == ,1AC =求三棱柱111ABC A B C -的体积.3 C 1 B 1 A A 1 B C

立体几何常见题型归纳

立体几何常见题型归纳 考点1 概念辨析 例1、设m ,n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个说法: ①,//m n m n αα⊥?⊥;②//,//,m m αββγαγ⊥?⊥;③//,////m n m n αα? ④,//αγβγαβ⊥⊥?,说法正确的序号是:_________________ 例2、对于平面α和共面的直线m 、,n 下列命题中真命题是 ( ) (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n (C )若,m n αα?∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n 辨析: (1)两条异面直线在同一平面内射影一定是相交的两条直线.( ) (2)在平面内射影是直线的图形一定是直线. ( ) (3)直线a 与平面α内一条直线平行,则a ∥α.( ) (4)两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. ( ) (5)平行于同一直线的两个平面平行. ( ) (6)平行于同一个平面的两直线平行. ( ) (7)直线a 与平面α内一条直线相交,则a 与平面α相交. ( ) (8)直线l 与平面α、β所成角相等,则α∥β.( ) (9)垂直于同一平面的两个平面平行. ( ) (10)垂直于同一直线的两个平面平行. ( ) (11)垂直于同一平面的两条直线平行. ( ) (12)若直线a 与平面α平行,则α内必存在无数条直线与a 平行. ( ) (13)有两个侧面是矩形的棱柱是直棱柱. ( )(14)各侧面都是正方形的棱柱一定是正棱柱. ( ) 考点2 三视图 例1、下图是一个多面体的三视图,则其全面积为__________ 例2、如图,一个空间几何体的正(主)视图、侧(左)视图都是面积为32 ,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为__________ 例3、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),那么可得这个几何体的体积是_________ 22 2 2 1 1 正视 左视 俯视(例3图)

第四讲-立体几何题型归类总结

第四讲 立体几何题型归类总结 一、考点分析 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ①???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱★ 底面为矩形 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★②r =d 、球的半 径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切. 注:球的有关问题转化为圆的问题解决. 球面积、体积公式:234 4,3 S R V R ππ==球 球(其中R 为球的半径)

1.求异面直线所成的角(]0,90θ∈ ??: 解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角; 2求直线与平面所成的角[]0,90θ∈ ??:关键找“两足” :垂足与斜足 解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。 3求二面角的平面角[]0,θπ∈ 解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。

立体几何题型总结

立体几何类型题 如图所示,在四棱锥P ABCD -中,PD ⊥平面ABCD , 又 //AD BC ,AD DC ⊥, 且33PD BC AD ===. (Ⅰ)画出四棱准P ABCD -的正视图; (Ⅱ)求证:平面PAD ⊥平面PCD ; 并求 PE EB (Ⅲ)求证:棱PB 上存在一点E ,使得//AE 平面PCD ,的值. (Ⅰ)解:四棱准P ABCD -的正视图如图所示. ………………3分 (Ⅱ)证明:因为 PD ⊥平面ABCD ,AD ?平面ABCD , 所以 PD AD ⊥. ………………5分 因为 AD DC ⊥,PD CD D =I ,PD ?平面PCD ,CD ?平面PCD , 所以AD ⊥平面PCD . ………………7分 因为 AD ?平面PAD , 所以 平面PAD ⊥平面PCD . ………………8分 (Ⅲ)分别延长,CD BA 交于点O ,连接PO ,在棱PB 上取一点E ,使得1 2 PE EB =.下证//AE 平面 PCD . ………………10分 因为 //AD BC ,3BC AD =, 所以 13OA AD OB BC ==,即12OA AB =. 所以 OA PE AB EB = . 所以 //AE OP . ………………12分 因为OP ?平面PCD ,AE ?平面PCD , 所以 //AE 平面PCD . ………………14分 2如图所示,四棱锥P ABCD -的底面ABCD 是直角梯形,AD BC //,AB AD ⊥, AD BC AB 2 1 ==,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 于 N (M 与D 不重合) . (Ⅰ)求证:BC MN //; (Ⅱ)求证:CD PC ⊥ ; (Ⅲ)如果BM AC ⊥,求此时PM PD 的值. 证明:(Ⅰ)因为梯形ABCD ,且AD BC //, 又因为?BC 平面PAD ,?AD 平面PAD , 所以//BC 平面PAD . 因为平面I BCNM 平面PAD =MN , 所以BC MN //. ……………………4分 (Ⅱ)取AD 的中点Q ,连结CQ . 因为AD BC //,AD BC 2 1 = , 所以AQ BC //,且AQ BC =. 因为AB BC =,且AB AD ⊥, 所以ABCQ 是正方形. 所以BQ AC ⊥. 又因为BCDQ 为平行四边形,所以且//CD BQ 所以⊥CD AC . 又因为PA ⊥底面ABCD , 所以PA ⊥CD . 因为A AC PA =I , 所以⊥CD 平面PAC , 因为PC ?平面PAC , 所以⊥CD PC . (Ⅲ)过M 作//MK PA 交AD 于K ,连结BK . 因为PA ⊥底面ABCD , O E D C B A P C N M P D B A K A B D P M C Q A B D P M C

