搜档网
当前位置:搜档网 › 为何H2O的熔沸点比HF高

为何H2O的熔沸点比HF高

为何H2O的熔沸点比HF高
为何H2O的熔沸点比HF高

为何H2O的熔沸点比HF高

三明第一中学严业安

【摘要】H20的熔沸点比HF高的主要原因有:一是两者形成的氢键数目不同,每摩尔H20形成氢键的总数比每摩尔液态HF多;二是熔化或沸腾时两者破坏氢键的程度不同。

【关键词】H20;HF;氢键;熔沸点

一、问题的提出

普通高中课程标准实验教科书·化学(选修)《物质结构与性质》中指出,“一般来说,结构和组成相似的物质,随着相对分子质量的增加,范德华力逐渐增强。范德华力越强,物质的熔点、沸点越高。”但是,V A 族、VIA族、VIIA族元素氢化物的熔沸点的递变却与以上事实不完全符合[1]。HF的沸点按沸点曲线的下降趋势应该在-90℃以下,而实际上是20℃;H20的沸点按沸点曲线的下降趋势应该在-70℃以下,而实际上是100℃[2]。”图1[3]表明,NH

、H20和HF的熔点变化也是如此反常。NH3、H20和HF的熔点、沸点异常地高,这是

3

由于这些分子间存在着氢键的缘故。氢键的作用能一般不超过40 kJ·mol-1,比化学键的键能小得多,比范德华力的作用能大一些。H—O键的平均键能为460 kJ·mol-1,而冰中O—H…O氢键的作用能为18.8 kJ·mol-1;H—F键的平均键能为568 kJ·mol-1,而(HF)n中F—H…F氢键的作用能为28.1kJ·mol-1[4]。就氢键强度而言,F—H…F

大于O—H…O,那么又该如何解释H20的熔点、沸点(分别为0℃和100℃)比HF(分别为-83.1℃和19.5℃)高的事实呢?

图1 结构相似的氢化物熔点(a)与沸点(b)变化

带着这个疑问,笔者查阅了大学化学教材和有关化学文献,对氢键的本质以及H20的熔沸点比HF高的反常现象做一些初浅探讨。

二、氢键的本质

氢键是一种既可存在于分子之间又可以存在于分子内部的作用力。当H原子与电负性很大、半径很小的原子X以共价键结合成分子时,密集于两核间的电子云(或称共用电子对)强烈地偏向于X原子,使H原子几乎变成裸露的质子而具有大的正电荷场强。当另一个电负性大、半径小并在外层有孤对电子的Y原子接近H 时,就会产生静电引力,形成X—H……Y结构,其中H原子与Y原子间的静电吸引作用(虚线所示)称为氢

键(hydrogen bond)。例如,在HF分子中,由于F原子吸引电子的能力很强,H—F键的极性很强,共用电子对强烈地偏向F原子,亦即H原子的电子云被F原子吸引,使H原子几乎成为“裸露”的质子。这个半径很小、带部分正电荷的H核,与另一个HF分子带部分负电荷的F原子相互吸引,这种静电吸引作用就是氢键,如图2所示。

图2 HF分子间的氢键

通常用X—H…Y表示氢键,X—H表示氢原子和X原子以共价键相结合,而H…Y则是一种较强的有方向性的分子间作用力。其中,X和Y代表电负性大而原子半径小的非金属原子,如F、O、N等。氢键的键长是指X和Y的距离,氢键的键能是指把X—H…Y—R分解为X—H和Y—R所需的能量。氢键的键能一般比化学键的键能要小得多,比分子间作用力稍强,所以通常人们把氢键看作是一种比较强的分子间作用力。氢键的强弱与X、Y原子的电负性及半径大小有关。X、Y原子的电负性愈大、半径愈小,形成的氢键愈强。例如,氟原子的电负性最大而半径很小,所以氢键中的F—H—F是最强的氢键。在F-H、O-H、N-H、C-H系列中,形成氢键的能力随着与氢原子相结合的原子的电负性的降低而递降。

氢键与共价键及分子间作用力的不同点主要表现在以下两个方面:

(1)饱和性和方向性

所谓饱和性是指H原子形成1个共价键后,通常只能再形成1个氢键。这是因为H原子比X、Y原子小得多,当形成X—H…Y后,第二个Y原子再靠近H原子时,将会受到已形成氢键的Y原子电子云的强烈排斥。而氢键的方向性是指以H原子为中心的3个原子X—H…Y尽可能在一条直线上,这样X原子与Y原子间的距离较远,斥力较小,形成的氢键稳定。因此可将氢键看作是较强的、有方向性和饱和性的分子间作用力。

例如,在水分子中,一个水分子可形成四个氢键,如图3所示,O—H只能和一个O原子相结合而形成O—H…O键,H原子非常小,第三个O原子在靠近它之前,就早被已结合的O原子排斥开了,因此氢键具有饱和性。此外,当O原子靠近O—H键的H原子形成氢键时,尽可能使O—H…O保持直线型,才能吸引得牢,所以氢键又具有方向性。

图3 水分子间的氢键

(2)适应性和灵活性

氢键的键能介于共价键和范德华力之间,它的形成不象共价键那样需要严格的条件,它的结构参数如键长、键角和方向性等各个方面都可以在相当大的范围内变化,具有一定的适应性和灵活性。氢键的键能虽然不大,但对物质性质的影响却很大,其原因有二:①由于物质内部趋向于尽可能多地生成氢键以降低体系的能量,即在具备形成氢键条件的固体、液体甚至气体中都趋向于尽可能多地生成氢键(可称为形成最多氢键原

