搜档网
当前位置:搜档网 › 基于HyperMesh的车身模态分析

基于HyperMesh的车身模态分析

基于HyperMesh的车身模态分析
基于HyperMesh的车身模态分析

hypermesh运用实例

运用HyperMesh软件对拉杆进行有限元分析 1、1 问题得描述 拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。求载荷下得应力与变形。 图1-1 拉杆结构图 1、2 有限元分析单元 单元采用三维实体单元。边界条件为在拉杆得纵向对称中心平面上施加轴向对称约束。 1、3 模型创建过程 1、3、1 CAD模型得创建 拉杆得CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。

图1-2 拉杆三维模型 1、3、2 CAE模型得创建 CAE模型得创建工程为: 将三维CAD创建得模型保存为lagan、igs文件。 启动HyperWorks中得hypermesh:选择optistuct模版,进入hypermesh程序窗口。主界面如图1-3所示。 程序运行后,在下拉菜单“File”得下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应得图形按钮,选择“lagan01、igs”文件,点击“import”按钮,将几何模型导入进来,导入及导入后得界面如图1-4所示。 图1-3 hypermesh程序主页面

图1-4 导入得几何模型 (4)几何模型得编辑。根据模型得特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。因此,首先对其进行几何切分。 1)曲面形体实体化。点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。 图1-5 Geom页面菜单及其对应得面板 图1-6 solids按钮命令对应得弹出子面板

hypermesh第一讲-建立焊点

Hypermesh 中cweld、acm、fastener焊点建立 1.车身焊点作用及技术要求 1.1焊点作用 焊接是汽车冲压件、铸造件、锻造件一种重要的链接方式,如点焊,缝焊。其中点焊在车身钣金件和部分底盘件链接中广为应用。它是将被焊工件压紧于两电极之间,并通以电流,利用电流流经工件有限接触面及邻近区域产生的电阻热将其加热到熔化而形成扁球形的熔核,达到金属结合的一种方法。它在整车动态或静态工况中承受着各个方向的拉应力、压应力、剪应力,因此对整车的安全可靠性有着重要的影响。 1.2焊点技术要求 焊点一般要求如下: 1)焊点有足够的机械强度 2)焊接可靠,保证导电性能。 3)焊点表面整齐、美观,如外观应光滑、清洁、均匀、对称、整齐、充满整个焊盘并与焊盘大小比例合适。 除上述要求,车身焊点还有直径、点距、抗剪强度等要求。点距是指相邻两焊点的中心距,与被焊金属的厚度、导电率、熔核大小及焊接层数。表1给出了几种材料焊点点距的最小极限值,在实际设计中可作为下限设计参考。对于车身焊点点距,其最小值为15-18mm,最大值为45-55mm,如低碳钢点焊点距在 30-35mm,可以在局部位置采用锯齿型布置。 表1. 焊点的最小点距(板厚指被换板中较薄着,单位mm) 表1. 源于中国机械工程学会焊接学会编著《焊接手册(第1卷)-焊接方法及设备》

对于车身焊点直径,其取值范围为4-8mm,一般焊点直径可取为6mm,关键焊点直径可取为7mm。表2给出四种钢材焊点直径的最小极限值,在实际设计中可作为下限设计参考。 表2. 焊点最小直径(板厚指被换板中较薄着,单位mm) 注:表2源于傅积和、孙玉林主编《焊接数据资料手册》 焊点失效以剪切破坏为主,其抗剪性能与其大小有直接关系,具体要求参见傅积和、孙玉林主编《焊接数据资料手册》。焊点抗剪强度测量方式如下: 图1.1 抗剪强度测量示意图 2.焊点单元 基于焊点的重要性,在汽车CAE分析中,尤其在白车身相关分析中焊点的模拟尤为重要。Fastener(abaqus 单元类型)单元、 Cweld(nastran单元类型)单元和ACM单元是现在汽车行业应用最多也是广为认可的焊点模拟方法。下面以车身接头为例,介绍在hypermesh中如何建立这三种单元。 2.1几何处理 导入几何,抽中面(以壳模拟钣金件)后如图2.1所示。黄色为焊点几何,来自于CAD模型,用于焊点单元建立定位。 图2.1 接头几何示意图

白车身模态分析试验方法研究 毕业设计

目录 中文摘要 (1) 英文摘要 (2) 1 绪论 (3) 2 试验模态分析 (5) 2.1模态试验理论 (5) 2.2试验测试系统组成 (6) 3 模态参数识别方法 (7) 3.1模态参数识别主要方法 (7) 3.2最小二乘复频域法 (9) 3.2.1最小二乘复频域法简介 (9) 3.2.2系统模型的确定 (9) 4 白车身模态试验 (10) 4.1白车身参数 (10) 4.2试验结构的支撑方式 (10) 4.3传感器的选择及布置原则 (12) 4.4激励系统 (13) 4.4.1激励方式 (13) 4.4.2振动激励源的选择和比较 (14) 4.4.3设备传感器 (15) 4.5试验测试系统检验 (16) 5 试验测试结果及分析 (21) 5.1稳态图 (21) 5.2模态频率与阻尼比 (23) 5.3模态振型 (24) 5.4模态试验的有效性 (26) 6 有限元分析结果与试验结果对比 (30) 结论 (33) 谢辞 (34) 参考文献 (35)

