搜档网
当前位置:搜档网 › 随钻电磁波测井仪器总结表格

随钻电磁波测井仪器总结表格

随钻电磁波测井仪器总结表格
随钻电磁波测井仪器总结表格

125kHz 500kHz 2MHz 400kHz 2MHz

36kHz 400kHz 400kHz

随钻电磁波传播电阻率测井

4地层倾角对随钻电阻率测井的影响 范宜仁等2013年发表文章“倾斜各向异性地层随钻电磁波响应模拟”,文中通过坐标变换的方法,基于柱坐标系时域有限差分(FDTD)模拟和分析了倾斜各向异性地层随钻电磁波响应。为了研究各向异性系数对相位(幅度)电阻率的影响,模拟了不同各向异性系数条件下倾斜地层随钻电磁波测井响应,模拟结果表明:当地层倾角小于30°时,不同水平电阻率条件下,各向异性系数对视电阻率影响较小,随钻电磁波视电阻率主要反映地层水平电阻率;随地层倾角增大,视电阻率受各向异性的影响增大,且地层水平电阻率越低,随钻电磁波测井响应受地层各向异性影响越大,相位电阻率比幅度电阻率更加敏感;当地层倾角较大时,随着各向异性系数增大,视电阻率甚至会超过垂直电阻率。为了研究不同发射频率对各向异性系数的敏感性,模拟了地层各向异性系数为√10,水平电阻率为0.5Ω·m时不同地层倾角条件下随钻电磁波响应,模拟结果显示:随发射频率增大,视电阻率受各向异性影响增强,当地层倾角较大时,随钻电磁波视电阻率甚至会远远超过垂直电阻率。

夏宏泉等2008年发表文章“随钻电阻率测井的环境影响校正主次因素分析”,文中分析了随钻电阻率测井中地层倾角(或井斜角)等环境因素对测井结果的影响及其校正方法。在大斜度井和水平井测井中,大部分仪器的测量值要受到井斜角或地层倾角的影响,实测曲线出现“异常”和“变形”。在直井中,如果地层是水平的,则仪器测量的是水平电阻率。但如果仪器在钻开同样地层的水平井时,则测量电流会流过地层的水平面和垂直面,视电阻率测量值R a是水平电阻率R h和垂直电阻率R v合成的[3-6]。假设在水平井中地层存在各向异性,垂直层界面方向的电阻率为R v,平行层界面方向的电阻率为R h,径向上(与地层平行的方向)为宏观各向同性,可推导出地层视电阻率R a、R h、R v的关系为 ? R a=R?√cos2θ+sin2θλ? 式中,λ为地层电阻率的各向异性系数,λ=(R v/R h)0.5;θ为相对倾角,即井轴与地层面法线的相对夹角,可由井斜角和地层倾角求得。由此可见,地层视电阻率主要与地层电性各向异性系数和相对倾角有关,其值介于R h~(R v·R h)0.5之间。对于2MHz的随钻电阻率测井仪器,相对夹角在0°~30°时影响不大(即在直径中随钻视电阻率等于水平电阻率,可以忽略地层电性各向异性的影响),大于30°时相对夹角影响较大,则必须考虑各向异性的影响。各向异性影响很大程度取决于地层和井眼的相对角度。如忽略各向异性的影响,则在大斜度井中,R ps相位电阻率、R ad衰减电阻率测井曲线的差异可能导致错误的侵入剖面解释,这是因为2MHz电阻率仪器的这2种曲线在各向异性地层中的响应特征是不同的,在θ>30°时,R ps曲线更多地反映垂向电阻率,从而导致2条曲线的分离。但是如果井眼垂直于地层,即使K值很大,它对随钻电阻率测井值无明显影响,2条曲线基本重合。此外,当相对夹角变大,即使各向异性系数不变,R ps和R ad曲线仍可出现明显的分离,因此2条电阻率曲线分离与否可以间接地指示地层的各向异性。