2018高考立体几何复习最新题型归纳

2018高考复习立体几何最新题型总结(文数) 题型一:空间几何体的结构、三视图、旋转体、斜二测法 了解柱、锥、台、球体及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构。能画出简单空间几何体的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图。能用平行投影与中心投影两种方法画出简单空间几何体的三视图与直观图。了解空间几何体的不同表示形式。会画某建筑物的视图与直观图。 例1.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( ) 例 2.由大小相同的正方体木块堆成的几何体的三视图如图所示,则该几何体中正方体木块的个数是 . 正视图 左视图 例3.已知一个正四面体的俯视图如图所示,其中四边形ABCD 是边长为2的正方形,则该正四面体的内切球的表面积为( )A .6πB .54πC .12πD .48π 例4:如图是一个几何体的三视图,根据图中数据,可得该几何体的 表面积为( ) A .π12 B .π16 C .π32 D .π8 例5:四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A , E F D I A H G B C E F D A B C 侧视 图1 图2 B E A . B E B . B E C . B E D . 俯视图 俯视图 左视图 主视图 a a a D C B A

其三视图如图,则四棱锥P ABCD -的表面积为( ) A. 23a B.2 2a C.22 23a a + D. 2222a a + 例6:三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是___________ 例7:如图,斜三棱柱ABC —111C B A 中,底面是边长为a 的正三角形,侧棱长为 b ,侧棱AA ’与底面相邻两边AB 、AC 都成450 角,求此三棱柱的侧面积和体积. 例8:如图是一个几何体的三视图,根据图中的数据(单位:cm ),可知几何体的体积是_________ 真题: 【2017年北京卷第6题】某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )60 (B )30 (C )20 (D )10 【2017年山东卷第13题】由一个长方体和两个 1 4 圆柱构成的几何体的三视图如右图,则该几何体的体积2 2 主视图 2 2 侧视图 2 1 1 俯视图

立体几何题型总结

立体几何题型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

立体几何——点线面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线在此平面内。 公理2:过不在一条直线上的三点,有且只有一个平面 公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。 1、公理的理解与应用 例1 已知,αβ为不同的平面,A 、B 、M 、N 为不同的点,a 为直线, 下列推理错误的是 ( ) A. ,,,,A a A B a B a βββ∈∈∈∈?? B. ,,,,M M N N MN αβαβαβ∈∈∈∈?= C. ,,A A A αβα β∈∈?= D. ,,A B M A B M αβ∈∈、、、、且A 、B 、M 不共线αβ?、重合 例2 下列条件中,能得到平面α∥平面β的是( ) A. 存在一条直线a a ααβ,∥,∥ B. 存在一条直线a a a αβ?,,∥ C. 存在两条平行直线a b a b a b αββα??,,,,∥,∥ D. 存在两条异面直线a b a a b αβα?,,,∥,∥ 例3 对于直线,m n 和平面α,下列命题中的真命题是() A. 如果,,,m n m n αα??是异面直线,那么//n α B. 如果,,,m n m n αα??是异面直线,那么n 和α相交 C. 如果,//,,m n m n αα?共面,那么//m n D. 如果//,//,,m n m n αα共面,那么//m n 例4 已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的 中点,则AE SD ,所成的角的余弦值为( ) A .13 B .3 C D .23