白车身模态试验方法研究 摘要:本文的目的在于研究模态分析参数识别不同方法之间的优缺点,重点是PolyMAX法和时域分析法之间的对比,以研究通过何种方法才能获得精 确地实验数据。为此本文分别采用多参考最小二乘复频域(PolyMAX) 法和时域分析法对结构模态参数进行识别,得到白车身各阶的模态图、 模态频率和振型并采用模态置信判据法(MAC)验证试验结果,比较二者 之间的优缺点,从而发现PolyMAX能提供比时域法法更多的稳定极点 并且有一个清晰地图标,确保一个用户独立和简洁明了的解释,大量简 化了鉴别过程。为进一步验证PolyMAX法的准确性,将PolyMAX分析 结果与有限元分析相对比,发现两者具有相当高的一致性。因此,本文 认为在白车身模态试验中PolyMAX法是最佳的试验模态分析方法。 关键词:白车身模态试验分析方法MIMO PolyMAX 1

基于Hypermesh与ansys的模态分析

基于Hypermesh与ansys软件的模态分析 一、简单说明Hypermesh与Ansys软件各自完成的任务: 1)在Hypermesh软件中需要完成的任务是有限元网格的划分、单元类型定义、材料定义与施加约束和载荷。(本实例是按照约束载荷进行说明的 2)在Ansys软件中需要做的就简单多了,在Solution中选择选择要进行的modal就行了。 二、详细操作步骤: 1)Hypermesh软件处理 ①在Hypermesh中完成网格划分,首先要掌握网格划分的方法,那么要学会使用Hypermesh软件,此处不再详述。ET Type进行定义。 ③材料定义,在模态分析中必须定义密度和弹性模量。密度是对应惯性力,弹性模量是对应线性结构。此处要注意单位的统一。否则得到的频率值可能出现大的错误。

④施加约束和载荷(当然在Ansys中做谐响应分析时可以不在Hypermesh中施加载荷) ⑤以上步骤完成之后,就要在Ansys进行模态分析。 在进行模态分析之前我们还是要注意出现的问题,这部分是本文说明的重点。首先,其实当把网格完成之后,还需要删除三维网格以外的单元,比如二维单元、实体模型,这些都会影响有限单元的导入。我们在划分网格时候为了方便划分网格会进行切割,同样的在我们完成网格之后还要把他们进行组合,可以用Tool中的Organize命令。我们还会根据不同的零部件产生不同的Component,后面付给不同的单元类型要用到。第二点,单元类型必须在Hypermesh中定义,不然无法保存成Ansys可以识别的cbd 格式;第三点,当我们完成单元类型的定义和材料属性的定义后,还要做的工作就是在Utility中选择ComponentManager,把我们定义的单元类型和材料付给具有这些性质的Component。Ansys中打开就不会出现问题了 2)Ansys软件处理

汽车车门模态分析(初学者)

汽车模态分析 1 前言 模态是振动系统特性的一种表征,它构成了各种车身结构复杂振动的最基本的振动形态。为了在汽车使用中避免共振、降低噪声,需要知道结构振动的固有频率及其相应的振型。模态分析的最终目标是为了得到模态参数,为结构系统的动力特性分析、故障诊断和预报以及结构的动力特性的优化设计提供依据。 汽车在行驶过程中的激励一般分为路面激励、车轮不平衡激励、发动机激励、传动轴激励。路面激励一般由道路条件决定,目前在高速公路和一般城市较好路面上,此激励频率多出现在1-3Hz,一般对低频振动影响较大;因车轮不平衡引起的激励频率一般低于11Hz,随着现在轮辋制造质量及检测水平的提高,此激励分量较小,易于避免;发动机引起的激励频率一般在23Hz以上,此激励分量较大;城市中一般车速控制在50~80Km/h,高速公路上一般车速控制在 80~120 Km/h,传动轴的不平衡引起的振动的频率范围在40Hz以上,此激励分量较小。由这些外界激振源会引起车门产生共振,带来噪音,极大的降低了车辆的乘坐舒适性,造成扳件的抖动开裂,零部件的疲劳损坏,车门表面保护层的破坏,削弱车门的抗腐蚀能力等。 因此,为提高汽车产品的开发设计水平,达到优化设计的目标,需要对汽车车门进行模态分析,通过有限元计算来得到该结构在不同频率下的振型,避免因共振等原因引起的结构破坏。 2 车门有限元模型 2.1 几何特性 轿车车门一般由门外板、门内板、门窗框、门玻璃导槽、门铰链、门锁以及门窗附件等组成。内门板上有玻璃升降器、门锁附件等。内板由薄钢板冲压而成,其上分布有窝穴、空洞、加强筋,内板内侧焊有内板加强板。为了增强安全性,外板内侧一般通过防撞杆支撑架安装了防撞杆,窗框下装有加强板。内板与外板通过翻边、粘合、滚焊等方式结合。 2.2 有限元模型的建立 根据车门的几何模型划分网格,建立有限元模型如图1所示。