理);②因为氢键的键能小,它的形成和破坏所需要的活化能也小,加上形成氢键的空间条件比较灵活,在物质内部分子间和分子内不断运动变化的条件下,氢键仍能不断地断裂和形成,在物质内部保持一定数量的氢键结合[5]。

氢键通常是物质在液态时形成的,但形成后有时也能继续存在于某些晶态甚至气态物质之中。例如在气态、液态和固态的HF 中都有氢键存在。能形成氢键的物质相当广泛,在HF 、H 20、NH 3、水合物、氨合物、无机含氧酸、有机羧酸、醇、胺、蛋白质以及某些合成高分子化合物等物质的分子之间都有氢键。氢键的形成对物质的各种物理化学性质都会发生深刻的影响,在人类和动植物的生理生化过程中也起着十分重要的作用。

三、H 20的熔沸点高于HF 的原因分析

分子间能形成氢键的物质,一般都具有较高的熔点和沸点。这是因为固体熔化或液体气化时除了破坏范德华力外,还必须破坏分子间氢键,从而需要消耗更多的能量。所以在同类化合物中能形成分子间氢键的物质,其熔点、沸点比不能形成分子间氢键的化合物来得高。计算表明,氢键的键能要占水分子之间的分子间作用力总量的5/6。H 20和HF 的熔点、沸点异常地高,就是由于这些分子间存在着氢键的缘故。

物质分子间若形成氢键,有可能发生缔合现象。例如,在HF 晶体中,它是由锯齿形链状多聚体组成:

液态HF 在通常条件下,除了正常简单的HF 分子外,还有通过氢键相连而成的

缔合分子(HF )n :

nHF (HF)n ,其中n 可以是2,3,4,……。H 20分子之间也有缔合现象,nH 2

0 (H 2O)n 。在水蒸气中水以单个的H 20分子形式存在;在液态水中,多个水分子通过氢键结合在一起,形成(H 2O );在固态水中,水分子大范围地以氢键互相联结成晶体,形成巨大的缔合物——冰。

基于以上事实,笔者认为,H 20的熔点、沸点比HF 高的主要原因是:

(1)形成的氢键数目不同。在液态HF 分子中(如图2所示),一个HF 分子只能用头尾与另外两个HF 分子形成两个氢键,折合每摩尔HF 分子只分享到一摩尔氢键:而在H 20中(如图3所示),每个H 20分子中有可能形成四个氢键,每个氢原子分享到一个氢键,折合每摩尔H 20中有两摩尔氢键。因此每摩尔H 20形成氢键的总数比每摩尔液态HF 来得多。

(2)破坏氢键的程度不同。物质的熔化甚至沸腾变成气体并不意味着它一定要变成单个的原子或分子。液态HF 气化就是如此。红外及电子衍射等研究表明,气态HF 是单体和环状六聚体的一种平衡混合物,在一定的温度和压力下链状二聚体也可能存在;

6HF (HF)6:

2HF (HF)2[4]。由此可见,液态HF 沸腾并不需要破坏所有的氢键,而只需破坏其中的一部分。与此不同,水蒸气中并不存在缔合分子,它是由单个H 20分子所组成,所以水沸腾要破坏全部的氢键。有关数据也表明,冰中氢键的作用能为18.8 kJ ·mol -1,而冰的熔化热只有5.0 kJ ·mol -1。即使冰的熔化热全部用于破坏冰的氢键而无他用,在0℃时冰熔化成液态水,至多只能打破冰中全部氢键的约13%[等于5/(18.8×2)]。这就意味着,刚刚熔化的水中仍存在着许多由氢键作用而形成的小集团(H 2O)n 。随着温度升高,水中的氢键逐渐断M [4]。但在沸点时液态水中依然存在相当数量的氢键,这可由373K 时水的蒸发热为40.63 kJ ·mol-1得以证实。同理,冰的升华热为51.0 kJ ·mol-1,说明冰中水分子间的作用力较强,而升华时需要完全破坏这些氢键[6]。

综上所述,虽然就单个氢键来说,键能F —H …F 大于O —H …O ,但就固态变成液态或液态变成气态所需消耗的能量来说,H 2O 却大于HF ,这就是H 20的熔沸点比HF 高的主要原因[7]。

参考文献:

[1]王磊,陈光巨.化学.物质结构与性质(选修)[M ].济南:山东科学技术出版社,2005:58,60,64 [2]人民教育出版社化学室.全日制普通高级中学教科书(必修加选修)化学(第三册)[M ].

