搜档网
当前位置:搜档网 › 2014高考二轮复习函数与导数专题(理科普通班)

2014高考二轮复习函数与导数专题(理科普通班)

2014高考二轮复习函数与导数专题(理科普通班)
2014高考二轮复习函数与导数专题(理科普通班)

肥东锦弘中学2014届高三二轮复习专题二——函数与导数

一 函数的概念

1 函数)

12(log 1)(2

1+=x x f 的定义域是 2 函数)(x f 的定义域是][2,0,则函数x

x f x g ln )2()(=的定义域是 3 函数?????<+≥=4

),1(4,)21()(x x f x x f x ,则)5log 1(2+f 的值为

4 求下列函数的值域

(1)1(0)y x x x =+>; (2)4

32++=x x x y (3)2552+++=x x x y ; (4)22232(0)(1)

k k y k k ++=>+ 5 设函数2()2()g x x x R =-∈,()4()()()()g x x x g x f x g x x

x g x ++

二 函数的性质 1 已知函数???<<≥+-=1

0,log 1,)12()(x x x a x a x f a ,若)(x f 在)(0,+∞上单调递减,则实数a 的取值范围为

2 已知定义在R 上的奇函数)(x f 和偶函数)(x g 满足)0(2)()(>+-=+-a a a x g x f x x 且1≠a ,若a g =)2(,则=)2(f

3 已知定义在R 的函数)(x f ,且函数)3(-=x f y 的图像关于点)(0,3对称,当0≥x 时,x x x f 2)(2+=,若)()2(2a f a f >-,则实数a 的取值范围

4 设函数1

sin )1()(22+++=x x x x f 的最大值是M ,最小值是m ,则=+m M 5 已知定义在R 上的偶函数)(x f 满足)2()()4(f x f x f +=+,且在区间[0,2]上是减函数,有下列命题:

(1)0)2(=f ; (2) 函数)(x f 的图象关于直线4-=x 对称;

(3)函数)(x f 在(8,10)上单调递增;

(4)若关于x 的方程m x f =)(在区间[-6,2]的两根为21,x x ,则这两根之和为-8.

其中正确的命题是

6.已知定义域为),0(+∞的函数)(x f 满足:

(1)对),0(+∞∈?x ,恒有)(2)2(x f x f =成立;(2)当(]2,1∈x 时,x x f -=2)(,给出如下结论.

○1对0)2(=∈?m f Z m ,有 ○2[)∞+,值域为0)(x f

○39)12(,=+∈?n f Z n 使得 ○4())(2,2)(1Z k x f k k ∈+在是减函数 其中所有正确结论的序号是

三 函数的图像

1 函数x

x x f x 12

)(2log --=的大致图像是

2 如图是函数)(x q 的图像的一部分,设函数x x g x x f 1)(,sin )(=

=,则)(x q 是 A )()(x g x f B )()(x g x f C )()(x g x f - D )()(x g x f +

四 函数的零点

1 函数2cos )(x x x f =在区间][4,0上的零点个数

2 函数)(x f 的周期为2,当][2,0∈x 时,2)1()(-=x x f ,则函数)(1l o g )()(5R x x x f x g ∈--=的所有零点之和是

3 已知函数是定义在R 上的奇函数,当0>x 时,?????>-≤<-=-2),2(2

120,12)(1x x f x x f x ,则函数1)()(-=x xf x g 在区间)[∞+-,6上的所有零点之和 4 定义域为R 的函数()f x 的图像关于1x =对称,当[0,1]x ∈时,()f x x =,且对

任意的x R ∈都有(2)()f x f x +=-,2013()0()log ()0

f x x

g x x x >?=?--

5 已知函数()ln f x x =,120x x <<,

证明:存在012(,)x x x ∈,使得21021

()()()f x f x f x x x -'=- 五 导数的定义及几何意义

1 函数()f x 的定义域为R ,(0)2f =,且对任意的x R ∈,()()1f x f x '+>,则不

等式()1x x e f x e >+的解集为( )