白车身模态分析作业指导书(修改)

文件编号: YJY·P ·0020·A1-2004 文件名称:白车身模态分析作业指导书 编制:日期: 审核:日期: 批准:日期:

发布日期:年月日实施日期:年月日 前言 为使本公司白车身模态分析规范化,参考国内外白车身模态分析的技术,结合本公司已经开发车型的经验,编制本分析作业指导书。意在对本公司分析人员在做白车身模态分析的过程中起指导作用,让不熟悉或者不太熟悉该分析的员工有所依据,提高工作效率和精度。本作业指导书将在本公司所有白车身模态分析中贯彻,并将在实践中进一步提高完善。 内容包括:前处理模型;分析软件的使用;工程载荷及求解的设置;分析结果后处理和评价标准等。 本标准于2004年9月起实施。 本标准由上海同济同捷科技股份有限公司技术总监室提出。 本标准由上海同济同捷科技股份有限公司技术总监室负责归口管理。 本标准主要起草人:谢颖、邓文彬

白车身模态分析流程 1、适用范围 任何车型的白车身。 2、分析的目标及意义 本分析旨在分析白车身的振动固有频率和振型,得到的数据可为车身结构设计和振动噪声分析提供参考。 3、前处理建模 3.1白车身模型(只包括焊接总成,不包括门、玻璃、内饰等螺栓紧固件),焊点用RBE2(6个自由度)模拟,焊点布置应符合实际情况,边界条件为自由。 3.2 网格大小和注意事项如下。 3.2.1建模标准(所有项均在HYPERMESH中检测)表1 在网格划分之前,一定要充分考虑该零件与其它零部件之间的连接关系。 3.2.2在hypermesh中注意事项: 3.2.2.1 单元网格总体要求:连续、均匀、美观,过渡平缓。

3.2.2.2 对于倒角,倒角两端点距离小于5mm时可删去(命令:geom\distance)。当倒角两端点距离大于5mm时,测一下倒角的弧长(命令:geom\length),如弧长小于10mm时划分一个单元,大于10mm,划分两排单元,如难以满足单元长度要求,可将倒角的一边toggle掉。对于孔,半径小于5mm时可删去,同时删去小于5mm的凸台和沉孔。 3.2.2.3对于对称件,只划分一个件的网格,另一个件使用镜像方法生成。对于一个单个零件如果是左右对称的,可将它从中间切开,划分一半即可(使用splitbody命令),对于单个零件判断其是否是左右对称的,可将切开的另一半镜像过去(使用transform命令),渲染后看是否重合 3.2.2.4对于一些比较小的零部件(比如小螺栓)根据其位置和尺寸及对分析目标的重要性可不进行网格划分 3.2.2.5 B柱之前的零件网格尺寸控制在10-15mm,对于B柱之后c柱之前的零件,可适当增大网格尺寸,定在15-20mm,c柱之后20-35mm划分时可根据具体情况进行调整(如对一些连接处可划分细一些); 3.2.2.6原则上存在焊点的翻边必须划分两排单元,识别焊边可察看各总成数模、或者是看参考车型以及去设计部门的相关负责人联系。在焊点的翻边上,如翻边长度小于10mm,在保证最小单元长度要求下,可适当将翻边加长。大于10mm 时,考虑划分两排单元,对不符合长度要求的单元进行必要的调整(如将翻边的边界toggle掉)。 原则上焊点位置由设计部门确定,在设计部门已提供焊点位置的情况下,采取以下操作步骤:1)在UG中检查焊点位置,若发现分布不合理的焊点,须与车身相关设计人员确认;2)将零件导入HYPERMESH,其中应包含该零件的焊点信息――点和圆圈线(导入前需确认在UG里已经将点、线、面分层);3)将含圆线圈的COMP隐藏,只显示零件和焊点,然后用GEOM CLEANUP/FIXED POINTS/ADD命令将焊点变成零件面上的硬点;4)划分网格并按标准检查好单元质量后,文件先以HM格式进行保存(须包含所有点、线、面和单元),然后将网格输出成*.bdf文件,再将焊点和圆圈线输出成*.igs(该文件的命名方法:在bdf文件名前加w。如:bdf文件53-01.bdf,则igs文件w53-01.igs);5)在PATRAN里装配时,将

