搜档网
当前位置:搜档网 › 不可压缩机翼绕流的有限谱法计算

不可压缩机翼绕流的有限谱法计算

不可压缩机翼绕流的有限谱法计算
不可压缩机翼绕流的有限谱法计算

收稿日期:2003-07-29;修改稿收到日期:2004-09-06.基金项目:国家杰出青年基金(19925208)资助项目.

作者简介:邱全辉(1971-),男,硕士;

王健平*(1961-),男,教授,博士生导师.

第22卷第5期2005年10月 计算力学学报 

C hinese Journal of Computational Mechanics

V o l.22,N o.5Octo be r 2005

文章编号:1007-4708(2005)05-0518-06

不可压缩机翼绕流的有限谱法计算

邱全辉1, 王健平*

2,3

(1.北京大学力学与工程科学系湍流研究国家重点实验室,北京100871;2.北京大学环境学院,北京100871;3.四日市大学环境情报学部,日本512-8512)

摘 要:结合有限谱Q U ICK 格式求解不可压缩粘性流问题。这一格式用于模拟不同攻角下的N AC A1200机翼绕流问题。利用体积力,提出了将流场速度从0加速到来流速度的方法。区别于传统的压力梯度为零的边界条件,推导出一个更精确的压力边界条件。为使速度散度保持为零,在泊松方程中给速度散度一个特殊的处理。这一成果说明了有限谱法不但具有很高的精度,而且能灵活地和其他格式一起构造出新的格式,从而成功地应用到复杂流场不可压缩流动的数值计算中。关键词:有限谱法;谱方法;不可压流中图分类号:V 211.3 文献标识码:A

1 引 言

计算复杂流场一直是阻碍谱方法发展的一个主要问题

[1-4]

。究其原因,在于谱方法的全域性与物

体形状或流场性质的局域性的矛盾。为了缓冲这一矛盾,很多学者做了不懈的尝试,其中最著名的是谱多区法

[5,6]

和谱元法[7]

。但这些方法仍然保留着

构造性区域,并没有从根本上解决问题。

为了使谱方法如同有限差分法、有限元法一样,可以计算任意复杂形状和复杂性质的流体力学问题,王健平提出了有限谱法[8-11]。这是一种以点为单位的局域谱方法,既具有高精度的长处,又避免了全域性的短处,可以构造各种各样的格式。

迄今为止,有限谱法已用于不可压圆柱绕流问题

[12,13]

的计算,得到了很好的结果。但这还不足以

证明这一方法适用于更为复杂的问题。本文将着重讨论用有限谱QU ICK 格式计算不可压粘性机翼绕流问题,以期在处理复杂形状问题上有所突破。

2 控制方程

二维粘性不可压缩流动的基本变量Nav ier-Stokes 方程的无量纲化守恒形式为

u

x

+ v y =0(2.1)

u t + uu x + uv y =- p

x +1Re 2u x 2+ 2

u

y 2

+f x (2.2)

v t + uv x + v v y =- p y +1Re 2v x 2+ 2

v y 2

+f y (2.3)

其中u 和v 分别为x 方向和y 方向的速度分量,p 为压力,f x 和f y 分别是x 方向和y 方向的体积力。

采用上述方程组求解存在两个问题:一是压力p 不是显式求解的;二是要使u 和v 真正做到满足(2.1)是很困难的。因为由计算带来的一点误差在时间推进过程中可能会积累起来,从而使质量出现不守恒。为了避免上述两个问题,需要对原来的控制方程组进行变换。记速度散度为D ,即D = u / x + v / y ,由方程(2.1)到(2.3)可得求解压力项的Poisso n 方程:

2p =2

u x v y - u y v x - D t

(2.4)

由(2.2),(2.3)以及(2.4)即可组成粘性不可压缩

二维机翼绕流的控制方程组。

3 坐标变换

将公式从物理平面(x ,y )变换到计算平面(a ,Z ),有

a x =J y Z , a y =-J x Z , Z x =-J y a , Z y =J x a

(3.1)

J =(x a y Z -x Z y a )

-1

为雅可比行列式。

控制方程组变换为

2p=2J u

a

v

Z-

u

Z

v

a-

D

t(3.2)

u

t+J a

uU

J

+Z

uV

J

=

-J y Z p

a-

y a p

Z+

1

Re

2u+f x(3.3)

v

t+J a

vU

J

+Z

vV

J

=

-J-x Z p

a+

x a p

Z+

1

Re

2v+f y

(3.4)

其中逆变速度为

U=J(y Z u-x Z v),V=J(-y a u+x a v)(3.5) 4 体积力

假定流体原来是静止不动的,从零时刻开始以某一加速度开始运动,一直加速到指定的来流的速度。这里的体积力f x,f y不考虑重力,而只是为了让流体加速到指定速度而虚拟的作用于全场的力,因而这个力与流体质点的位置无关,而只是时间的函数。

假设来流指定的速度大小为v0,机翼的攻角为θ,取体积力为

f x(t)=

v0cosθ

f e

-t

f (4.1) f y(t)=

v0sinθ

f e

-t f (4.2)

其中f是一个时间常数,代表加速过程的快慢,其值越小,加速过程越快,绕体流动也越容易产生涡旋。显然,当时间t趋于无穷大时,流场来流的速度大小也趋于v0。

5 有限谱QUICK格式

利用控制容积法将微分方程离散为差分方程,需要对控制面上的值进行插值。Q UICK(Quadratic Upw ind Interpolation o f Conv ectiv e Kinematic)差分方案最早由Leo nard[14]提出。这种差分方案采用了具有三阶精度的对流项二次迎风插值,因而具有较高的数值精度。但较早的时候对多维问题的处理只是把问题分解为几个一维问题的简单叠加。在这一计算实例中,我们分析讨论一种精度更高的QU ICK格式。

如图1所示,设u由6个点的值来确定。即假设

u=c1+c2a+c3a2+c4Z+c5Z2+c6a Z

通过u在6个点的值来确定6个系数,得到:

图1 计算格式标点

Fig.1 Location of points in numerical sch em e

u6=

u2+u3

2

-

u3-2u2+u1

8

+

u4-2u2+u5

24

= u2+u3

2

-

1

8

CU RV a+

1

24

CU RV Z(5.1)经过Taylo r分析,可知上述插值在空间具有二阶精度。由于在一个方向的插值不再只是与单一方向有关,而是考虑了另一个方向的流动对此方向的影响,因而更符合实际情况,精度也更好。在Navier-Stokes方程中,惯性项用符号H=(H u,H v)来表示,则:

H u

J i,j

=a

uU

J i,j

+Z

uV

J i,j

=

uU

J i+1

2,j

-

uU

J i-1

2,j

+

uV

J i,j+1

2

-uV

J i,j-1

2

(5.2)同理可给出y方向的公式。

应用上面给出的QU ICK插值公式求惯性项分量在控制面上的值,可得:

uU J

i+12,j

=

U

J i+1

2,j

u i+1

2,j

=

U

J i+1

2,j

u i,j+u i+1,j

2

-

1

8

CU RV a u i+1

2,j

+

1

24

CURV Z u i+1

2,j

(5.3)其中曲率项用迎风格式处理:

CU RV a u i+1

2,j

=

2u

a2i,j=u i+1,j-2u i,j+u i-1,j

U J

i+12,j

≥0

2u

a2i+1,j=u i+2,j-2u i+1,j+u i,j

U

J i+1

2,j

<0

(5.4) CU RV Z u i+1

2,j

同理可给出。

对于式(5.3)中等号右边的第一个因子

519

 第5期邱全辉,等:不可压缩机翼绕流的有限谱法计算

(U /J )i +12

,j ,我们采用有限谱插值来求解。类似地还可以处理惯性项H 的其他部分。

6 初边条件

(1)初始条件 假设流体从静止状态运动:

u 0

=v 0

=0, p 0

=1(6.1)