北京:人民教

育出版社,2005:4

[3]华彤文,陈景祖等.普通化学原理[M].第3版,北京:北京大学出版社,2005:305

[4]北京师范大学无机化学教研室等编[M].无机化学.第4版,北京:高等教育出版社,2005:96,104,463,106

[5]周公度,段连运.结构化学基础[M].第3版,北京:北京大学出版社,2002:224

[6]周公度,结构和物性:化学原理的应用[M].第2版,北京:高等教育出版社,2001:99

[7]黄孟健.无机化学答疑[M].北京:高等教育出版社,1989:374

(责任编辑:邹开煌)

物质熔沸点高低的比较

物质熔、沸点高低的规律小结 熔点是固体将其物态由固态转变(熔化)为液态的温度。熔点是一种物质的一个物理性质,物质的熔点并不是固定不变的,有两个因素对熔点影响很大,一是压强,平时所说的物质的熔点,通常是指一个大气压时的情况,如果压强变化,熔点也要发生变化;另一个就是物质中的杂质,我们平时所说的物质的熔点,通常是指纯净的物质。沸点指液体饱和蒸气压与外界压强相同时的温度。外压力为标准压(1.01×105Pa)时,称正常沸点。外界压强越低,沸点也越低,因此减压可降低沸点。沸点时呈气、液平衡状态。 在近年的高考试题及高考模拟题中我们常遇到这样的题目: 下列物质按熔沸点由低到高的顺序排列的是, A、二氧化硅,氢氧化钠,萘 B、钠、钾、铯 C、干冰,氧化镁,磷酸 D、C2H6,C(CH3)4,CH3(CH2)3CH3 在我们现行的教科书中并没有完整总结物质的熔沸点的文字,在中学阶段的解题过程中,具体比较物质的熔点、沸点的规律主要有如下: 根据物质在相同条件下的状态不同 一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。 4. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如 键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,CaO>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,

高中化学各物质熔沸点判断

高中化学各物质熔沸点 判断 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

高中化学熔沸点的比较 根据物质在相同条件下的状态不同 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。 但碳族元素特殊,即C ,Si ,Ge ,Sn 越向下,熔点越低,与金属族相似; 还有ⅢA 族的镓熔点比铟、铊低;ⅣA 族的锡熔点比铅低。 3. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ① 原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如 键长: 金刚石(C —C )>碳化硅(Si —C )>晶体硅 (Si —Si )。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF >KCl >KBr >KI ,ca*>KCl 。 ③ 分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点 反常地高,如:H 2O >H 2Te >H 2Se >H 2S )。

对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH>CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。 ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低) ④金属晶体:金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大,如钨、铂等(但也有低的如汞、铯等)。在金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 5. 某些物质熔沸点高、低的规律性 ①同周期主族(短周期)金属熔点。如 Li

高中化学物质熔沸点

2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA 族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质 C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-℃,26×105Pa)、沸点(℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-℃),近常温呈液态的镓(℃)铯(℃),体温即能使其熔化。 4. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,ca*>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3)。对于分子晶体而言又与极性大小有关,其判断思路大体是:ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH>CH3—CH3。ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如: C17H35COOH(硬脂酸)>C17H33COOH(油酸);ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低) ④金属晶体:金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大,如钨、铂等(但也有低的如汞、铯等)。在金属晶体中金属原子的价电子数越多,原子

物质熔沸点的比较

物质熔沸点的比较 1、不同晶体类型的物体的熔沸点高低的一般顺序 原子晶体→离子晶体→分子晶体(金属晶体的熔沸点跨度大) 同一晶体类型的物质,晶体内部结构粒子间的作用越强,熔沸点越高。 2、原子晶体要比较其共价键的强弱,一般地说,原子半径越小,形成的共价键长越短,键能越大,其晶体熔沸点越高,如:金刚石→碳化硅→晶体硅。 3、离子晶体要比较离子键的强弱,一般地说,阴阳离子的电荷数越多,离子半径越小,则离之间的相互作用就越强,其离子晶体的熔沸点越高。如:MgO >Mgd 2 >Nad>Csd。 4、分子晶体组成和结构相似的物质,相对分子质量越大,熔沸点越高,如: O 2>N 2 ,HI>HBr>Hd;组成和结构不相似的物质,分子极性越大,其熔沸点越高, 如Co>N 2 ;在同分异构件,一般支链越多,其熔沸点越低,如沸点,正成烷>异成烷>新戌烷洁香烃及其衔生物的同分异构件,其熔沸点,高低顺序为:邻位>间位>对位化容物。 5、金属晶体中金属离子半径越小,离子电荷越多,其金属键越强,金属熔沸点就越高。 6、元素周期表中第IA族金属元素单质(金属晶体)的熔沸点,随原子序数的递增而降低;第VIA族卤素单质(分子晶体)的溶沸点随原子序数递增而升高。 1、HNO 3→AgNO 3 溶液法 ①检验方法:

表明存在cl 表明存在Br 表明存在I ②反应原理 反应①:Ag+d-=Agd↓反应②:Ag+Br-=AgBr↓反应③:Ag+I-=AgI↓ 2、氯水—CdH法 ①检验方法 加适量新朱子饱和氯水加Cll H 未知液混合液分层振荡振荡 橙红色表明有Br- 有机层 紫红色表明有I- ②原理: D 2+2Br-=Br 2 +2a- d 2+2I-=I 2 +2d-,因Br 2、 I 2 在ccl 4 中的溶解度大于在水中的溶解度。 3、检验食盐是否加碘(1:Io 3 )的方法①检验方法 变蓝:加碘盐 食盐 未变蓝:无碘盐 ②反应原理:IO 3-+SI-+6H+=3I 2 +3H 2 O(淀粉遇I 2 变蓝色) 常见的放热反应与吸热反应 一、放热反应 (1)燃烧都是放热反应;(2)中和反应都是放热反应;(3)化合反应都是放热反应;(4)置换风应多为放热反应;(5)生石灰与水的反应、铝热反应等。 二、吸热反应 (1)盐类的水解反应都是吸热反应;(2)弱电*质的电荷一般是吸热反应; (3)大多数分解反应都是吸热反应;(4)需要持续加热的反应,如:NH 4d与C a CoA 2 , 制NA 3,A 2 还原C a O,配制C 2 H 4 。 注意区别反应的热效应与反应的条件。 化学反应中的能量变化主要表现为放热和吸热,反应是放热还是吸热,主要取决于反应物,生成物所具有的总能量的相对大小,放热反应和吸热反应在一定条件下都能发生。反应开始时需要持续加热的反应可能是吸热反应,也可能是放