Hypermesh和Abaqus的接口分析实例

Hypermesh和Abaqus的接口分析实例(三维接触分析) In this tutorial, you will learn how to: ?Load the Abaqus user profile and model ?Define the material and properties and assign them to a component ?View the *SOLID SECTION for solid elements ?Define the *SPRING properties and create a component collector for it ?Create the *SPRING1 element ?Assign a property to the selected elements Step 1: Load the Abaqus user profile and model A set of standard user profiles is included in the HyperMesh installation. They include: RADIOSS (Bulk Data Format), RADIOSS (Block Format), Abaqus, Actran, ANSYS, LS-DYNA, MADYMO, Nastran, PAM-CRASH, PERMAS, and CFD. When the user profile is loaded, applicable utility menu are loaded, unused panels are removed, unneeded entities are disabled in the find, mask, card and reorder panels and specific adaptations related to the Abaqus solver are made. 1. From the Preferences drop down menu, click User Profiles.... 2. Select Abaqus as the profile name. 3. Select Standard3D and click OK. 4. From the File drop down menu, select Open… or click the Open .hm file icon. 5. Select the abaqus3_0tutorial.hm file. 6. Click Open. Step 2: Define the material properties HyperMesh supports many different material models for Abaqus. In this example, you will create the basic *ELASTIC material model with no temperature variation. The material will then be assigned to the property, which is assigned to a component collector. Follow the steps below to create the *ELASTIC material model card: 1. From the Materials drop down menu, select Create. 2. Click mat name = and enter STEEL. 3. Click type= and select MATERIAL. 4. Click card image = and choose ABAQUS_MATERIAL. 5. Click create/edit. The card image for the new material opens. 6. In the card image, select Elastic in the option list.

hypermesh模态分析

HyperWorks在履带车辆传动箱模态分析中的应用 2009年10月22日 Altair 1 引言 系统的模态参数(模态频率、模态阻尼、振型)对系统的动态分析和优化设计具有实用价值。通常由试验模态分析和计算模态分析两种方法。但由于受实验条件和时间的限制,组织实施往往比较困难,而且在测量次数,测量数据的处理准确性方面也难以得到充分的保证,在设计阶段难以实现。基于虚拟样机技术的虚拟实验方法在履带车辆箱体类零部件模态参数测量方面在设计阶段就能为方案优化提供指导,缩短产品开发周期,节省费用。因此,开展在虚拟环境下测试箱体类零部件的模态参数研究与探讨并扩展其应用具有重要意义。本文以某型履带车辆传动箱设计为例,应用HyperMesh为前处理软件,对其进行了有限元网格的划分,进而对箱体的模态进行了分析。 2 箱体有限元模型的建立及模态分析 首先依据传动箱体的尺寸,建立箱体的三维实体模型。利用HyperMesh对传动箱体的实体模型进行有限元网格划分,箱体的材料为铝合金,其密度为 2.66e33kg/m3,泊松系数为0.31,杨氏模量为7.7e72N/m2,强度极限为176.4MPa。整个箱体共划分76151个4面体单元,22262个节点。在此过程中,还必须考虑到箱体有限元模型建立后与各传动轴之间的连接,即柔性体与刚体间的连接。传动箱各轴都是通过轴承与箱体连接的,笔者在有限元模型中应用多点约束(MPC,Multi-point Constraint)来模拟轴承的作用。所谓多点约束是将某节点的依赖自由度定义为其他若干节点独立自由度的函数。多点约束可以用于不相容单元间的载荷传递,表征一些特定的物理现象,比如刚性连接、铰接、滑动等。笔者在箱体有限元模型中各轴孔的中心点处建立一个虚拟杆单元,如图1所示。轴孔内表面各节点的自由度则依赖于对应的虚拟杆单元。各传动轴与箱体间的约束也是在对应的虚拟单元处建立,各传动轴上的作用力则通过相应的虚拟杆单元和多点约束作用于箱体之上。文中建立的包括轴承模型的传动箱箱体有限元模型如图2所示。