(2)无穷远边界 物理量一阶导数为0,即:

u Z =0, v Z =0, v

Z

=0(6.2)

(3)机翼的后部分割线 物理量取上下网格

点的平均值。

(4)物面边界 速度u =0,v =0。在物面另一侧虚设一层网格j =-1。由于在物面要满足速度散度为0的条件,而u i ,0=v i ,0=0,因而可以假设u i ,-1=u i ,1,v i ,-1=v i ,1。加之方程式(2.2),(2.3),可得到压力的边界条件:

 

p Z

=x Z p x +y Z p y = 1Re (x Z 2u +y Z 2

v )+x Z f x (t )+y Z f y (t )=

 J V Re x Z 2u Z 2+y Z 2

v Z 2+x Z f x (t )+y Z f y (t )=

 2J V Re (x Z u 1+y Z v 1)+x Z f x (t )+y Z f y (t )(6.3)

其中V =x 2a

+y 2a 。

7 求解步骤

综合以上讨论,我们给出(u ,v ,p )方程的一种求解过程。

①划分区域的网格,把区域和边界离散化。②在某一攻角下,给出初始值u 0,v 0,p 0。③根据式(5.2),利用有限谱QU ICK 格式求出n 时刻的惯性项,并代入动量方程(3.3)中。其他

图2 阻力系数随攻角的变化

Fig.2 Coefficient of d rag v s AoA

部分做如下离散:

u n +1

i ,j -u n

i ,j

Δt +H u n

i ,j =

-J y Z p a - y a p Z n

i ,j

+

1Re [k 2u n +1i ,j +(1-k ) 2

u n

i ,j

](7.1)

同理可得到(3.4)的离散方程。求解这两个方程,

可对速度u ,v 进行推进,即由(u n ,v n ,p n ) (u n +1,v

n +1

)。

④利用新的速度(u n +1,v n +1)来计算n +1时

刻的速度散度D n +1,这一步通常采用中心差分格式。

⑤求解压力Poisso n 方程(2.4)得到n +1时刻的压力p n +1。这一步处理 D / t 可以通过如下的离散来逼使D 不随时间而增长:

D

t

n +1

=

D n +

2

-D n +1Δt =-D n +1

Δt

(7.2)

⑥迭代至给定的时间为止。然后变化机翼攻角,从步骤②重新开始计算。

8 计算结果

根据以上求解步骤,我们模拟计算了二维粘性不可压缩流体绕N ACA0012翼形的流动。采用的网格是199×65的C 型网格,从机翼表面到无穷远边界的距离是机翼弦长的15倍。在这个实例中

,取雷诺数Re =1000,无量纲的时间步长为Δt =0.001,机翼攻角(Ang le o f Attack,AoA )从0度变化到20度,每个攻角状态下流动都是从静止状态下开始计算,计算15000个时间步长后攻角增加2度开始下一个攻角状态的计算。

图2和图3分别给出了阻力系数和升力系数随攻角的变化情况,从中可以看出阻力系数和升力系数都随攻角的增加而增加,在攻角为17度时达

图3 升力系数随攻角的变化

Fig.3 Coefficien t of lift v s Ao A

520

算力学学报

 第22卷 

图4 12度攻角时阻力系数、升力系数随时间的变化

F ig.4Tim e his tory of coefficien t of d rag and coefficien t of

lift 图5 平均散度偏差随时间的变化

F ig.5 Tim e his tory of av erage v elocity

divergence

图6 速度流线图(雷诺数为1000,攻角为12度,时间步长依次为2000,4000,6000,8000)

Fig.6 Streamlines (Re =1000,Ao A =12°,Tim e step =2000,4000,6000,8000)

到最大值。这与实际的失速攻角12度不符。原因是我们在计算中没有考虑湍流模型。在达到最大值以后,阻力系数持平,而升力系数下降,说明背风区涡脱离对阻力的影响没有对升力那样敏感。

图4给出了攻角为12度时流动充分发展以后阻力系数和升力系数随时间的变化情况。可以看出,阻力系数和升力系数是同步周期性变化的,涡脱落的周期是无量纲时间 1.4。

图5给出了攻角为0度、6度和12度时整个流场散度的平均偏差随时间的变化情况,可以看出,散度的平均偏差随着计算的推进稳定在一个较小的范围内。

图6给出了攻角12度时,机翼附近流线随时间的发展情况,显示了机翼上部涡产生、分离和脱落的整个过程。图7是雷诺数为100时流场充分发展后的结果,此时压力变化平缓,流动为层流状态。

521

 第5期

邱全辉,等:不可压缩机翼绕流的有限谱法计算

图7 速度流线图(雷诺数为100,攻角为12度,

时间步长为8000)

F ig.7 S treamlines(Re=100,Ao A=12°,

Tim e step=

8000)图8 速度流线图(雷诺数为10000,攻角为12度,

时间步长为8000)

Fig.7 Streamlines(Re=10000,Ao A=12°,

Time s tep=8000)

图8是雷诺数为10000时流场充分发展后的结果,此时湍流现象较雷诺数为1000时更为明显。

9 结 论

本文采用并改进了有限谱QUICK格式,并在世界上首次用局域谱方法数值模拟了不可压粘性机翼绕流问题。具体有以下进步∶

①提出了从零速度开始加速求解的方法。

②给出了物面压力边界条件的公式。

③列出了迭代求解的具体步骤。

④提出了使速度散度不增加的方法。

本文对有攻角情况下的N ACA0012翼型进行了从雷诺数100到10000的数值模拟,得到了从层流到湍流的计算结果。从而有效地说明了有限谱法的高精度和灵活性,以及应用到复杂流场计算中的可行性。

参考文献(References):

[1] O RSZA G S A.Spectr al methods for pro blems in

co mplex g eo metries[J].J Comput Phys,1980,37:

70-92.

[2] HU SSAIN I M Y,ZAN G T A.Spect ral methods in

fluid dy namics[J].Ann Rev Fluid Mech,1987,19:

339-367.

[3] W AN G J P.K ey to pro blems in spectr al methods

[A].Co mputational Fluid Dy namics Review1998

[C].Eds.Hafe z,M.and Oshima,K.,Wo r ld Sci-

entific,1998:369-378.

[4] 王健平.谱方法的基本问题与有限谱法[J].空气动力

学报,2001,19(2):161-171.(W A N G J ian-ping.Fun-

damental pro blems in spect ral methods and finite

spectr al method[J].AC T A Aerody namica Sinica,

2001,19(2):161-171.(in Chinese))

[5] M O RC H O ISN E Y.In Homogeneous Flow Calcula-

tions by Spectral Methods:Mono-Domain and Multi-Domain Techniques[M].O N ER A T P-1982-67,

1982.

[6] KO PRIV A D A.M ultidomain spect ral solutio n o f

co mpressible v isco us flo ws[J].J Comput Phys,

1994,115:184-199.

[7] P A T ERA A T.A spectr al me tho d fo r fluid dy na-

mics:lamina r flo w in a cha nnel ex pansion[J].J

Comput Phys,1984,54:468-488.

[8] W AN G J P.Finite spectra l method ba sed o n no n-pe-

rio dic fourier t ransfor m[J].Computers&Fluids,

1998,27:639-644.

[9] W AN G J P.Finite spect ral method fo r no n-perio dic

problems[A].Computational Fluid Dynamics[C].

2000Ed.N.Satof uka,Spring er,2001:805-806. [10]W AN G J P.Finite spect ral method fo r compressible

and inco mpressible flo w s[J].Computational Fluid

Dynamics Journal,2002,10(4):569-574.

[11]W AN G J P.Finite spect ral method[A].Invite d Le-

cture,Proc.15th J apanese Sy mposium on Computa-tional Fluid Dynamics[C].2001:1-2.

[12]尹兆华,王健平.不可压缩流的有限谱法计算[C].