高中化学之物质的熔沸点知识点

高中化学之物质的熔沸点知识点 1、理解物质的物理性质 应用物质的熔沸点可以判断物质在常温(25℃时)下的状态,判断气体被液化的难易及液态物质的挥发性大小等。 物质的沸点相对较高者,则该物质较易被液化。如SO2(沸点-10℃)、NH3(-33.35℃)、Cl2(-34.5℃)被液化由易到难的顺 序是SO2、、NH3、Cl2。物质的沸点越低,则越容易挥发(气化), 如液溴(58.78℃)、苯(80.1℃)易挥发、浓硫酸(338℃)难挥发等。 2、推测物质的晶体类型 分子晶体是由较小的分子间作用力而形成,故熔点沸点较低;离子晶体是由离子间较强的离子键而形成,故熔点沸点一般较高;原子晶体是由原子间较强的共价键而形成,故溶点沸点较高。如白磷的熔点44.1℃、沸点280℃可推测验是分子晶体;NaCl的 溶点是801℃、沸点是1413℃可推测是离子晶体;晶体硅的熔点是1410℃、沸点是2355℃可推测是原子晶体等。 3、根据物质的沸点不同对混合物进行分离 如工业上所用的氮气,通常是利用氮气的沸点(-195.8℃)比氧气的沸点(-183℃)低而控制温度对液态空气加以分离制得;石油工业利用石油中各组分的沸点不同,利用控制加热的温度来分离各组分;酿酒工业利用酒精的沸点(78℃)比水的沸点(100℃)低而采用蒸馏的方法分离酒精和水等。

4.应用物质的沸点不同,通过控制反应温度来控制化学反应的 方向 ①高沸点的酸制备低沸点的酸。如用高沸点的H2SO4制备低 沸点的HCl,HF,HNO3等;用高沸点的H3PO4制备低沸点的HBr、HI等。 ②控制反应温度使一些特殊反应得以发生。如:Na+ KCl===NaCl+K,已知Na的沸点(882.9℃)高于K的沸点(774℃),故可以通过控制温度K呈气态,Na呈液态,应用化学平衡移动 原理,反应中不断将K的蒸气移离反应体系,则平衡向右移动,反应得以发生。 ③选择合适的物质做传热介质来控制加热的温度。如果需要100℃以下的温度,可选择水浴加热;如果需要100℃-200℃的温度,可选择油浴加热。 5.解释某些化学现象 ①如为什么有些液体混合时只能将其中一种液体滴入另一 种液体中,而不能反向滴加?这是因为有些液体混合时,会放出大量的热,为防止少量低沸点液体因沸腾而飞溅,应将高沸点的液体滴入低沸点的液体中并不断搅拌。如浓硫酸的稀释,应将浓硫酸慢慢加入水中,并不断搅拌;制乙烯时,应将浓硫酸慢慢滴入乙醇中,并不断搅拌;制硝基苯时,应将浓硫酸慢慢滴入浓硝酸中,并不断搅拌。 ②又如工业上利用电解法冶炼Mg时,为什么不选择MgO为 原料而是选择MgCl2为原料?这是因为MgO的熔点太高(2800℃),

物质熔沸点大小的比较方法

物质熔沸点高低的比较方法 陕西吴亚南主编 物质熔沸点的大小比较通常出现在高考试题中,而关于物质熔沸点的大小比较方法介绍的却又较少,且不集中。现将有关规律一并总结如下。 一、先将物质分类:从物质的晶体类型上一般分为分子晶 体,离子晶体,原子晶体和金属晶体。不同物质类别熔沸点的比较方法不同。一般情况下:原子晶体﹥离子晶体﹥分子晶体 1、对于分子晶体: a、结构相似时,相对分子质量越大分子间作用力越强 其熔沸点越高。如:CH4﹤SiH4﹤GeH4;CH4﹤C2H6﹤C3H8﹤C4H10 b、能形成分子间氢键时熔沸点陡然增高。如:H2O﹥ H2Te﹥H2Se﹥H2S(能形成氢键的元素有N,O,F) c、当形成分子内氢键时熔沸点降低。如:邻羟基甲苯 的熔沸点低于对羟基甲苯 d、对于烃类物质碳原子数相同时支链越多熔沸点越 低。 e、都能形成氢键时要比氢键的数目和强弱。如:H2O ﹥NH3﹥HF

f、组成和结构不相同但相对分子质量相同或相近时极 性越大熔沸点越高。如:CO﹥N2;CH3OH﹥C2H6 g、芳香烃中临﹥间﹥对 2、对于离子晶体:a、要看离子半径的大小和离子所带电 荷的多少,离子半径越小,离子所带电荷越多则离子键越强晶格能越大熔沸点越高。如:NaCl﹤MgCl2<MgO 3、原子晶体:要看原子半径的大小,原子半径越小作用力 越大,熔沸点越高。如:金刚石﹥二氧化硅﹥碳化硅﹥单晶硅 4、金属晶体:比金属离子的半径和离子所带电荷的多少。 如Na﹤Mg﹤Al 二、也可从物质在常温常压下的状态去分析。 常温常压下固体﹥液体﹥气体(熔沸点)如:碘单质﹥水﹥硫化氢 三、易液化的气体沸点较高。 四、注意: 1、熔点高不一定沸点也高。如I2和Hg 2、MgO和Al2O3由于晶格类型不同,氧化镁的熔沸点 高于氧化铝。 3、同主族元素形成的单质熔沸点的变化不能一言概 论。(一般是金属部分从上至下熔沸点降低,非金属 部分从上至下升高,但都有特例)。