某商用车驾驶室白车身模态分析

龙源期刊网 https://www.sodocs.net/doc/1311257977.html, 某商用车驾驶室白车身模态分析 作者:谢小平,韩旭,陈国栋,周长江 来源:《湖南大学学报·自然科学版》2010年第05期 摘要:以某商用车驾驶室白车身为原型,利用模态分析方法对其动力学特征参数进行分析.在理论(正问题)和实验(反问题)两个互补的模态分析过程中,利用有限元模型进行理论模态分析,为实验模态分析的实施打下良好基础.分别采用最小二乘复指数法(LSCE)和最小二乘复频域法(LSCF)进行实验模态分析,得到各阶模态振型并对理论分析的结果进行修正.经过两种结果的比较和分析,最终得出准确的模态分析结果并对白车身原型提出改进意见.生产厂商依据改进意见进行工艺改进,通过用户实际使用证实了改进方案的有效性和正确性. 关键词: 商用车驾驶室;白车身;有限元;实验模态分析;LSCE;LSCF 中图分类号:TH113.1文献标识码:A Modal Analysis of Commercial Vehicle Cab’s Body-in-White XIE Xiao-ping+, HAN Xu, CHEN Guo-dong, ZHOU Chang-jiang (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Faculty of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082) Abstract: The theory modal analysis (TMA, forward problem) and experimental modal analysis(EMA, inverse problem) methods are both used to analysis dynamics characteristic parameters of one commercial vehicle cab’s body-in-white. Finite element modal analysis is carried out to get mode shape and lay down well basis to experimental modal analysis in TMA process. In EMA process, LSCE(Least Squares Complex exponent method) and LSCF (Least Squares Complex Frequency Domain method) methods are used to get mode shape and modify TMA results. With comparison to all results, the accurate conclusion can be reached and improvement opinion is brought forward to the prototype. The improvement projection was proved to be effective by consumers’utilization after manufacturer put it into applications. Keywords: commercial vehicle cab’s bod y-in-white; finite element method; experimental modal analysis; LSCE; LSCF 车辆在行使的过程中常因路面不平,车速和运动方向的变化,车轮、发动机和传动系的振动激励,以及齿轮的冲击等各种外部和内部激励,极易引起整车和局部振动。当外界激振频率与系统固有频率接近时,将产生共振[1]。

汽车车身模态分析研究综述

汽车车身模态分析研究综述 北京信息科技大学研1202班姓名:曹国栋学号:2012020045 摘要:车身是汽车的关键总成。它的构造决定了整车的力学特性,对白车身进行模态分析不仅能考察车身结构的整体刚度特性,而且可以指导人们对车身结构进行优化以及响应分析。因此,研究车身模态分析具有重要的意义。本文综述了近几年国内外在车身模态分析领域内的研究,总结了研究理论和试验方法,并进行归纳。最后,对未来的研究工作提出了一些展望。 关键词:车身;模态分析;有限元模态;试验模态;结构优化 0 前言 随着计算机技术的发展和仿真技术、有限元分析技术的提高,计算机辅助设计和分析技术几乎涵盖了涉及汽车性能的所有方面,如刚度、强度、疲劳寿命、振动噪声、运动与动力性分析、碰撞仿真和乘员保护、空气动力学特性等,各种计算机辅助设计软件为汽车设计提供了一个工具平台,极大地方便了汽车的设计。 车辆在行驶过程中,车身结构在各种振动源的激励下会产生振动,如发动机运转、路面不平以及高速行驶时风力引起的振动等。如果这些振源的激励频率接近于车身整体或局部的固有频率,便会发生共振现象,产生剧烈振动和噪声,甚至造成结构破坏。为提高汽车的安全性、舒适性和可靠性,就必须对车身结构的固有频率进行分析,通过结构设计避开各种振源的激励频率。 车身结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车身结构的低阶弹性模态,它不仅反映了汽车车身的整体刚度性能,而且是控制汽车常规振动的关键指标,应作为汽车新产品开发的强制性考核内容。有限元模态分析和试验模态分析方法是辨识汽车结构动态性能的一种有效的手段,在汽车车身动态性能研究中得到了广泛应用。采用有限元方法对白车身进行模态分析,识别出车身结构的模态参数,并通过模态试验验证了有限元模型的正确性,为改型设计提供参考依据,是汽车开发设计与优化的一般流程。 因此,研究车身结构模态分析,进行车身轻量化设计和优化,对于提高国产轿车的自开发与科技创新能力,具有重要的理论意义和工程实用价值。 1 车身模态分析的一般理论 1.1 模态分析基本理论 模态分析的经典定义即以模态矩阵作为变换矩阵,将线性定常系统振动微分方程组中的物理坐标进行坐标转换变到模态坐标上,从而使系统在原来坐标下的耦合方程变成一组互相独立的二阶常微分方程进而成为一组以模态坐标及模态参数描述的独立方程[1]。 在实际的结构动力分析中,一般将连续结构离散化为一个具有n个有限自由