A. (0,)+∞

B. (,0)-∞

C. (,1)(1,)-∞-+∞

D. (,1)(0,1)-∞-

2 函数2(0)y x x =>的图像在()2,k k a a 处的切线与x 轴交点横坐标为1k a +,其中*k N ∈,若116a =,则135a a a ++=

3 已知函数)(x f y =是定义在实数集R 上的奇函数,且当()0,∞-∈x 时

)()('x f x xf -<成立,若)4

1(log 41log ),3(lg 3lg ),3(322f c f b f a ===,则c b a ,,大小关系是

4 已知函数32()3f x ax bx x =+-在1x =±处取得极值

(1)求函数()f x 的解析式。

(2)若过点(1,)(2)M m m ≠-可作曲线的三条切线,求实数m 的取值范围。

六 函数的单调性,极值与最值

1 设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性

2 已知函数32()3f x x ax bx =-++在[0,1]上单调递减,则22a b +的最小值为

3 已知函数)0(ln 1)(<--=a x a x x f

(1)确定函数)(x f y =的单调性

(2)若对任意(]21211,0,x x x x ≠∈且,都有2121114)()(x x x f x f -<-,求实数a 的取值范围。

4 已知函数d cx bx x x f +++=

233

1)(,设曲线)(x f y =上与x 轴交点处切线为124-=x y ,)('x f 为)(x f 的导函数,满足)2()0(''f f =

(1)求)(x f 的解析式

(2)设函数)()('x f x x g =,求函数)(x g 在]2,2

1???上的值域 (3)设函数22

)()(x a x f x h +=,若)(x h 在区间[]2,1不是单调函数,求实数a 的范围

七 恒成立问题

1 已知函数323()1()2

f x ax x x R =-+∈,其中0a > (1)若1a =,求曲线()y f x =在点(2,(2))f 处的切线;

(2)若在区间11[,]22

-上,()0f x >恒成立,求a 的取值范围。

2 函数x e ax e x f x 22)(-+=

(1)若曲线)(x f y =在点))2(,2(f 处的切线平行于x 轴,求函数)(x f 的单调区间

(2)若)1,0(∈x 时,总有1)(2+->x e xe x f x ,求实数a 的取值范围

3 已知函数322()(0)f x x ax a x m a =+-+>,若对任意的[3,6]a ∈,不等式()1f x ≤在[2,2]-恒成立,求实数m 的取值范围。

4 已知函数()(0)b f x ax c a x

=++>的图像在点(1,(1))f 处的切线方程为1y x =- (1)用a 来表示b c 、;

(2)若()ln f x x ≥在[)1,+∞上恒成立,求a 的取值范围;

(3)证明:1111ln(1)(1)232(1)n n n n n ++++>++≥+

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

函数与导数知识点总结

函数与导数 1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。 2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性; ⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数分解为基本函数:内函数与外函数; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 注意:外函数的定义域是内函数的值域。 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5.函数的奇偶性 ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件; ⑵是奇函数; ⑶是偶函数; ⑷奇函数在原点有定义,则; ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义: ①在区间上是增函数当时有; ②在区间上是减函数当时有; ⑵单调性的判定 1 定义法: 注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分); ③复合函数法(见2 (2)); ④图像法。 注:证明单调性主要用定义法和导数法。 7.函数的周期性 (1)周期性的定义: 对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期。 所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周(2)三角函数的周期: ⑶函数周期的判定 ①定义法(试值)②图像法③公式法(利用(2)中结论) ⑷与周期有关的结论

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

(完整版)导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

高考数学函数与导数复习指导

2019高考数学函数与导数复习指导 函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中,函数类试题在试题中所占分值一般为22---35分。一般为2个选择题或2个填空题,1个解答题,而且常考常新。 在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。 在解答题中通常考查函数与导数、不等式的综合运用。其主要表现在: 1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。 2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。 3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。 4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。 5.涌现了一些函数新题型。 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素 养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练

工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 8.求极值,函数单调性,应用题,与三角函数或向量结合。