计算力学研究与进展[M],万国学术出版社,2000:

70-75.(Y IN Zhao-hua,W AN G J ian-ping.Finite

Spectral Computation of Incompressible Flow s[M].

Study and Prog r ess o f Co mputa tio nal M echa nics,

W ang uo Academic Press,2000:70-75.(in Chinese))

522计算力学学报 第22卷 

[13]W AN G J P ,Y IN Z H ,JIA W ,e t al .N um erical cal-cula tio n o f flow s pa ssing cir cular cylinde r by finite spectra l Q U ICK method [J].J Yokkaichi University ,1999,3:71-78.

[14]L EO N A RD B P .A stable a nd accurate co nv ectiv e

modeling pr ocedur e based on quadr atic upstr ea m in-terpolation [J].Comput Meths Appl Mech Eng ,1979,19:59-98.

Finite spectral computation of incompressible flows around airfoil

QIU Quan-hui 1

, W AN G Jian-ping

*2,3

(1.Dept.of M ech anics &Engineering Sciences ,Peking Univ.,Beijing 100871,China;

2.School of Environm en tal Sciences,Peking Univ.,Beijing 100871,China;

3.Dep t.of Environm en tal and Information Sciences ,Yokk aichi Univ.,Yok kaichi,M ie 512-8512,J apan )

Abstract

:Finite Spectral Q UICK scheme is develo ped to calculate incompressible viscous flo ws .This scheme is used to simula te the flo w s aro und N ACA 1200airfoil a t different ang les of attack .In terms of body forces ,a method of accelerating the flow v elocity fro m 0to freestream velocity in propo sed .In co n-tract to the co nv entio nal bo unda ry co ndition with zero pressure g radient ,an accurate fo rmula fo r bound-ary co nditio n o f pressure is deriv ed.In o rder to keep the div erg ence of v elocity being zero,a special treatment o f div ergence term in Poisso n equatio n is pro posed.This applica tion indicates tha t finite spec-tral method possesses no t o nly hig h accuracy but also hig h flexibility for co mplex incom pressible flow problems.

Key words :finite spectral method ;spectral m ethods ;incompressible flow s

523

 第5期

邱全辉,等:不可压缩机翼绕流的有限谱法计算

AGA8—92DC计算方法天然气压缩因子计算(最漂亮的)

AGA8—92DC计算方法天然气压缩因子计算 摘要:按照GB/T 17747.2—1999《天然气压缩因子的计算第2部分:用摩尔组成进行计算》,采用AGA8—92DC计算方法,用VB编程计算了天然气压缩因子。用二分法求解状态方程,精度满足工程需要。 关键词:压缩因子;AGA8—92DC计算方法;二分法 1概述 工作状态下的压缩因子是天然气最重要的物性参数之一,涉及到天然气的勘探、开发、输送、计量和利用等各个方面。实测天然气压缩因子所需的仪器设备价格高,不易推广,因此计算方法发展很快,主要为经验公式和状态方程计算方法。1992年6月26日,国际标准化组织(ISO)天然气技术委员会(TC193)及分析技术分委员会(TC193/SC1)在挪威斯泰万格(Stavanger)召开了第四次全体会议,会上推荐了两个精度较高的计算工作状态下天然气压缩因子的方程,目 PAGA8-92DC方程、SGERG-88方程[1]。随后,国际标准化组织于1994年形成了国际标准草案[2]。 AGA8-92DC方程来自美国煤气协会(AGA)。美国煤气协会在天然气压缩因子和超压缩因子表的基础上,开展了大量研究,于1992年发表了以状态方程为基础计算压缩因子的AGA No.8报告及AGA8-92DC方程[2]。 1994年,四川石油管理局天然气研究所遵照中国石油天然气总公司技术监督局的指示,对国际标准化组织1992年挪威斯泰万格会议推荐的AGA8-92DC 方程、SGERG-88方程进行验证研究,于1996年底基本完成[2]。1999年,四川石油管理局天然气研究院(前身为四川石油管理局天然气研究所)起草的《天然气压缩因子的计算》GB/T 17747.1~3—1999被批准、发布。 《天然气压缩因子的计算》GB/T 17747.1~3—1999包括3个部分:《天然气压缩因子的计算第1部分:导论和指南》GB/T 17747.1—1999,《天然气压缩因子的计算第2部分:用摩尔组成进行计算》GB/T 17747.2—1999,《天然气压缩因子的计算第3部分:用物性值进行计算》GB/T 17747.3—1999。GB/T 17747.1等效采用ISO 12213—1:1997《天然气压缩因子的计算导论和指南》。GB/T 17747.2等效采用ISO 12213-2:1997《天然气压缩因子的计算用摩尔组成进行计算》,给出了用已知的气体的详细的摩尔组成计算压缩因子的方法,目PAGA8—92DC计算方法。GB/T 17747.3等效采用ISO 12213-3:1997《天然气压缩因子的计算用物性值进行计算》,给出了用包括可获得的高位发热量(体积基)、相对密度、C02含量和H2含量(若不为零)等非详细的分析数据计算压缩因子的方法,即SGERG-88计算方法。笔者在输气管道和城镇高压燃气管道水力计算中,按照GB/T 17747.2采用AGA8-92DC计算方法进行天然气压缩因子计算,效果良好。本文对其中的一些问题进行探讨,受篇幅所限,一些内容文中适当省略,详见GB/T 17747.2。 2AGA8—92DC方法的计算过程 2.1已知条件、待求量、计算步骤 2.1.1已知条件 按照GB/T 17747.2的要求,以CH4、N2、CO2、C2H6、C3H8、H2O、H2S、H2、

天然气基本压缩因子计算方法

天然气基本压缩因子计算方法 编译:阙洪培(西南石油大学) 审校:刘廷元 这篇文章提出一个简便展开算法:任一压力-温度的基本压缩因子的输气监测计算。这个算法中的二次维里系数来源于参考文献1。计算的压缩因子接近AGA 8状态方程值[2]。 1 测量 在天然气工业实用计量中,压力、温度变化作为基本(或标准)条件,不仅地区间有差别,而且在天然气销售合同也有不同。 在美国,通常标准参考条件是60°F和14.73 psia。欧洲常用的基本条件是0 ℃和101.325 kPa,而标准条件是15 ℃和101.325 kPa。阿根廷也用15 ℃和101.325 kPa,而墨西哥则用的是20 ℃和1kg/ sq cm(绝对)。 计算真实气体的热值、密度、基本密度、基本体积、以及沃贝指数时要求已知基本条件的压缩因子。表1是理想气体值。 表1中的理想气体值不能用于密闭输气,必须计算相应基本条件的压缩因子。 参考文献提供的一些数据表和获取基本条件压缩因子方法,基本条件只能是60°F,14.73或14.696 psia。 计算其它基本条件的压缩因子可用AGA 8 程序,但代数计算较复杂,计算机编程共有三组软件,比较耗时。 本文提出了一个展开算法,计算密闭输气基本条件(基本条件可是任何压力温度)的压缩因子。 2 压缩因子 接近外界条件时,即压力小于16 psia,截断维里状态方程(方程组中的方程1)较好地描述了天然气的体积性质。 方程1中,各符号的物理意义是: Z = 基本条件下压缩因子 B = 二次维里系数 R = 气体常数 P = 基本条件的绝对压力 T = 温度条件的绝对压力 天然气基本压缩因子接近1,如0.99,B必然为负(图1) 方程2是混合物的二次维里系数,式中B ij = B ji为组分i和j的二次交互维里系数,B ii为纯组分i 的二次维里系数。二次维里系数是温度的函数。 也可用方程3求B,便于手工计算。比较适合密闭输气计算,方程3中B i的平方根为总因子,参见参考文献1,3,4。 问题的提出:表中常见60°F总因子值,而未见有其它基本温度条件的总因子值。由此本文献出一种方法,求解任一温度的压缩因子。 本方法不用因子求和法而用了好用便于书写的二次维里系数法。 方程3假定方程4已作校正。下面举出2例说明这种方程的用法。