元素周期律熔沸点比较

首先,判断元素单质的熔沸点要先判断其单质的晶体类型,晶体类型不同,决定其熔沸点的 作用也不同。金属的熔沸点由金属键键能大小决定;分子晶体由分子间作用力的大小决定;离子晶体由离子键键能的大小决定;原子晶体由共价键键能的大小决定。 所以 第一主族的碱金属熔沸点是由金属键键能决定,在所带电荷相同的情况下,原子半径越小, 金属键键能越大,所以碱金属的熔沸点递变规律是:从上到下熔沸点依次降低。 第七主族的卤素,其单质是分子晶体,故熔沸点由分子间作用力决定,在分子构成相似的情况下,相对分子质量越大,分子间作用力也越大,所以卤素的熔沸点递变规律是:从上到下熔沸点依次升高。 用这样的方法去判断同主族元素的熔沸点递变规律就行了,因为理解才是最重要的。 同周期的话,不太好说了。 通常会比较同一类型的元素单质熔沸点,比如说比较Na、Mg Al的熔沸点,则由金属键键 能决定,Al所带电荷最多,原子半径最小,所以金属键最强,故熔沸点是:NaH2Te>H2Se>H2S 卤素:HF>HI>HBr>HCI。 同周期比较的话,是从左至右熔沸点依次升高,因为气态氢化物的热稳定性是这样递变的。 另外有时还要注意物质的类型,比如让你比较金刚石、钙、氯化氢的熔沸点,只要知道金刚 石是原子晶体,熔沸点最高,其次是金属钙,最后是分子晶体氯化氢。 还有原子晶体的:比较金刚石、晶体硅、碳化硅的熔沸点,那就要看共价键了,原子半径越小,共价键键能越大,故熔沸点:金刚石>碳化硅>晶体硅。

物质熔沸点比较

物质熔沸点比较 1、对于晶体类型不同的物质,一般来讲:原子晶体>离子晶体>分子晶体,金属晶体(除少数外)>分子晶体。金属晶体的熔点范围很广,一般不与其它晶体类型比较。 2、原子晶体:原子晶体原子间键长越短、键能越大,共价键越稳定,物质熔沸点越高,反之越低。如:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 3、离子晶体:离子晶体中阴、阳离子半径越小,电荷数越高,则离子键越强,熔沸点越高,反之越低。如KF>KCl>KBr>KI,CaO>KCl。 4、金属晶体:金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。5、分子晶体:分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(形成分子间氢键的分子晶体,熔沸点反常地高。如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3OCH3;形成分子内氢键的分子晶体,溶沸点降低。如:邻羟基苯甲醛<对羟基苯甲醛)(1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高,如熔沸点 CO>N2,CH3OH>CH3CH3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH >C17H33COOH; (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH (CH2)3 CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4 C(新)。芳香烃的异构体有两个取代基时,3 熔点按对、邻、间位降低。(沸点按邻、间、对位降低) 6、物质在相同条件下的不同状态,溶沸点:固体>液体>气体。如:熔点:S>Hg>O2

物质熔沸点高低的比较

物质熔沸点高低的比较及应用 一、不同类型晶体熔沸点高低的比较 一般来说,原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体。例如:SiO2>NaCL>CO2(干冰)金属晶体的熔沸点有的很高,如钨、铂等;有的则很低,如汞、镓、铯等。 二、同类型晶体熔沸点高低的比较 同一晶体类型的物质,需要比较晶体内部结构粒子间的作用力,作用力越大,熔沸点越高。影响分子晶体熔沸点的是晶体分子中分子间的作用力,包括范德华力和氢键。 1.同属分子晶体 ①组成和结构相似的分子晶体,一般来说相对分子质量越大,分子间作用力越强,熔沸点越高。例如:I2>Br2>Cl2>F2。 ②组成和结构相似的分子晶体,如果分子之间存在氢键,则分子之间作用力增大,熔沸点出现反常。有氢键的熔沸点较高。例如,熔点:HI>HBr>HF>HCl;沸点:HF>HI>HBr>HCl。 ③相对分子质量相同的同分异构体,一般是支链越多,熔沸点越低。例如:正戊烷>异戊烷>新戊烷;互为同分异构体的芳香烃及其衍生物,其熔沸点高低的顺序是邻>间>对位化合物。 ④组成和结构不相似的分子晶体,分子的极性越大,熔沸点越高。例如:CO>N2。 ⑤还可以根据物质在相同的条件下状态的不同,熔沸点:固体>液体>气体。例如:S>Hg>O2。 2.同属原子晶体