Hypermesh计算消声器模态

运用Hypermesh计算消声器模态 1 概述 目前许多CAE分析都采用HyperMesh进行网格划分,后期计算采用其它如Nastran,Ansys等分析软件,在多个软件之间的接口,需要设置不同的控制卡片,对于CAE分析来讲比较烦琐,过多的文件转换也容易造成信息遗漏。HyperWorks自带的求解器RADIOSS和后处理软件HyperView可以很好的解决这个问题。整个分析过程在同一个操作界面中可以实现。模态分析是汽车零部件常见的分析工况,本文通过对汽车消声器的计算实例,说明HyperWorks在模态计算方面的应用。 2 消声器结构分析 消声器是汽车上重要的降噪部件。目前消声气多注重声学方面的研究,针对其振动形式研究较少,缺少量化标准。对消声器支架以及消声器安装设计来讲,消声器的振动研究是必要的。本文通过对消声器进行数字化建模,计算其振动模态,并模拟在特定激励下消声器的响应,获取消声器的动力学参数。 2.1 消声器概况 利用CATIA V5R19软件中的钣金模块建立模型。消生器内部采用焊接的方式连接。中间的消声层采用高温耐热材料,将排气的声能转化为热能。为提高计算效率,对模型的一些细节进行了简化。去除焊接部位及边缘的折棱,取消外部的隔热板以及安装的支架。模型如图1所示。 图1 几何模型 2.2 网格的前处理 对将Catia装配模型导入HyperMesh10.0进行网格划分。消声器大部分是薄壁件,用Shell单元对消声器薄板进行划分。导入HyperMesh的零件模型为面元素,进行相应的几何清理,利用HyperMesh里面的midsuface面板进行中面抽取操作。对于体的部分也进行了抽取中面的操作。 分别在各个面上划分网格,为了控制网格的数量,进排气管上,以及共振腔壁面上的圆孔用小方孔近似替代见图2,内部的薄板是焊接在外层蒙皮上的,直接合并结点,将其连接为一体见图3。

车体强度分析模态分析尺寸优化.

车体论文:CRH5动车组卧铺车体结构优化设计 【中文摘要】高速铁路是一个国家铁路运输现代化的重要标志。CRH5型高速动车组具有优良的高速运行品质,采用了轻量化高强度铝合金车体,大大减轻了车辆本身的质量,为动车组的高速运行创造了 条件。本文以CRH5型动车组的M2S车体为研究对象,对其进行了车体加高结构设计,并对加高后车体进行结构强度和刚度分析,模态分析 以及车体侧墙轻量化优化,为我国高速动车组车体的设计提供参考。本文主要完成以下几个方面的工作:1、CRH5型动车组的M2S车体进行结构加高设计;2、建立加高后的CRH5型动车组M2S车体的有限元模型;建模过程中对车体结构进行了适当的简化,并对焊接方式、附件质量进行了模拟处理。3、根据欧洲《EN12663》标准,对车体结构进行了10种主要组合工况下的强度分析,得出了应力和位移分布,并对结果进行了校核。最后总结了车体的应力分布情况和车体结构的设计特点;4、对加高后的车体结构进行了模态计算分析,得到整车空载状态和整备状态的前六阶振动频率和典型振型。空车状态和整备状态的一阶垂向弯曲频率均大于10Hz,满足规定要求;5、采用结构优化设计平台OptiStruct对加高车体的侧墙结构进行轻... 【英文摘要】High-speed railway is an important symbol of a national rail transport modernization. CRH5 high-speed EMU has excellent quality of high-speed operation;It uses a lightweight high strength aluminum alloy body, greatly

刘红_白车身模态分析与识别

白车身模态分析与识别 Analysis and Identify of Body In White 刘红,朱凌,门永新 吉利汽车研究院,浙江杭州 310000 摘要:白车身的模态分析可以通过试验和CAE两种途径进行。试验虽然能相对真实地反应试验车辆 的性能,但周期长、成本高且干扰因素多。CAE仿真分析白车身模态可以有效避开这些问题。同时, 结合模态识别的4点和24点法,CAE仿真能更准确、便捷地了解白车身模态性能。尤其在车辆开发前期,能有效指导车身设计。 关键词:白车身,NVH,模态,试验,识别,HyperGraph Abstract: BIW’s mode can be obtained through testing and CAE. Although testing can relatively reflect the true performance of the vehicle, it is expensive in both cost and time, as well as other unpredictable factors. Meanwhile, CAE can easily avoid these problems, and can more accurately and conveniently to obtain the performance, combining with the 4-point and 24-point method for the modal identification. Especially in the early stage of the vehicle development, CAE method can effectively guide the design of body. Key words: BIW, NVH, mode, test, identify, HyperGraph 1 概述 白车身模态分析作为整车NVH分析的一个基础环节,对整车NVH性能管控起着关键的作用。模态分析能够反映出结构在低频范围内的振动问题,尤其对避开路面和发动机激励尤为重要。一般4缸机的怠速激励在25Hz左右,路面激励在20Hz以内,故白车身一阶模态应在40Hz左右才能使得TB 的一阶模态避开上述两种激励,而如何准确地识别出白车身一阶模态成为车身设计的关键问题。 解决上面的问题,目前可用模态测试或者模态识别(CAE的方法)来判断,本文从这两个方面研究了白车身模态分析方法。 2 模态测试方法 目前试验模态分析技术已经成为解决振动噪声以及疲劳强度等实际问题的一项最重要、应用最广泛的技术手段【1】。通过模态试验识别出的汽车白车身的结构动力学特性对于乘坐舒适性和结构可靠性起着决定性的作用,是汽车新产品开发中结构分析的主要内容,特别是车身的低阶弹性模态是控制其振动噪声的关键基础性指标之一【2】。 2.1 测试方法简述 模态测试是同时测量结构的输入和输出信号而得到结构的频响函数,即通过激励和响应,推知结构的特性【3】。可以根据试验条件选择单点或多点激励,常用的做法是采用两个激振器产生随机信号对车身进行激励,两个激振器分别置于车身左后纵梁处以+Z方向激励和发动机舱右悬置安装点纵梁的+Y 方向激励,在车身上布置加速度传感器以采集车身结构的响应,试验状态如图1所示。