压缩空气管道的选择

d=(Q/v)1/2 d为管道内径,mm d为管道内径,mm Q为介质容积流量,m3/h v为介质平均流速,m/s,此处压缩气体取流速10-15m/s。 计算,d=48.5mm,实际取57×管道即可。 说明,上述计算为常温下的计算,输送高温气体另行计算为宜。 上述Q指实际气体流量,当指标况下应换算为实际气体流量,由pv=nRT公式可推导出。 一、空压管道设计属于压力管道范畴(压力大于,管径大于25MM),你所在的单位应持有《中华人民共和国特种设备设计许可证》。 二、空压站及管道设计,应参照有关规范及相关设计手册。 1、GB50029-2003 压缩空气站设计规范 2、GB50316-2000 工业金属管道设计规范 3、动力管道设计手册机械工业出版社 三、压力管道设计,应按持证单位的《设计质量管理手册》《压力管道设计技术规定》《设计管理制度》等工作程序进行,这是单位设计平台的有效文件,有利于设计工作的正常开展。 四、设计前应有相关设计参数,你的问题中没有说明,无法具体回答。 五、问题1 ①管材的使用要求应按GB50316-2000执行,参照相关的材料章节。 ②公称直径为表征管子、管件、阀门等囗径的名义内直径,其实际数值与内径并不完全相同。钢管是按外径和壁厚系列组织生产的,管道的壁厚应参照GB50316中金属管道组成件耐压强度计算等有关章节。根据GB/8163或GB3087或GB6479或GB5310,选用壁厚应大于计算壁厚。 问题2 ①压力管道的连接应以焊接为主,阀门、设备接囗和特殊要求的管均应用法兰连接。 ②有关阀门的选用建议先了解一下阀门的类型、功

能、结构形式、连接形式、阀体材料等。压缩空气管可选用截止阀和球阀,大管径用截止阀,小管径用球阀。 一为安全,二为经济,所谓安全,就是有毒易燃易爆的介质,比如乙炔、纯氧管道,这些介 质一旦流速过快, 有爆炸等安全方面的危险, 所谓经济, 就是要算经济账, 比如你的压缩空 气,都是用压缩机打出来的,压缩机要消耗电,或者消耗蒸汽,要耗电就要算钱,经济流速 的选择就是因流速而引起的压力降不能过大,要在经济的范围之内。 何谓经济?拿你帖子里的数据举个很简单的例子就知道了: 压缩空气 P= MPaG,T=30℃(空压机冷却后大致都是这个温度),密度ρ=kg/m3,标态流量V0=1000 Nm3/h,工况流量V=125 m3/h,质量流量W=1292 kg/h,管道57X3.5mm,di=50mm,管长L=100m(含管件当量长度),管道绝对粗糙度0.2mm,摩擦系数λ取,空压机功率110 kW。 上面这组数据在工程现场楼主可随意取得,就上面这组数据简单的计算就可知道什么叫 “经济流速”:管道流速u= m/s,那么这个流速到底经济与否呢?要看阻力损失在空压机功率中所占比 例而定,阻力损失 ΔP=ρ.λ.(L/d).(u^2/2)=96788Pa= MPa,也就说经过100m长的管道管件后,压力自MPaG下降到了~ MPaG,阻力损失折算成功率损失ΔW=G.λ.(L/d).(u^2/2)=(1292/3600)X(9346/1000)=kW,占压缩机总能耗的110=% 看到了吗?在经历了100m后,损失了kW的功率,因为这段管道,每小时就有度电没了,一年按8000小时计就是26800度电,每度电按元,仅此一项,每年13400元就没了,悄无声息地没了。如果你把这根管道换成的DN38的管道,100m管道后的压力就只有MPaG了,压力保不住了,相应的功率损失更大,可达20 kW,每年83000元没了,这样的损失是无法接受的,也无法容忍。很自然,你

第二章往复式压缩机热力学基础

第二章往复式压缩机热力学基础 1.教学目标 1.掌握理想气体状态方程式和热力学过程方程式。 2.了解压缩机的工作循环。 3.理解压缩机的排气量及其影响因素。 4.掌握压缩机的功率和效率的计算。 5.了解压缩机的多级压缩过程。 2.教学重点和难点 1.理想气体状态方程式和热力学过程方程式。 2.压缩机的工作循环。 3.压缩机的功率和效率的计算。 3.讲授方法 多媒体教学 正文 2.1 理想气体状态方程式和热力过程方程式: 2.1.1 理想气体的热力状态及其状态参数 压缩机运转时,汽缸内气体的热力参数状态总是周期不断的变化,所以要研究压缩机的工作,首先就得解决如何定量描述气体的状态以及如何确定状态变化的过程。实际上,这也是研究气体热力学必须首先解决的问题。气体在各种不同热力状态下的特性,一般都是通过气体状态参数来说明。 2.1.1.1基本热力状态参数 1.温度在热力学中采用绝对温标°K为单位。绝对温标以纯水三相点的绝对温度273.16°K(计算时取273°K)作为基准,只有绝对温度才是气体的状态参数,与常用的摄氏百度温标℃应加以区别。 2.压力在热力学中规定绝对压力为状态参数,与一般的表压力应加区别。

3.比容比容是指每单位重量气体所占有的容积,以v表示。比容的倒数称为重度,以γ表示。 2.1.1.2 导出状态参数 1.内能气体的内能与温度及比容间存在一定的函数关系。当忽略气体分子间的作用力和气体分子本身所占有的体积时,内能可认为是温度的单值函数。内能一般用u表示。 2.焓为了便于计算,有时把一些经常同时出现的状态参数并在一起构成一个新的状态参数。例如在流动系统中,常把内能u和压力p、比容v的乘积pv 相加组成一个新的状态参数i,称为“焓”。即: i=u+Apv , kcal/kg 式中u------内能,kcal/kg; p------压力,kgf/cm2 v------比容,m3/kg A------功热当量,A=1/427kcal/kg f·m 3.熵熵也是导出状态参数,根据热力学第二定律,对于可逆过程的熵变,与温度及过程进行时的热量交换有关,其关系式为: dq=Tds.kcal/kg 式中q---单位重量气体与外界交换的热量,kcal/kg; T---交换热量时的瞬时绝对温度,°K s-----单位质量气体的熵值,kcal/kg·°K 2.1.2理想气体状态方程式 所谓理想气体时不考虑气体分子之间的作用力和分子本身所占有的体积的气体,实际上自然界中并不存在真正的理想气体,不过当气体压力远低于临界压力,温度远高于临界温度的时候,都相当符合理想气体的假定。 对于1kg气体而言,理想气体的压力、比容和温度之间的关系为: pv=RT (2-1) 式中p-----理想气体的绝对压力,kgf/m3; v-----理想气体的比容,m3/kg; T-----理想气体的绝对温度,°K; R----气体常数,kgf·m/kg·°K。 对于G(kg)气体,若其总体积为V(V=G·v),其关系式为: Pv=GRT (2-2) 式2-1及式2-2即为理想气体状态方程式。