原子晶体熔沸点的高低与共价键的强弱有关。一般来说,半径越小形成共价键的键长越短,键能就越大,晶体的熔沸点也就越高。例如:金刚石(C-C)>二氧化硅(Si-O)>碳化硅(Si-C)晶体硅(Si-Si)。 3.同属离子晶体 离子的半径越小,所带的电荷越多,则离子键越强,熔沸点越高。例如: MgO>MgCl2,NaCl>CsCl。 4.同属金属晶体 金属阳离子所带的电荷越多,离子半径越小,则金属键越强,高沸点越高。例如: Al>Mg>Na。 三、例题分析 例题1.下列各组物质熔点高低的比较,正确的是: A. 晶体硅>金刚石>碳化硅 B. CsCl>KCl>NaCl C. SiO2>CO2>He D. I2>Br2>He 解析:A中三种物质都是原子晶体半径C<Si,则熔点:金刚石>碳化硅>晶体硅,B中应为:NaCl>KCl>CsCl,因为离子的半径越小,离子键越强,熔沸点就越高。因此C、D 正确。 答案:C、D 例题2.下列物质性质的变化规律,与共价键的键能大小有关的是: A.F2、Cl2、Br2、I2的熔点、沸点逐渐升高 B.HF、HCl、HBr、HI的热稳定性依次减弱 C.金刚石的硬度、熔点、沸点都高于晶体硅 D.NaF、NaCl、NaBr、NaI的熔点依次降低 解析:F2、Cl2、Br2、I2形成的晶体属于分子晶体。它们的熔沸点高低决定于分子间的作·力,与共价键的键能无关,A错;HF、HCl、HBr、HI的分子内存在共价键,它们的热稳定性与它们内部存在的共价键的强弱有关,B正确;金刚石和晶体硅都是原子间通过共价键结合而成的原子晶体,其熔沸点的高低决定于共价键的键能,C正确;NaF、NaCl、NaBr、NaI都是由离子键形成的离子晶体,其内部没有共价键,D错。 答案:B、C 例题3.下图中每条折线表示周期表ⅥA~ⅦA中的某一族元素氢化物的沸点变化,每个小黑点代表一种氢化物,其中a点代表的是: A. H2S B. HCl C. PH3 D. SiH4 解析:NH3、H2O、HF分子间存在氢键,它们的沸点较高,即沸点高低关系为:NH3>PH3、H2O >H2S、HF>HCl,对应图中上三条折线。所以a点所在折线对应第IVA族元素的气态氢化物,且a点对应第三周期,所以a表示SiH4。 答案:D 例题4.下列各组物质中,按熔点由低到高顺序排列正确的是: A. O2 I2 Hg B. CO KCl SiO2 C. Na K Rb D. SiC NaCl SO2

物质熔沸点的比较

物质熔沸点的比较 在近年的高考试题及高考模拟题中我们常遇到这样的题目: 下列物质按熔沸点由低到高的顺序排列的是, A、二氧化硅,氢氧化钠,萘 B、钠、钾、铯 C、干冰,氧化镁,磷酸 D、C2H6,C(CH3)4,CH3(CH2)3CH3 在中学阶段的解题过程中,具体比较物质的熔点、沸点的规律主要有如下: 1.根据物质在相同条件下的状态不同 一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点一般是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ① 一般顺序:原子晶体>离子晶体>分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。 判断时可由原子半径推导出键长、键能再比较。如 键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,要通过比较离子键的强弱,一般来说,阴阳离子所带的电荷数目越多,离子半径越小,则键能越大,其熔沸点越高。 如MgO>MgCl2>NaCl >CsCl。(一个相同,另一个元素不同) ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3)。对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4 <GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH >CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如:C17H35COOH(硬脂酸)>C17H33COOH (油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl >CH3Cl,CH3COOH>HCOOH。 ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:正戊烷>异戊烷>新戊烷。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低) ④金属晶体:原子半径越小,金属键越强,熔沸点越高。如:Na<Mg<Al。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 5. 某些物质熔沸点高、低的规律性 ①同周期主族(短周期)金属熔点。如LiNaCl>NaBr>NaI。 通过查阅资料我们发现影响物质熔沸点的有关因素有: ① 化学键,分子间力(范德华力)、氢键; ② ②晶体结构,有晶体类型、三维结构等,石墨跟金刚石就不一样; ③ ③杂质影响:一般纯物质的熔点等都比较高。但是,分子间力又与取向力、诱导力、色散力有关,所以 物质的熔沸点的高低不是一句话可以讲清的。我们在中学阶段只需掌握以上的比较规律。

物质熔沸点、粒子半径大小判断

高中化学物质熔沸点的判断 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2.同主族单质的熔、沸点 从上到下,金属单质的熔点逐渐降低;非金属单质熔点沸点逐渐升高。但碳族元素特殊,即C,Si,Ge,Sn 越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3.同周期中熔沸点规律 ①同周期通常会比较同一类型的元素单质熔沸点,比如说比较Na、Mg、Al的熔沸点,则由金属键键能决定,Al所带电荷最多,原子半径最小,所以金属键最强,故熔沸点是:NaH2Te>H2Se>H2S;卤素:HF>HI>HBr>HCl。 4.从晶体类型看熔、沸点规律 ⑴不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体 ⑵同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。 ①离子晶体:化学式与结构相似时,离子所带的电荷数越高,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。如KF>KCl>KBr>KI ②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。 ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如:CO>N2,CH3OH