高考复习文科函数与导数知识点总结

函数与导数知识点复习测试卷(文) 一、映射与函数 1、映射 f :A →B 概念 (1)A 中元素必须都有________且唯一; (2)B 中元素不一定都有原象,且原象不一定唯一。 2、函数 f :A →B 是特殊的映射 (1)、特殊在定义域 A 和值域 B 都是非空数集。函数 y=f(x)是“y 是x 的函数”这句话的数学 表示,其中 x 是自变量,y 是自变量 x 的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象, 也有只能用文字语言叙述.由此可知函数图像与垂直x 轴的直线________公共点,但与垂直 y 轴的直线公共点可能没有,也可能是任意个。(即一个x 只能对应一个y ,但一个y 可以对应多个x 。) (2)、函数三要素是________,________和________,而定义域和对应法则是起决定作用的要素, 因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二、函数的单调性 在函数f (x )的定义域内的一个________上,如果对于任意两数x 1,x 2∈A 。当x 1

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

函数与导数知识点

函数与导数知识点 【重点知识整合】 1.导数的定义:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数()y f x =相 应地有增量)()(00x f x x f y -?+=?, 如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率)有极限即x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在 0x x →处的导数,记作0 x x y =',即 0000 ()() ()lim x f x x f x f x x ?→+?-'=?. 注意:在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因此,导数的定义式可写 成 000000 ()()()() ()lim lim x o x x f x x f x f x f x f x x x x ?→→+?--'==?-. 2.导数的几何意义: 导数 0000 ()() ()lim x f x x f x f x x ?→+?-'=?是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处 变化的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00 x f x )处的切线的斜率.因此,如果)(x f y =在点0 x 可导,则曲线)(x f y =在点()(,00 x f x )处的切线方程为 000()()()y f x f x x x -='- 注意:“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不相同的,后者A 必为切点,前者未必是切点. 3.导数的物理意义: 函数()s s t =在点 0t 处的导数0(),s t '就是物体的运动方程()s s t =在点0t 时刻的瞬时速度v ,即0().v s t '= 4.几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=; 1(ln )x x '= ; 1 (log )log a a x e x '=; ()x x e e '= ; ()ln x x a a a '=. 5.求导法则: 法则1: [()()]()()u x v x u x v x ±'='±'; 法则2: [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=; 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ???.

2022年高考数学总复习:导数与函数的综合问题

第 1 页 共 15 页 2022年高考数学总复习:导数与函数的综合问题 命题点1 证明不等式 典例 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1; (2)证明:(x -ln x )f (x )>1-1e 2. 证明 (1)由题意得g ′(x )= x -1x (x >0), 当01时,g ′(x )>0, 即g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1e x ,得f ′(x )=x -2e x , 所以当02时,f ′(x )>0, 即f (x )在(0,2)上为减函数,在(2,+∞)上为增函数, 所以f (x )≥f (2)=1-1e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e 2. 命题点2 不等式恒成立或有解问题 典例 已知函数f (x )=1+ln x x . (1)若函数f (x )在区间? ???a ,a +12上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围. 解 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln x x 2, 令f ′(x )=0,得x =1. 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.

2019年最新高考数学二轮复习 题型练8 大题专项(六)函数与导数综合问题 理(考试专用)

题型练8 大题专项(六)函数与导数综合问题1.(2018北京,理18)设函数f(x)=[ax2-(4a+1)x+4a+3]e x. (1)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a; (2)若f(x)在x=2处取得极小值,求a的取值范围. 2.已知a≥3,函数F(x)=min{2|x-1|,x2-2ax+4a-2},其中min{p,q}= (1)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范围; (2)①求F(x)的最小值m(a); ②求F(x)在区间[0,6]上的最大值M(a). 3.已知函数f(x)=x3+ax2+b(a,b∈R).

(1)试讨论f(x)的单调性; (2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪,求c的值. 4.已知a>0,函数f(x)=e ax sin x(x∈[0,+∞)).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明: (1)数列{f(x n)}是等比数列; (2)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立. 5.(2018天津,理20)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间;

(2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明 x1+g(x2)=-; (3)证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. 6.设函数f(x)=,g(x)=-x+(a+b)(其中e为自然对数的底数,a,b∈R,且a≠0),曲线y=f(x)在点(1,f(1))处的切线方程为y=a e(x-1). (1)求b的值; (2)若对任意x∈,f(x)与g(x)有且只有两个交点,求a的取值范围.