压缩因子计算

天然气压缩因子的计算 气田上大多数在高压下生产,为控制其流动需要安装节流阀。当气流经过节流阀时,气体产生膨胀,其温度降低。如果气体温度变得足够低,将形成水合物 (一种固体结晶状的冰雪物质)。这就会导致管道和设备的堵塞。【1】从而,在天 然气的集输过程当中,不管对天然气或天然气管道进行怎样的处理,都离不开气体的三个状态参数:压力P 、体积V、温度T。而根据真实气体状态方程PV ZnRT =可知,在确定某个状态参数的时候需要先计算一个压缩因子Z。如果能够更精确的确定压缩因子,从而确定气体的状态参数,对于研究天然气的收集、预处理和输送等问题具有重要意义。下面简要介绍下压缩因子及其计算方法。 真实气体是实实在在的气体,它是为了区别于理想气体而引人的。真实气体占有一定空间,分子之间存在作用力,因此真实气体性质与理想气体性质就有偏离。压缩因子就是反映这种真实气体对理想气体的偏离程度大小。在温度比临界温度高的多、压力很小时,偏离不太显著;反之偏离就很显著。下面将介绍一种计算压缩因子的方法(Dranchuk-Purvis-Robinson 法)。 压缩因子的关系式如下: 563521437383 1()()()(1)exp()pr pr pr pr pr A A A A A Z A A T T T T A A A T =++++++++-52pr pr pr 222 pr pr pr ρρρρρρ (1) 式中A 1到A 8都是常数,具体数据可到参考文献上查阅,ρ pr 为无因次拟对比密 度,它和压缩因子满足关系式: 0.27pr pr pr p ZT ρ= (2) 其中p pr 和T pr 分别为拟对比压力和拟对比温度。 由于式(2)为非线性方程,欲计算Z ,可采用牛顿迭代法(Newton-Raphson )。在已知p pr 和T pr 的情况下,需经过迭代过程求解ρpr ,其公式如下: ( )( 1)()'( )() ()i pr i i pr pr i pr f f ρρρρ+=- (3) 迭代求得拟对比密度ρpr ,即可易求得压缩因子。【2】 参考文献: [1] 曾自强,张育芳.天然气集输工程.北京:石油工业出版社,2001.1 [2] 严铭卿,廉乐明.天然气输配工程.北京:中国建筑工业出版社,2005.32

压缩空气相关知识汇总

压缩空气相关知识 1)什么叫空气?什么湿空气? 地球周围的大气,我们习惯上称它作空气。自然界中的空气是由多 种气体(O 2、N 2 、CO 2 ……等)混合而成的,水蒸气是其中的一种。含有一定量 水蒸气的空气叫湿空气,不含水蒸气的空气叫干空气。我们周围的空气都是湿空气。在一定海拔高度下,干空气的组成成分及比例基本稳定不变,它对整个湿空气的热工性能无特殊意义。湿空气中的水蒸气含量虽然不大,但含量的变化对湿空气的物理性质影响很大。水蒸气含量的多少决定了空气的干燥和潮湿程度。冷干机的工作对象就是湿空气。 2)什么叫饱和空气? 在一定的温度和压力条件下,湿空气中水蒸气的含量(即水蒸气密度)是有一定限度的;在某一温度下,所含水蒸气的量达到最大可能含量时,这时的湿空气叫饱和空气。水蒸气未达到最大可能含量时的湿空气就叫未饱和空气。 3)未饱和空气在什么条件下成为饱和空气?什么叫“结露”? 在含水量不变的情况下,通过降低未饱和空气的温度可使之成为饱和空气。未饱和空气在成为饱和空气的瞬间,湿空气中会有液态水珠凝结出来,这一现象称之为“结露”。 4)什么是大气压?什么是绝对压力?什么是表压力? 包围在地球表面一层很厚的大气层对地球表面或表面物体所造成的压力称为“大气压”,符号为B;直接作用于容器或物体表面的压力,称为“绝对压力”,绝对压力值以绝对真空作为起点,符号为P ABS ; 用压力表、真空表、U形管等仪器测出来的压力叫“表压力”(又叫相对压力),“表压力”以大气压力为起点,符号为Pg。 三者之间的关系是:P ABS = B + Pg 压力的法定单位是帕(Pa),大一些单位是兆帕(MPa)=106Pa 1标准大气压 = 0.1013MPa 在旧的单位制中,压力用kgf/cm2(公斤/平方厘米)作单位,1 kgf/c m2=0.098MPa

天然气压缩因子计算

1.天然气相关物性参数计算 密度计算: T ZR PM m =ρ ρ——气体密度,Kg/m 3; P ——压力,Pa ; M ——气体千摩尔质量,Kg/Kmol ; Z ——气体压缩因子; T ——气体温度,K ; R m ——通用气体常数,8314.4J/Kmol·K 。 2.压缩因子计算: 已知天然气相对密度?时。 96 .28M =? M ——天然气的摩尔质量。 ?+=62.17065.94pc T 510)05.493.48(??-=pc P ;pc pr P P P = pc pr T T T =; P ——工况下天然气的压力,Pa ;T ——工况下天然气的温度,k ;P Pc —临界压力;T Tc ——临界温度。 对于长距离干线输气管道,压缩因子常用以下两式计算: 668.34273.01--=pr pr T P Z 320107.078.068.110241.01pr pr pr pr T T T P Z ++-- = 对于干燥天然气也可用经验公式估算: 15.1117.0100100P Z +=

标况流量和工况流量转换。为了控制Welas 的5L/min 既 0.3立方米每小时的工况流量。 Q 2------流量计需要调节的流量值 P 2------0.1Mpa T 2------293.15K (20℃ ) Z 2------标况压缩因子 Q 1------0.3m 3/h P 1------ 工况压力(绝对压力MPa ) T 1------开尔文K Z 1-------工况压缩因子 转换公式为 12221211 p T Z Q Q p T Z

压缩因子

物理化学 -> 1.6.3 压缩因子图 三、压缩因子图 荷根(Hougen)和华特生(Watson)测定了许多气体有机物质和无机物质压缩因子随对比温度和对比压力变化的关系,绘制成曲线,所得关系图称为"普遍化压缩因子图"。见图1-14。当实际气体的临界压力p c和临界温度T c的数据为已知,可将某态下的压力p和温度T换算成相应的对比压力p r和对比温度T r,从图中找出该对比态下的压缩因子Z。再由下式计算气体的摩尔体积V m: (1-38) 图1-14 压缩因子Z随p r及T r变化关系 当然,计算并不仅限于体积。上式形式简单,计算方便,并可应用于高温高压,作为一般估算,准确定基本上可以满足,在化工计算上常驻采用。一般说来,对非极性气体,准确度较高(误差约在 5% 以内);对极性气体,误差大些。但对 H2、He、Ne 则为例外,这三种气体,根据经验采用以下修正公式: (1-77)

所得结果更准确。为进一步提高计算方法的准确性,常需引入更多的参数,最常用的是三参数法。需要时读者可参阅有关专著,在此不赘述。 〔例3〕试用压缩因子图法计算 573K 和 20265kPa 下甲醇的摩尔体积。甲醇的临界常数:T c=513K,p c=7974.3kPa。 〔解〕 由图1-14查出T r=1.12,p r=2.54 时,Z=0.45 实验值为 0.114dm3,误差为 7.5%。用理想气体状态方程式计算,V m=0.244dm3! 而用范德华方程式计算, V m=0.126dm3。可见此法不仅方便,且较准确。 〔例4〕一容积为 3dm3的钢筒内容有 3.20kg 的甲烷,室温为 273.4K。试求钢筒中气体的压力。已知甲烷T c=191.1K,p c=4640kPa。 〔解〕 或p r=3.26Z 在T r附近,作p c=3.26Z直线交T r于Z=0.76 处(参考图1-15),此Z值即为同时满足T r=1.43 和 p r=3.26Z的对应态的压缩因子值,以之代入公式