高中化学各物质熔沸点判断

高中化学各物质熔沸点 判断 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

高中化学熔沸点的比较 根据物质在相同条件下的状态不同 1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。 但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似; 还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,ca*>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S)。 对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如: CO>N2,CH3OH>CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如: C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH。

物质熔沸点大小的比较方法

精品文档 物质熔沸点高低的比较方法 陕西吴亚南主编 物质熔沸点的大小比较通常出现在高考试题中,而关于物质熔沸点的大小比较方法介绍的却又较少,且不集中。现将有关规律一并总结如下。 一、先将物质分类:从物质的晶体类型上一般分为分子晶体,离子 晶体,原子晶体和金属晶体。不同物质类别熔沸点的比较方法不同。一般情况下:原子晶体〉离子晶体>分子晶体 1、对于分子晶体: a、结构相似时,相对分子质量越大分子间作用力越强 其熔沸点越高。女口:CH4 v SiH4 v GeH4; CH4 < C2H6 V C3H 8 < C4H10 b、能形成分子间氢键时熔沸点陡然增高。如:H2O > H2Te> H2Se > H?S(能形成氢键的元素有N , O, F) c、当形成分子内氢键时熔沸点降低。如:邻羟基甲 苯的熔沸点低于对羟基甲苯 d 、对于烃类物质碳原子数相同时支链越多熔沸点越 低。 e、都能形成氢键时要比氢键的数目和强弱。女口: H2O

> NH 3 > HF 精品文档 f 、组成和结构不相同但相对分子质量相同或相近时极 性越大熔沸点越高。如:CO >N2; CH3OH >C2H6 g、芳香烃中临>间>对 2、对于离子晶体:a、要看离子半径的大小和离子所带电 荷的多少,离子半径越小,离子所带电荷越多则离子键 越强晶格能越大熔沸点越高。如:NaCI v MgCl 2 v MgO 3、原子晶体:要看原子半径的大小,原子半径越小作用力越 大,熔沸点越高。如:金刚石>二氧化硅〉碳化硅>单晶硅4、金属晶体:比金属离子的半径和离子所带电荷的多少。 如Na v Mg v AI 二、也可从物质在常温常压下的状态去分析。 常温常压下固体〉液体〉气体(熔沸点)如:碘单质〉水〉硫化氢 三、易液化的气体沸点较高。 四、注意: 1、熔点高不一定沸点也高。如I2 和Hg 2、MgO 和AI2O3 由于晶格类型不同,氧化镁的熔沸点高于 氧化铝。 3、同主族元素形成的单质熔沸点的变化不能一言概论。(一

晶体类型的判断与比较--怎样比较熔点的高低

晶体类型的判断与比较,晶体结构的计算,怎样比较熔点的高低, 8晶体类型的判断与比较 1、判断晶体类型的方法 (1)依据物质的分类判断 金属氧化物(如K2O、Na2O2等),强碱(如NaCl、KOH等)和绝大多数的盐类是离子晶体。大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除有机盐外)是分子晶体。常见的原子晶体单质有金刚石、石墨、晶体硅、晶体硼等;常见的原子晶体化合物有碳化硅、二氧化硅等。金属单质(除汞外)与合金都是金属晶体。 (2)依据物质的性质判断 离子晶体的熔点较高,常在数百至1000余度;原子晶体熔点高,常在1000度至几千度;分子晶体熔点低,常在数百度以下至很低温度;金属晶体多数熔点高,但也有相当低的。 离子晶体水溶液及熔化时能导电,晶体不导电;原子晶体一般为非导体,但石墨等导电;分子晶体为非导体,而分子晶体中的电解质(主要是酸和非金属氢化物)溶于水,使分子内的化学键断裂形成自由移动的离子也能导电,但熔化不导电,金属晶体是良导体。 2、晶体中的几个不一定 (1)离子晶体除含离子键外不一定不含其他化学键。如氨盐中除含离子键,还含极性键和配位键;Na2O2中除含离子键还含非极性键。 (2)离子晶体不一定肯定含金属阳离子,如NH4Cl中含的阳离子是NH4+(凡是氨盐、肯定同时含离子键、极性键和配位键)。 (3)离子晶体的熔点不一定肯定低于原子晶体,如MgO的熔点高于SiO2。(4)含有阳离子的晶体不一定是离子晶体,如金属晶体中就含有金属阳离子。

(5)金属和非金属形成的晶体不一定都是离子晶体,如AlCl3就是含共价键的分子晶体 (6)具有金属光泽且能导电的单质不一定就是金属,如石墨具有金属光泽且能导电,却是非金属。 3、四类晶体的比较: 9怎样比较熔点的高低 1)先看晶体的类型。

晶体类型的判断与比较,怎样比较熔点的高低

晶体类型的判断与比较,晶体结构的计算, 怎样比较熔点的高低, 8晶体类型的判断与比较 1、判断晶体类型的方法 (1)依据物质的分类判断 金属氧化物(如K 2O、Na 2 O 2 等),强碱(如NaCl、KOH等)和绝大多数的盐类是离子晶体。 大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物 (除SiO 2 外)、酸、绝大多数有机物(除有机盐外)是分子晶体。常见的原子晶体单质有金刚石、石墨、晶体硅、晶体硼等;常见的原子晶体化合物有碳化硅、二氧化硅等。金属单质(除汞外)与合金都是金属晶体。 (2)依据物质的性质判断 离子晶体的熔点较高,常在数百至1000余度;原子晶体熔点高,常在1000度至几千度;分子晶体熔点低,常在数百度以下至很低温度;金属晶体多数熔点高,但也有相当低的。离子晶体水溶液及熔化时能导电,晶体不导电;原子晶体一般为非导体,但石墨等导电;分子晶体为非导体,而分子晶体中的电解质(主要是酸和非金属氢化物)溶于水,使分子内的化学键断裂形成自由移动的离子也能导电,但熔化不导电,金属晶体是良导体。 2、晶体中的几个不一定 (1)离子晶体除含离子键外不一定不含其他化学键。如氨盐中除含离子键,还含极性键 和配位键;Na 2O 2 中除含离子键还含非极性键。