立体几何题型归类汇总

立体几何题型归类汇总

————————————————————————————————作者:————————————————————————————————日期:

立体几何专题复习 一、【知识总结】 基本图形 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? L 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 ②四棱柱 底面为平行四边形 平行六面体 侧棱垂直于底面 直平行六面体 底面为矩形 长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② 22 r R d =-(其中,球心到截面的距离为d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切. 顶点侧面斜高高侧棱 底面O C D A B H S l 侧棱 侧面底面E'B' D' C'A'F'B D E A F C r d R 球面 轴球心 半径 A O O1 B A' C' D'B' C D O A B O C' A' A c

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ==球球(其中R 为球的半径) 平行垂直基础知识网络★★★ 平行关系 平面几线线平线面平 面面平 垂直关系 平面几线线垂线面垂面面垂 判 性 判定性判 判性判 面面垂 1.,//a b a b αα⊥⊥? 2.,//a a b b αα⊥?⊥ 3. 平行与垂直关系可互相转化

高考数学题型归纳:立体几何题型解题方法

高考数学题型归纳:立体几何题型解题方法 精品资料欢迎下载 高考数学题型归纳:立体几何题型解题方法 如何提高学习率,需要我们从各方面去努力。WTT为大家整理了高考数学题立体几何题型解题方法,希望对大家有所帮助。 高考数学题型归纳:立体几何题型解题方法高考数学之立体几何 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决平行与垂直的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对

问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、 1 / 3 精品资料欢迎下载 面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:两平行平面没有公共点。 ⑵由定义推得:两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。

2020年高考数学试题分类汇编之立体几何

2018年高考数学试题分类汇编之立体几何 一、选择题 1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。 (A )1 (B )2 (C )3 (D )4 2.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 3.(浙江)(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2 B .4 C .6 D .8 4.(全国卷一文)(5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122π B .12π C .82π D .10π 5.(全国卷一文)(9)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 6.(全国卷一文)(10)在长方体1111ABCD A B C D -中, 2AB BC ==,1AC 与平面11BB C C 所成的角为30?,则该长方体的体积为 A .8 B .62 C .82 D .83 7.(全国卷一理)(7)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方 体所得截面面积的最大值为 A . 33 B .23 C .324 D .3 9.(全国卷二文)(9)在正方体1111ABCD A B C D -中, E 为棱1CC 的中点,则异面直线AE 与CD 所成角

全国卷历年高考立体几何真题归类分析(含答案)

全国卷历年高考立体几何真题归类分析(含答案) 类型一:直建系——条件中已经有线面垂直条件,该直线可以作为z轴或与z轴平行,底面垂直关系直接给出或容易得出(如等腰三角形的三线合一)。这类题入手比较容易,第(Ⅰ)小问的证明就可以用向量法,第(Ⅱ)小问往往有未知量,如平行坐标轴的某边长未知,或线上动点等问题,以增加难度。该类问题的突破点是通过条件建立方程求解,对于向上动点问题这主意共线向量的应用。 1.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积. 2.(2015年全国Ⅰ卷)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值. 3.(2015年全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.

4.(2016年全国Ⅲ卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC , 3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值. 5.(2017全国Ⅱ卷)如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面 ABCD ,1 2 AB BC AD == ,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值. E M D C B A P 类型二:证建系(1)——条件中已经有线面垂直条件,该直线可以作为z 轴或与z 轴平行,但底面垂直关系需要证明才可以建系(如勾股定理逆定理等证明平面线线垂直定理)。这类题,第(Ⅰ)小问的证明用几何法证明,其证明过程中的结论通常是第(Ⅱ)问证明的条件。第(Ⅱ)小问开始需要证明底面上两条直线垂直,然后才能建立空间直角坐标系。 6.(2011年全国卷)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:P A ⊥BD ; (Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.

立体几何题型归类总结

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ==球球(其中R 为球的半径)

俯视图 1 1_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 侧(左)视图 正(主)视图 3 俯视图

5.如图5 是一个几何体的三视图,若它的体积是 a . 6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 . 7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3 。 第 7题 第8题 9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________. 图9 正视图 侧视图 俯视图 俯视图 正 ( 主) 视图 侧(左)视图

相关主题