Matlab编程天然气压缩因子计算模型

1程序目的 利用AGA8-92DC模型计算天然气的压缩因子,该程序主要应用于在输气和配气正常进行的压力P和温度T围的管输气的压缩因子计算 2数学模型:AGA8-92DC模型 2.1模型介绍 此模型是已知气体详细的摩尔分数组成和相关压力、温度来计算气体压缩因子。 输入变量包括绝对压力、热力学温度和摩尔组成。 摩尔组成是以摩尔分数表示下列组分:CO 2、N 2 、H 2 、CO、CH 4 、C 2 H 6 、C 3 H 8 、 i-C 4H 10 、n-C 4 H 10 、i-C 5 H 12 、n-C 5 H 12 、n-C 6 H 14 、n-C 7 H 16 、n-C 8 H 18 。 2.2 模型适用条件 绝对压力:0MPa<P<12MPa 热力学温度:263K≤T≤338K 高位发热量:30MJ·m-3≤H S ≤45 MJ·m-3 相对密度:0.55≤d≤0.80 天然气中各组分的摩尔分数应在以下围: CH4:0.7≤x CH4 ≤1.0 N2:0≤x N2 ≤0.20 CO2:0≤x CO2 ≤0.20 C2H6:0≤x C2H6 ≤0.10 C3H8:0≤x C3H8 ≤0.035 C4H10:0≤x C4H10 ≤0.015 C5H12:0≤x C5H12 ≤0.005 C6H14:0≤x C6H14 ≤0.001 C7H16:0≤x C7H16 ≤0.0005 C8H18和更高碳数烃类: C8H18:0≤x C8H18 ≤0.0005 H2:0≤x H2 ≤0.10

CO :0≤x CO ≤0.03 如果已知体积分数组成,则应将其换算成摩尔分数组成。所有摩尔分数大于0.00005的组分都不可忽略。 2.3 模型描述 2.3.1 已知条件 绝对压力P 、热力学温度T 、组分数N ; 各组分的摩尔分数,i = 1~N ; 查附表1、2、3得到的以下数据: 58种物质的状态方程参数,, ,,,,,,, ; 14种识别组分的特征参数,,,,,,, ; 14种识别组分的二元交互作用参数, , , 。 2.3.2 待求量 压缩因子 Z 2.3.3 计算步骤 a) 第二维利系数B 的计算: 318 *2 111 B (K K ) n N N u n i j ij i j n i j a T x x B -====∑∑∑ 11*2 2(G 1g )(1)(F F 1f )(S S 1s )(WW 1w )n n n n n g q f s w nij ij n i j n i j n i j n i j n B QQ q =+-+-+-+-+-二元参数E ij 和G ij ,由以下两式计算: 1* 2 (E E )ij ij i j E E = *()/2 ij ij i j G G G G =+ b) 计算系数,n = 13~58 *2(1)()(1)n n n n n g q f u u n n n n n C a G g Q Q q F f U T -=+-+-+- 用以下方程求解混合方程,计算混合物参数U ,G ,Q 。 555 25 22 11 11 (2(1)())i i ij N N N i i j i i j U x E U E E -===+=+-∑∑∑ 1 *1 11 2(1)()N N N i i i j ij i j i i j i G x G x x G G G -===+=+-+∑∑ ∑

压缩空气带水处理

压缩空气带水处理 关键词:压缩空气系统;带水;干燥;结露;问题;处理 兴隆庄矿电厂压缩空气系统主要为气力输灰系统及布袋除尘器 喷吹系统提供压缩空气。主要包括三台螺杆式空气压缩机(型号分别为:s4-4100w一台、ga90两台、两台冷冻式空气干燥机(型号分别为:rs-120s,od-160w各一台),压缩空气主要用于两个方面: 1、用于气力输灰系统的控制用气和输送用气; 2、用于5#布袋除尘器的喷吹系统 压缩空气系统图(见图) 一、主要存在问题 自设备投运以来,压缩空气系统输送出的气体含水量较大,严重影响了输灰系统及喷吹系统的正常运行。出现的主要问题有:(一)压缩空气中含水量较大,造成储气罐排水量增大,由于排水均采用人工手动排水的方式,故增加职工的工作量,同时,排水阀门损坏率增加,不但增加材料消耗,同时由于更换排水阀门需临时停止压缩空气系统运行,在一定程度上制约了输灰系统的运行,冬天排水管结冰,需人工热水烫化。 (二)压缩空气中含水量较大,造成输灰系统控制气路带水严重,影响控制气路的正常运行,严重时造成控制气路瘫痪,冬天控制系统结冰,更易导致控制系统不能正常工作。 (三)压缩空气中含水量较大,造成输灰系统的输送气路带水严

重,造成仓泵流化盘内进水,滤布堵塞严重,延长输灰时间,增加压缩空气消耗,严重时造成仓泵无法正常走灰。 (四)压缩空气中含水量加大,造成喷吹系统带水严重,由于喷吹需要电磁阀控制,电磁阀进水后,不但影响电磁阀的寿命,同时影响电磁阀的动作,对喷吹系统造成影响。 (五)由于冬天汽温较低,压缩空气中含水量较大时,压缩空气管路中结冰严重,堵塞压缩空气管路,导致整个输灰系统及喷吹系统停止运行。 二、原因分析 针对压缩空气中水蒸气析出现象,进行热力学原理分析。(一)空气基本参数(冬季空压机房内) 压力:大气压温度:5℃ 湿度:30%(除灰系统设计值冬季为52%,雨雪雾天气更大)查大气露点水分含量表,空气含湿量: 6.797g/m3×30%=2.039g/m3 (二)冷干机出口压缩空气参数(假设:冷干机制冷效果良好,并且空气冷却析出水及时被过滤、排除) 压力:0.7mpa 温度:3℃ 查压力露点与大气露点换算图: 压缩空气大气露点:-18.2℃ 查大气露点水分含量表,-18.2℃温度下饱和空气含湿量:

压缩空气管径的选择

压缩空气管径的选择 1、平方单位上面压缩空气压力及速度的换算 公式:P=0.5ρV2 ρ---密度(压缩空气密度) V2---速度平方 P--静压(作用于物体表面) 2、压缩空气流量、流速的计算 流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。管径单位:mm 流速可用柏努力方程; Z+(V2/2g)+(P/r)=0 r=ρg V2是V的平方 ,是流速 Z是高度.(水平流动为0) ρ是空气密度. g是重力加速度=9.81 P是压力(MPa) 3、压缩空气管路配管应注意的事项 (1) 主管路配管时,管路须有1°~2°的倾斜度,以利于管路中冷凝水的排出。

(2) 配管管路的压力降不得超过空压机使用压力的5%,故配管时最好选用比设计值大的管路,其计算公式如下: 管径计算d= mm= mm 其中Q压-压缩空气在管道内流量m3/min V-压缩空气在管道内的流速m/s Q自-空压机铭牌标量m3/min p排绝-空压机排气绝压bar(等于空压机排气压力加1大气压) (3) 支线管路必须从主管路的顶端接出,以避免主管路中的凝结水下流至工作机械中或者回流至空压机中。 (4) 管路不要任意缩小或放大,管路需使用渐缩管,若没有使用渐缩管,在接头处会有扰流产生,产生扰流则会导致大的压力降,同时对管路的寿命也有不利影响。 (5) 空压机之后如果有储气罐及干燥机等净化缓冲设备,理想的配管顺序应是空压机+储气罐+干燥机。储气罐可将部分的冷凝水滤除,同时也有降低气体温度的功能。将较低温度且含水量较少的压缩空气再导入干燥机,则可减轻干燥机负荷。 (6) 若空气使用量很大且时间很短,最好另加装一储气罐做为缓冲之用,这样可以减少空压机加泄载次数,对空压机使用寿命有很大的益处。 (7) 管路中尽量减少使用弯头及各种阀类。 (8) 理想的配管是主管线环绕整个厂房,这样可以在任何位置均可以获得双方向的压缩空气。如在某支线用气量突然大增时,可以减少压降。除此之外,在环状主管线上应配置适当的阀组,以利于检修时切断之用。 (9) 多台空压机空气输出管道并联联网时,空压机输出端无须加装止回阀。

天然气压缩因子的计算 第3部分:用物性值进行计算(标准状态:现行)