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

2012函数与导数(较难)含答案)

函数与导数问题解题方法探寻及典例剖析【考情分析】 【常见题型及解法】 1. 常见题型 2. 在解题中常用的有关结论(需要熟记):

【基本练习题讲练】 【例1】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发 现乌龟快到终点了,于是急忙追赶,但为时已晚 乌龟还是先到达了终点……用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( ) 【答案】 B 【解析】在选项B 中,乌龟到达终点时,兔子在同一时间的路程比乌龟短.【点评】函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力, 在复习时应引起重视. 【例2】(山东高考题)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若 方程 ()(0 f x m m =>在区间 [8,8 -上有四个不同的根 123,,,x x x x ,则 1234 _________.x x x x +++= A B C D

【例3】若1x 是方程lg 3x x +=的解,2x 是310=+x x 的解,则21x x +的值为( ) A . 2 3错误!未指定书签。 B . 3 2 C .3 D . 31 【例4】若函数 ()(01)x f x a x a a a =-->≠且有两个零点,则实数a 的取值范围是 . 【例 5】已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1 ()3 f 的x 取值范围是( ) (A )( 1,2) (B) [1,2) (C)(1,2) (D) [1,2)

函数与导数的综合应用

函数与导数的综合应用 命题动向:函数与导数的解答题大多以基本初等函数为载体,综合应用函数、导数、方程、不等式等知识,并与数学思想方法紧密结合进行深入考查,体现了能力立意的命题原则. 这几年,函数与导数的解答题一直作为“把关题”出现,是每年高考的必考内容,虽然是“把关题”,但是同其他解答题一样,一般都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难.从近几年的高考情况看,命题的方向主要集中在导数在研究函数、方程、不等式等问题中的综合应用. 题型1利用导数研究函数性质综合问题 例1 [2016·山东高考]设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ), 求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 解题视点 (1)求出g (x )的导数,就a 的不同取值,讨论导数的符号;(2)f ′(x )=ln x -2a (x -1),使用数形结合方法确定a 的取值,使得在x <1附近f ′(x )>0,即ln x >2a (x -1),在x >1附近ln x <2a (x -1). 解 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).则g ′(x )=1 x -2a =1-2ax x . 当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x ) 单调递增; 当a >0时,x ∈??? ?0,1 2a 时,g ′(x )>0,函数g (x )单调递增, x ∈????12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为????0,12a ,单调减区间为??? ?1 2a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =1处取得极小值,不合题意. ②当01,由(1) 知f ′(x )在????0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,x ∈????1,1 2a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在??? ?1,1 2a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,1 2a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<1 2a <1,当x ∈????12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )在x =1处取得极大值,符合题意. 综上可知,实数a 的取值范围为????12,+∞. 冲关策略 函数性质综合问题的难点是函数单调性和极值、最值的分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 题型2利用导数研究方程的根(或函数的零点) 例2 [2017·全国卷Ⅰ]已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解题视点 (1)先求函数f (x )的定义域,再求f ′(x ),对参数a 进行分类讨论,由f ′(x )>0(f ′(x )<0),得函数f (x )的单调递增(减)区间,从而判断f (x )的单调性;(2)利用(1)的结论,并利用函数的零点去分类讨论,即可求出参数a 的取值范围. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅱ)若a >0,则由f ′(x )=0得x =-ln a .

高中数学函数与导数章节知识点总结

高中数学导数章节知识点总结 考点1:与导数定义式有关的求值问题 1:已知 等于 A. 1 B. C. 3 D. 1.已知 ,则 的值是______ . 考点2:导数的四则运算问题 1:下列求导运算正确的是 A. B. C. D. 2:已知函数,为 的导函数,则 的值为______. 考点3:复合函数的导数计算问题 1:设 ,则 A. B. C. D. 2:函数的导函数 ______ 考点4:含)('a f 的导数计算问题 1:已知定义在R 上的函数 ,则 A. B. C. D. 2:设函数满足,则 ______. 考点5:求在某点处的切线方程问题 1:曲线在点处的切线方程为 A. B. C. D. 2:曲线在处的切线方程为_________________. 考点6:求过某点的切线方程问题 1:已知直线过原点且与曲线相切,则直线斜率 A. B. C. D. 2:若直线过点)1,0(-且与曲线x y ln =相切,则直线方程为:

考点7:根据相切求参数值问题 1:已知直线与曲线相切,则a 的值为 A. 1 B. 2 C. D. 2:若曲线在点处的切线平行于x 轴,则 ________. 考点8:求切线斜率或倾斜角范围问题 1:点P 在曲线3 2)(3 +-=x x x f 上移动,设P 点处的切线的倾斜角为α,则α的取值范围是 ( ) A. ?? ????2,0π B. ),4 3[)2,0[πππY C.),43[ ππ D. ]4 3,2(π π 2:在曲线的所有切线中,斜率最小的切线方程为_______ 考点9:求曲线上点到直线距离的最值问题 1:已知P 为曲线x y C ln :=上的动点,则P 到直线03:=+-y x l 距离的最小值为( ) A. 2 B. 22 C.2 D. 3 考点10:求具体函数的单调区间问题 1:函数x e x x f )1()(+=的单调递增区间是 A. ),2[+∞- B. ),1[+∞- C. D. 2:函数x x x f ln )(=的单调减区间为 考点11:已知单调性,求参数范围问题 1:已知函数 在区间 上是增函数,则实数m 的取值范围为 A. B. C. D. 2:若函数在区间上单调递增,则实数a 的取值范围是______. 考点12:解抽象不等式问题 1:已知函数是函数 的导函数, ,对任意实数都有,则不等 式 的解集为 A. B. C. D. 2:函数的定义域为R ,且 , ,则不等式 的解集为______ . 考点13:求具体函数的极值问题 1:函数 ,则 A. 为函数的极大值点 B. 为函数的极小值点 C. 为函数 的极大值点 D. 为函数 的极小值点

2018数学高考(文)二轮复习检测:题型练8大题专项 函数与导数综合问题 Word版含

题型练8大题专项(六) 函数与导数综合问题 1.(2017全国Ⅰ,文21)已知函数f(x)=ex(ex-a)-a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围. 2.设f(x)=xlnx-ax2+(2a-1)x,a∈R. (1)令g(x)=f'(x),求g(x)的单调区间; (2)已知f(x)在x=1处取得极大值.求实数a的取值范围. 3.已知函数f(x)=x3+ax2+b(a,b∈R). (1)试讨论f(x)的单调性; (2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪,求c的值. 4.已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0. (1)设g(x)是f(x)的导函数,讨论g(x)的单调性; (2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 5.已知函数f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x)(a∈R). (1)若不等式f(x)≥g(x)恒成立,求实数a的取值范围. (2)若函数h(x)有两个极值点x 1,x 2. ①求实数a的取值范围;

②当x 1∈时,求证:h(x 1)-h(x 2)>-ln 2. 6.设函数f(x)=,g(x)=-x+(a+b)(其中e为自然对数的底数,a,b∈R,且a≠0),曲线y=f(x)在点(1,f(1))处的切线方程为y=ae(x-1). (1)求b的值; (2)若对任意x∈,f(x)与g(x)有且只有两个交点,求a的取值范围. ## 题型练8大题专项(六) 函数与导数综合问题 1.解(1)函数f(x)的定义域为(-∞,+∞),f'(x)=2e2x-aex-a2=(2ex+a)(ex-a). ①若a=0,则f(x)=e2x,在区间(-∞,+∞)单调递增. ②若a>0,则由f'(x)=0得x=lna. 当x∈(-∞,lna)时,f'(x)<0;当x∈(lna,+∞)时,f'(x)>0.故f(x)在区间(-∞,lna)单调递减,在区间(lna,+∞)单调递增. ③若a<0,则由f'(x)=0得x=ln. 当x∈时,f'(x)<0; 当x∈时,f'(x)>0. 故f(x)在区间单调递减,在区间单调递增. (2)①若a=0,则f(x)=e2x,所以f(x)≥0.

相关主题