(2)离子晶体不一定肯定含金属阳离子,如NH 4Cl中含的阳离子是NH 4 +(凡是氨盐、肯定 同时含离子键、极性键和配位键)。 (3)离子晶体的熔点不一定肯定低于原子晶体,如MgO的熔点高于SiO 2 。 (4)含有阳离子的晶体不一定是离子晶体,如金属晶体中就含有金属阳离子。 (5)金属和非金属形成的晶体不一定都是离子晶体,如AlCl 3 就是含共价键的分子晶体(6)具有金属光泽且能导电的单质不一定就是金属,如石墨具有金属光泽且能导电,却是非金属。 3、四类晶体的比较:

晶体熔沸点比较

一般来说(就是在一般的情况下比较,没说“一定”)原子晶体,分子晶体,离子晶体,金属晶体,非金属晶体,的熔沸点高低比较一下排成队列应该是:原子晶体>离子晶体>分子晶体.各种金属晶体之间熔点相差大,不容易比较.你写的"非金属晶体",在化学的"晶体"中,没有这个分类.化学 中的晶体总共有:原子晶体,离子晶体,金属晶体,分子晶体,混合晶体(如:石墨) ①离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。 ②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。HF、H2O、NH3等物质分子间存在氢键。 ③原子晶体:键长越小、键能越大,则熔沸点越高。 (3)常温常压下状态 ①熔点:固态物质>液态物质 ②沸点:液态物质>气态物质 定义:把分子聚集在一起的作用力 分子间作用力(范德瓦尔斯力):影响因素:大小与相对分子质量有关。作用:对物质的熔点、沸点等有影响。 ①、定义:分子之间的一种比较强的相互作用。 分子间相互作用 ②、形成条件:第二周期的吸引电子能力强的N、O、F与H之间(NH3、H2O) ③、对物质性质的影响:使物质熔沸点升高。 ④、氢键的形成及表示方式:F-—H???F-—H???F-—H???←代表氢键。

⑤、说明:氢键是一种分子间静电作用;它比化学键弱得多,但比分子间作用力稍强;是一种较强的分子间作用力。 定义:从整个分子看,分子里电荷分布是对称的(正负电荷中心能重合)的分子。 非极性分子 双原子分子:只含非极性键的双原子分子如:O2、H2、Cl2等。 举例:只含非极性键的多原子分子如:O3、P4等 分子极性 多原子分子:含极性键的多原子分子若几何结构对称则为非极性分子如:CO2、CS2(直线型)、CH4、CCl4(正四面体型) 极性分子:定义:从整个分子看,分子里电荷分布是不对称的(正负电荷中心不能重合)的。 举例 双原子分子:含极性键的双原子分子如:HCl、NO、CO等 多原子分子:含极性键的多原子分子若几何结构不对称则为极性分子如:NH3(三角锥型)、H2O(折线型或V型)、H2O2

物质熔沸点高低的规律小结

物质熔沸点高低的规律小结 熔点是固体将其物态由固态转变(熔化)为液态的温度。熔点是一种物质的一个物理性质,物质的熔点并不是固定不变的,有两个因素对熔点影响很大,一是压强,平时所说的物质的熔点,通常是指一个大气压时的情况,如果压强变化,熔点也要发生变化;另一个就是物质中的杂质,我们平时所说的物质的熔点,通常是指纯净的物质。沸点指液体饱和蒸气压与外界压强相同时的温度。外压力为标准压(1.01×105Pa)时,称正常沸点。外界压强越低,沸点也越低,因此减压可降低沸点。沸点时呈气、液平衡状态。 在近年的高考试题及高考模拟题中我们常遇到这样的题目: 下列物质按熔沸点由低到高的顺序排列的是, A、二氧化硅,氢氧化钠,萘 B、钠、钾、铯 C、干冰,氧化镁,磷酸 D、C2H6,C(CH3)4,CH3(CH2)3CH3 在我们现行的教科书中并没有完整总结物质的熔沸点的文字,在中学阶段的解题过程中,具体比较物质的熔点、沸点的规律主要有如下: 根据物质在相同条件下的状态不同 一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。 4. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如 键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,CaO>KCl。 ③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,

各晶体熔沸点关系比对。

从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ① 原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如 键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。 熔点:金刚石>碳化硅>晶体硅 ②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高。反之越低。 如KF>KCl>KBr>KI,CaO>KCl。 ③ 分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高,如:H2O >H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3)。对于分子晶体而言又与极性大小有关,其判断思路大体是: ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如:CO>N2,CH3OH>CH3—CH3。 ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。如: C17H35COOH(硬脂酸)>C17H33COOH(油酸); ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。 ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。(沸点按邻、间、对位降低)

相关主题