I C S75.060 E24 中华人民共和国国家标准 G B/T17747.3 2011 代替G B/T17747.3 1999 天然气压缩因子的计算 第3部分:用物性值进行计算 N a t u r a l g a s C a l c u l a t i o no f c o m p r e s s i o n f a c t o r P a r t3:C a l c u l a t i o nu s i n gp h y s i c a l p r o p e r t i e s (I S O12213-3:2006,MO D) 2011-12-05发布2012-05-01实施中华人民共和国国家质量监督检验检疫总局

G B/T17747.3 2011 目次 …………………………………………………………………………………………………………前言Ⅰ1范围1………………………………………………………………………………………………………2规范性引用文件1…………………………………………………………………………………………3术语和定义1………………………………………………………………………………………………4计算方法1…………………………………………………………………………………………………附录A(规范性附录)符号和单位6 ………………………………………………………………………附录B(规范性附录)S G E R G-88计算方法描述9 ………………………………………………………附录C(规范性附录)计算示例17 ………………………………………………………………………… …………………………………………………………………………附录D(规范性附录)换算因子18附录E(资料性附录)管输气规范21 ………………………………………………………………………附录F(资料性附录)更宽范围的应用效果24 ……………………………………………………………

往复式压缩机方案汇总

1 工程概况 1.1 新建64万吨/年乙烯装置热区废碱氧化包(GB-501)内包含一套湿式氧化空气压缩机组,位号为CB-501X。本压缩机为四列、水冷式、M型少油润滑湿式氧化空气压缩机。四级压缩,将空气由常压压缩至4.83Mpa(G)。布置方式为单层平面布置,其整体结构简图见图1。 电机 1.2 主要的技术参数 1.2.1压缩机 1)排气量(吸入状态) 46 m3/min 2)各级吸入压力 0.001/0.128/0.513/1.636MPa(G) 3)各级排气压力 0.128/0.513/1.636/4.83MPa(G) 4)各级吸入温度 38/40/40/40 C° 5)各级排气温度 136/155/158/157 C°

6)冷却水进水温度 33 C° 7)冷却水排水温度≤43 C° 8)润滑油压力(G) 0.25~0。35MPa 9)进水压力(G) 0.45MPa(进出水压差0.2MPa) 10)压缩机转速 420r/min 11)轴功率 435Kw 12)活塞行程 240mm 13)各级气缸直径 610/430/270/175 mm 14)噪声(声功率级) ≤85Db(A) 15)最大零件重量(机身部件) 4276Kg 16)传动方式异步电机直联传动 17)主机外形尺寸(长、宽、高) 7990*6078*3836mm 1.2.2电动机 a.型号 YAKK6303-14WTH b.形式异步电动机 c.额定功率 500Kg d.额定电压 6000V e.同步转速 428r/min f.电机重量 9910Kg 2编制依据 2.1 《压缩机、风机、泵安装工程施工及验收规范》 GB50275-98 2.3 《化工机器安装工程施工及验收规范(中小型活塞式压缩机)》 HGJ206-92 2.4 《化工机器安装工程施工及验收规范(对置式压缩机)》》 HGJ204-83 2.5 《化工机器安装施工及验收规范(通用规定)》 HGJ203-83 2.6 湿式氧化空气压缩机组随机资料(沈阳远大压缩机制造有限公司)4M10(Y2).CM 2.7 MITSYBISHI HEAVY INDUSTRIES,LTD提供的废碱回收工艺包 (GB-501)的设计资料; 3 施工基本程序 往复式压缩机组施工程序见图3-1。 4 压缩机的主要结构特征: 4.1主要零部件 4.1.1机体由机身,中体组成,机身中体材料为灰铸铁.它们之间用螺栓连接成一体,并分

压缩空气基础知识

压缩空气净化系统技术问答汇编 一、相关知识 l一1什么叫饱和空气? 答:在一定的温度和压力下,湿空气中水蒸气的含量(即水蒸气密度)是有一定限度的;在某一温度下所含水蒸气的量达到最大可能含量时,这时的湿空气叫饱和空气。水蒸气未达最大可能含量时的湿气就叫未饱和空气。 l一2什么是大气压?什么是绝对压力?什么是表压力? 答:包围在地球表面一层很厚的大气层对地球表面或表面物体所造成的压力称为“大气压”,符号为B,直接作用于容器或物体表面的压力,称为“绝对压力”,绝对压力值以绝对真空作为起点,符号为PABS; 用压力表、真空表、u形管等仪器测出来的压力叫“表压力”(又叫相对压力,)“表压力”以大气压为起点,符号为Pg。 三者之间的关系是:PABS=B+Pg : 压力的法定单位是帕(Pa),大一些单位是兆帕(Mpa)1 MPa=106Pa ; 1标准大气压=0.1013MPa 在旧的单位制中,压力用kgf/cm2(公斤/平方厘米)作单位,1kd/cm2=0.098Mpa. 1—3什么叫温度?常用温度单位有哪些? 答:温度是物质分子热运动的统计平均值。 绝对温度:以气体分子停止运动时的最低极限温度为起点的温度,记为T。 单位为“开(开尔文)”,单位符号为K。 摄氏温度:以冰的融点为起点的温度,单位为“摄氏度”,单位符号为oC 此外英美国家还经常用“华氏温度”,单位符号为F。 温度单位之间的换算关系是:T(K)=t(℃)+273.16 t(F):1.8t(℃)+32 l一4什么叫空气的湿度?湿度有几种? 答:表示空气干湿程度的物理置叫“湿度”。“含湿量”。

常用的湿度表示方法直::绝对湿度”、“相对湿度” 在标准状态下,lm3容积中湿空气含有水蒸气的重量称为“绝对湿度”,单位是g/m3。绝对湿度只表明单位体积湿空气中。含有多少水蒸气,而不能表示湿空气吸收水蒸气的能力,即不能表示湿空气的潮湿程度。绝对湿度也就是湿空气中水蒸气的密度。 湿空气中实际所含的水蒸气量与同温度下最大可能含有水蒸气量的比值称为“相对湿度”,相对湿度φ在O一100%之间。φ值越小.空气越干燥,吸水能力越强。φ值越大,空气越潮湿。吸水能力越弱。 1—5什么含湿量?含湿量怎样计算? 答:在湿空气中,Ikg干空气含有水蒸气的重量叫做“含湿量”,常用d来表示,单位:g/kg干空气。含湿量的计算公式是: 式中:p--空气压力(Pa),Ps一水蒸气分压力(Pa).Psb—饱和水蒸气分压(Pa),φ一相对湿度(%)。 从上式可以看出,含湿量d几乎同水蒸气分压力Ps成正比,而同空气总压力P成反比。d确切反映了空气中含有的水蒸气量的多少。由于在某一地区,大气压力基本上是定值.所以空气含湿量仅同水蒸气分压力Ps有关. 1一6什么是空气的标准状态? 答:在温度t=20℃,绝对压力P=0.1Mpa,相对湿度…p=65%时的空气状态叫空气的标准状态。 在标准状态下,空气密度是1.185kg/m3。(空压机排气量、干燥机、过滤器等后处理设备的处理能力都是以空气标准状态下的流量来标注的,单位写作Nm3/min也可以m3/min后加ANR)。 实际空气状态与标准状态通过状态方程进行转换。状态方程有多种形式。其中一种形式是 式中:P--气体的绝对压力(Pa),V一气体的比容(m?/kg),T--气体的温度(K) (单位符号带脚标0的是标准状态参量,带l的是实际状态参量) 因为加压前后空气质量是不变的。利用状态方程可以计算出加压后空气的体积: 1—7什么是压缩空气?有哪些特点? 答:空气具有可压缩性,经空气压缩机做机械功使本身体积缩小,压力提高后的空气叫压缩空气。压缩空气是一种重要的动力源。与其它能源比,它具有下列明显的特点:清晰透明,输送方便,没有特殊的有害性能.没有起火危险,不怕超负荷,能在许多不利环境下工作,空气在地面上到处都有,取之