螺栓预紧结构用Hypermesh做接触实例

螺栓预紧结构用Hypermesh 做接触实例 在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F ,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm ,而单元的尺寸为3~4mm ,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh 划分网格后的模型。 图1 实体模型 图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

Hypermesh与Nastran模态分析详细教程

Hypermesh & Nastran 模态分析教程 摘要: 本文将采用一个简单外伸梁的例子来讲述Hypemesh 与Nastran 联合仿真进行模态分析的全过程。 教程内容: 1.打开”Hypermesh 14.0”进入操作界面,在弹出的对话框上勾选 ‘nastran’模块,点‘ok’,如图1.1 所示。 图1.1-hypermesh 主界面 2.梁结构网格模型的创建 在主界面左侧模型树空白处右击选择‘Creat’ –‘Component’,重命名为‘BEAM’,然后创建尺寸为100*10*5mm3的梁结构网格模型。(一开始选择了Nastran后,单位制默认为N, ton, MPa, mm.)。本例子网格尺寸大小为2.5*2.5*2.5mm3,如图2.1 所示:

图2.1-梁结构网格模型 3.定义网格模型材料属性 ●在主界面左侧模型树空白处右击选择‘Creat’–‘Material’,如图3.1 所示: 图3.1-材料创建 ●在模型树内Material下将出现新建的材料‘Material 1’,将其重命名 为’BEAM’。点击‘BEAM’,将会出现材料参数设置对话框。本例子采用铁作为梁结构材料,对于模态分析,我们只需要设定材料弹性模量,泊松比,

密度即可。故在参数设置对话框内填入一下数据: 完整的材料参数设置如图3.2所示: 图3.2-Material材料参数设置 同理,按同样方式在主界面左侧模型树空白处右击选择‘Creat’ –‘Pro perty’,模型树上Property下将出现新建的‘Property1’,同样将其重命名为‘BEAM’,点击Property下的‘BEAM’出现如图所示属性参数设置对话框。由于本例子使用的单元为三维体单元,因此点击对话框的‘card image’选择‘PSOLID’,点击对话框内的Material选项,选择上一步我们设置好的材料‘BEAM’,完整的设置如图3.3所示:

汽车车架的动力学分析--模态分析

北京科技大学 机械工程进展(论文) 题目:汽车车架的动力分析计算 (模态分析) 院别:机械工程学院 专业班级:机研106班 学生姓名: 学号: 导师: 评分: 2010年11月26日

轻型载货汽车车架模态分析 摘要:车架作为汽车的承载基体,安装着发动机、传动系、转向系、悬架、驾驶室、货厢等有关部件和总成,承受着传递给它的各种力和力矩。所以对车架的结构十分重要。本文主要采用有限元方法对车架的进行模态分析,研究了车架结构与其固有频率及其振型的关系, 给出车架在一定约束下的固有频率及固有振型,为解决车架结构的动力学问题和结构的改进提供了一定的依据。 关键词:有限元方法;车架;固有频率;模态分析 1 引言 车架是一个弹性系统,在外界的时变激励作用下将产生振动。当外界激振频率与系统固有频率接近时,将产生共振。共振不仅使乘员感到很不舒适,还会带来噪声和部件的疲劳损坏,威胁到车架的使用寿命和车辆安全。 车架是一个多自由度的弹性系统。因此,它也有无限多的固有振型,而作用在车架上的激励来自于悬架系统、路面、发动机、传动系等的振动,这些振动对车架的激励可以认为是全频率的,但是,路面和悬架系统对车架结构激励的特点一样,每种激励在所有频率范围内并不是等能量分布的,所以,试图在所有频率上消除作用在车架上的激励,与车架结构的某些振型的共振是不可能。因此,只有将注意力集中在各激励的能量集中的频率上,使之与所关心的车架的某阶振型不发生共振。因而对车架进行模态分析以掌握车架对激振力的响应,从而对车架设计方案的动态特性进行评价,己经成为车架设计过程中必要的工作[1]。 2 模态分析理论基础 在有限元分析程序中,振动方程表示为: 1-1 该方程可作为特征值问题,对无阻尼情况,方程可简化为: 1-2 其中。ω2(固有频率的平方)表示特征值;{μ}表示特征向量,在振动的物理过程 中表示振型,指示各个位置在不同方向振动幅值之间的比例关系,它不随时间变化。对有阻尼情况,振动方程可转化为:

车辆系统振动的理论模态分析

振 动 与 冲 击 第20卷第2期 JOURNA L OF VI BRATION AND SHOCK V ol.20N o.22001  工程应用 车辆系统振动的理论模态分析 Ξ 陶泽光 李润方 林腾蛟 (重庆大学机械传动国家重点实验室,重庆 400044) 摘 要 将车体和转向架看成弹性体,采用有限元方法,建立用空间梁单元描述的具有50个自由度的车辆系统力 学模型,并以客车为例研究其垂向振动的固有特性,所得结果既反映系统动力学性能,又为动态响应计算和分析打下基础。 关键词:车辆动力学,模态分析,有限元法中图分类号:TH132.41 0 引 言 高速铁路运输以快速、节能、经济、安全和污染小 等优势,在与高速公路和航空等运输形式的竞争中迅速发展起来。列车运行速度的提高给机车车辆提出了许多新要求,带来了新的课题,如大的牵引动力、大的制动功率、剧烈的横向动力作用和更加明显的垂向越轨动力作用、复杂的高速气流、振动和噪声等。其中,振动和噪声是高速列车一个非常重要的问题,它既关系到高速列车运行的安全性,又关系到列车高速运行时的乘坐舒适度。 车辆系统是由车体、转向架构架、轮对,通过悬挂 元件联接起来的机械系统。通常,把车体及装载、转 向架构架及安装部件、轮对及装备视为刚体,作为刚体动力学系统,研究其动力特性[1,2],这方面的技术已比较成熟,有商品化的通用软件可供使用[3]。 本文将车体和转向架看成弹性体,采用有限元法,建立了用六自由度节点空间梁单元描述的车辆系统动力学模型,由于包括车辆的浮沉、点头垂向振动,车辆的横摆、侧滚和摇头横向振动的研究。在建立车辆系统离散化模型的基础上,计算车辆垂向振动的各阶固有频率和振型,为车辆系统的动态响应计算和分析打下基础 。 图1 车辆振动系统的有限元模型 1 车辆的动力学模型 将车辆振动系统简化为图1所示的分析模型,即 由车体、转向架和轮对通过弹簧与阻尼器连接起来的振动系统。其中,将车体和转向架看成空间弹性梁,每 Ξ西南交通大学牵引动力国家重点实验室开放课题基金资助项目 收稿日期:2000-10-10 修改稿收到日期:2000-11-20 第一作者 陶泽光 男,博士,副教授1963年12月生

hypermesh梁壳单元混合建模实例

HyperMesh梁单元与壳单元的混合建模 本文根据工程实例,应用有限元软件HyperMesh 11、0进行梁单元与壳单元的混合建模,并在其中详细论述,梁单元在与壳单元混合建模的过程中如何对梁单元进行偏置处理,保证梁单元与壳单元的所有节点完全耦合。 在焊接工艺中,梁单元与壳单元的使用可以大大提高整体焊接结构的抵抗变形能力,避免单独使用壳单元时强度与刚度的不足。HyperMesh软件中提供了大量标准梁的截面,也可以通过实际应用需求单独创建梁截面。 在1D面板中点选HyperBeam选项,如图1所示。 图1 1D面板中的HyperBeam选项 HyperBeam中提供了大量的梁截面,如图2所示。 图2 HyperBeam下的各种梁截面 图2中红色箭头所指的就是各种标准梁截面的属性,包括H型梁,L型梁,工型梁等等。可以根据实际需求进行选择,而且可以自己独立进行尺寸编辑。图2中的shell section可以建立独立的壳截面,solid section可以建立独立的实体截面。在建立完成各种梁的截面属性之后,可以通过edit section进行梁截面属性的修改。

以上主要介绍了1D梁单元的使用情况,下面将根据工程实例对壳单元与梁单元的混合建模进行详细的介绍。图3就是梁单元与壳单元焊接之后的三维图,图4就是图3中梁单元以1D显示的情况。二者之间的切换功能键如图5所示。 图3 梁单元与壳单元焊接之后梁单元以3D显示 图4 梁单元与壳单元焊接之后梁单元以1D显示 图5 梁单元1D与3D之间的切换功能键

下面介绍梁单元的具体创建方法,不再讲述壳单元的建立方法。首先建立Beam Section,在软件左侧右键create--Beam Section,在出现的对话框窗口中对Bean进行命名。具体的过程如图6所示。 图6 Beam的建立过程 之后进入1D--HyperBeam面板,选择Standard section选择Standard Channel面板,打开面板后对各个参数进行修改,如图7所示。左侧的红色框内的区域就是进行具体尺寸的修改,修改的结果会以直观的形式显示在图形界面中,右侧的红色方框就是梁界面的各个力学参数。注意梁的方向,梁的长度方向就是X 轴,图形中的就是梁的Y轴与Z轴。在梁的方向的选取过程中Y轴为第一方向。 图7 梁的各个参数的修改 之后建立梁的属性,同样在软件左侧位置右键创建属性,弹出属性创建的选项卡片,在Type中选择1D,在Card image中选择PBEAM,单击确定按钮,如图8所示。

相关主题