带压缩因子的粒子群算法

主程序: %------基本粒子群优化算法(Particle Swarm Optimization)----------- %------名称:带压缩因子的粒子群优化算法(PSO) %------作用:求解优化问题 %------说明:全局性,并行性,高效的群体智能算法,提高解的精度 %------初始格式化-------------------------------------------------- clear all; clc; format long; %------给定初始化条件---------------------------------------------- %c1=1.4962; %学习因子1 c1=3; c2=2; %c2=1.4962; %学习因子2 w=0.7298; %惯性权重 MaxDT=100; %最大迭代次数 D=6; %搜索空间维数(未知数个数) N=20; %初始化群体个体数目 eps=10^(-6); %设置精度(在已知最小值时候用) phi=c1+c2; if phi<=4 disp('c1与c2的和必须大于4! '); xm=NaN; fv=NaN; return; end %------初始化种群的个体(可以在这里限定位置和速度的范围)------------ for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------先计算各个粒子的适应度,并初始化Pi和Pg---------------------- figure(3) for i=1:N P(i)=fitness2(x(i,:)); y(i,:)=x(i,:); end Pg=x(N,:); %Pg为全局最优 for i=1:(N-1) if fitness2(x(i,:))

西安交通大学 往复式压缩机 期末考试

1.从原理、结构、用途上如何划分压缩机? 答:原理:容积式压缩机和动力式压缩机。 结构: 用途:①动力用压缩机②化工工艺用压缩机③制冷和气体分离用压缩机④气体输送用压缩机 2.为什么要定义级的理论循环?级的理论循环是如何定义的?说明研究分析压 缩机时理论循环的意义? 答:原因:? 如何定义:①无余隙容积②进排气过程无流动阻力损失③进排气过程无气流脉动④进排气过程无热交换⑤无泄漏⑥过程指数为常数 意义:是研究压缩机实际工作过程的基础。 3.级的实际循环与理论循环的差别是什么?为什么会有这些差别? 答:①存在气体膨胀线(存在余隙容积) ②进气过程线低于名义进气压力线,排气过程线高于名义排气压力线,且有非直线(存在进排气压力损失及压力脉动) ③压缩、膨胀过程的过程指数是变化的(由于泄漏、传热等的影响) 4.压缩机实际循环指示图? 答:

5.进气系数的意义是什么?在指示图中如何表示?理想气体的容积系数、压力 系数、温度系数关系式? 答:意义:实际进气量Vs与理论进气量Vh的比值称为进气系数。 在指示图如何表示:将折算到名义进气温度下的实际循环进气量Vs,Vh 在图中已表示。 容积系数:压力系数: 温度系数:其中,是将折算到名义压力P1下的容积。 补:分析影响容积系数的诸因素? 答:①相对余隙容积 ②压力比 ③膨胀系数(热交换起决定作用,m大趋向绝热。高转速来不及换热,趋近绝热;压比高因壁温高,m小;冷却好的,气体与气缸温差小,趋近绝热;气体漏入,m小;气体漏出,m大) ④实际气体 6.分析影响实际循环指示功的诸因素? 答:①进排气压力损失②泄漏和传热影响③进气系数影响 7.为什么要多级压缩?如何确定级数和各级压力比? 答:原因:①提高压缩机经济性 ②降低排气温度 ③提高容积效率 ④降低气体作用力 如何确定级数:①对于大型连续运转压缩机,省功最重要 ②对于微小型压缩机,成本低、价格低最重要 ③保证运转可靠,机器寿命高,各级压比不应过高 ④对温度要求严格的特殊压缩机,级数多少取决于排气温度 限制 如何确定压力比:实际压缩机中存在压力损失、回冷不完善、余隙容积、热 交换、泄漏等,实际压力比并非是等压比分配。按等压比 分配或等功原则分配压力比可以使压缩机总指示功最小。 (注:为使各级排气温度不致过高,应适当增加第一级压比

如何计算压缩空气含水量

如何计算压缩空气含水 量 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

如何计算压缩空气含水量 关于压缩空气中含水值的计算与比较 1.在大气温度30℃,相对湿度70%的条件下,min的空压机: 24小时吸入水量=g1*70%**60*24=*70%**60*24=。 ( 由大气压力露点/水份含量表查出30℃下含水量g1为 m3) 2.通过冷冻式干燥机后的压力露点大概为15℃,在压力下: 通过冷干机后24小时含水量= g2**60*24=**60*24=38.63kg (在此温度下大气露点为-13℃,由大气露点/水份含量表查出g2为1.8764g/ m3。.) 3.通过吸附式干燥机后压力露点为-35℃,在压力 MPa下: 通过吸干机后24小时含水量=g3**60*24=**60*24=0.824kg (在此压力露点下大气露点为-53℃,由大气露点/水份含量表查出g3为0.04g/m3。.) 以上计算的是压缩空气中的饱和含水量,除了以上38.63Kg的水通过冷冻式干燥机进入后压缩空气管道外,其余378.93Kg水中除了一部分被过滤器、冷干机、贮气罐的排水阀排除外,还有相当一部分也进入了后压缩空气管道,经过温差的不断变化,冷冻式干燥机后除了潮湿的压缩空气以外,还有大量的液态水出现,对设备及生产带来了极大的危害。因此只有通过吸附式干燥机才能从根本上将压缩空气中的水份吸附排除,从而从根本上解决压缩空气中的水份对设备及生产的危害。 露点——指气体中的水份从未饱和水蒸气变成饱和水蒸气的温度。当未饱和水蒸气变 成饱和水蒸气时,有极细的露珠出现,出现露珠时的温度叫“露点”,表示气体中的含水量。 ? 露点分为压力露点和大气压力露点 压力露点——在该压力下水份凝结温度。 大气压力露点——在大气压力下水份的凝结温度。 露点与压力有关,与温度无关

第3章 往复式压缩机

第3章往复式压缩机 一、填空题 1.往复式压缩机由()、()、()和()四部分组成。 2.往复式压缩机的工作腔部分主要由()、()和()构成。 3.往复式压缩机的传动部分是把电动机的()运动转化为活塞的()运动。 4.往复式压缩机的传动部分一般由()、()和()构成。 5.曲柄销与连杆()相连,连杆()通过十字头销与十字头相连,最后由十字头与()相连接。 6.第一级吸入管道处的气体压力称为活塞压缩机的();末级排出接管处的气体压力称为活塞压缩机的()。 7.被压缩气体进入工作腔内完成一次气体压缩称为一()。 8.理论工作循环包括()、()、()三个过程。 9.实际工作循环包括()、()、()和()四个过程。 10.影响压力系数的主要因素一是吸气阀处于关闭状态时的(),另一个是进气管道中的()。 11.温度系数的大小取决于进气过程中加给气体的热量,其值与()及该级的()有关。 12.活塞运动到达主轴侧的极限位置称为();活塞运动到达远离主轴侧的极限位置称为()。 13.活塞从一个止点到另一个止点的距离为()。 14.泄漏系数表示()、()、()以及管道、附属设备等因密封不严而产生的气体泄漏对气缸容积利用程度的影响。 15.采用多级压缩可以节省功的主要原因是进行()。 16.理论上讲,级数越(),压缩气体所消耗的功就越()等温循环所消耗的功。 17.压缩机的排气温度(),会使润滑油粘性降低,性能恶化或形成积炭等现象。 18.压缩机的级数越多,其结构越(),同时机械摩擦损失、流动阻力损失会(),设备投资费用也(),因此应合理选取级数。 19.多级压缩过程中,常取各级压力比(),这样各级消耗的功(),而压缩机的总耗功()。 20.活塞与气缸之间需采用()密封,活塞杆与气缸之间需采用()密封。 21.往复压缩机常用的润滑方式有()润滑、()润滑和()润滑。

相关主题