随钻电磁波电阻率测井的犄角效应

随钻电磁波电阻率测井的“犄角”效应 一、前言 近期,随钻电磁波电阻率测井资料中出现的一种被称为“犄角”的现象,引起了国内外专家教授、工程技术人员乃至地质家的关注,纷纷以极大的兴趣对其进行分析研究,发表文章介绍研究成果与认识,以期对其作出客观正确的阐述与解释。 目前,对于“犄角”的研究仍在深入进行中,对于它的认识和分析尽管不尽相同,甚至尚存争议,但对这一现象的破解必有积极的意义和作用。对“犄角”的地质和工程分析与应用更值得深入探讨与开发。 二、产生“犄角”效应的机理 对于“犄角”效应产生的机理,目前尚存在不同的见解与争论,在此无意参与其中,而仅以认识与分析问题的视角阐发一孔之见, 1、何为“犄角”效应 所谓“犄角”效应,是指井 眼轨迹以一定的交角进入地层 界面时,电磁波电阻率测井响应 在界面处产生的异常突变现象。 如图1所示,当井眼轨迹与 地层界面法线以θ角相交时在 地层界面处产生的“犄角”效应。 “犄角”一词来自英语“HORN” 有号角、角状物之意;其实古代 的号角也是牛角做的。这里是以牛角的形状形容电磁波电阻率测井响应的异常突变现象。 值得一提的是,有人把这一现象称为“极角”或“极化角”是不够妥当的,因为产生“犄角”效应的主要因素并非“极化”或“激化”问题。而是电磁波传播的边界效应与边值问题。 2、导致“犄角”产生的因素 究竟哪些因素导致“犄角”效应呢?一般认为有以下原因: A、地层界面两侧地层电阻率对比度。地层电阻率对比度越大,“犄角”效应越明显。 B、井眼轨迹与地层界面法线的交角大小。交角越大,“犄角”效应越明显。当然,当井眼轨迹一定时,交角大小与地层产状也有关系。 C、井眼尺寸(井径)大小及仪器外径与井壁之间的间隙大小。间隙越大,对“犄角”效应的影响越大。

国内随钻测井解释

1国内随钻测井解释现状及发展 在国内现有的技术条件下,开展大斜度井和水平井测井资料的可视化解释能在很大程度上提高测井解释识别地质目标的精度,通过实时解释、实时地质导向有助于提高钻井精度、降低钻井成本、及时发现油气层。 未来的勘探地质目标将更加复杂,以地质导向为核心的定向钻井技术的应用会越来越多。伴随新的随钻测井仪器的出现,应该有新的集成度高的配套解释评价软件,以充分挖掘新的随钻测井资料中包含的信息,使测井资料的应用从目前的单井和多井评价发展为油气藏综合解释评价。因此,定向钻井技术的发展及钻井自动化程度的提高必将使随钻测井技术的应用领域更加关泛。 2 提高薄油层钻遇率 提高薄油层水平井油层钻遇率必须加强方案研究及现场调整、实施两方面研究。方案设计包括对油层的构造、沉积相、储层物性、电性特征、油气显示特征综合研究。现场调整、实施包括对定向工具的认识及现场地质资料综合分析、重新调整轨迹后而实施的设计。 一口水平井的实施是一个系统工程,包括地质、钻井工程两方面的因素。地质设计及现场提出的方案要充分考虑工程的可行性。只有加强综合研究,根据油藏的变化情况及时调整轨迹,才能提高油层钻遇率。 目前,在石油、天然气等钻井勘探开发技术领域,水平井作业中,使用随钻测井工具、随钻测量工具和现场综合录井工具。随钻测量工具、随钻测井工具位于离钻头不远的地方,在钻机钻进的同时获取地层的各种资料和井眼轨迹资料,包括井斜、方位、自然伽马、深浅侧向电阻率等。现场综合录井工具获取钻时、岩屑、荧光、气测录井等,这样利用随钻测量工具、随钻测井工具测得的钻井参数、地层参数和现场综合录井资料推导出目的层实际海拔深度和钻头在目的层中实际位置,并及时调整钻头轨迹,使之顺着目的层沿层钻进,尽量提高砂岩钻遇率。

随钻电阻率测井原理浅析

随钻感应电阻率测井原理浅析 1.电阻率的概念 2.电阻率的测量方法 3.电阻率的电极系分布 4.电阻率测量的数学模型 几何因子理论 摘要:本文通过对Geolink公司TRIM工具测井原理的剖析,详细介绍了感应电阻率测井的原理,并将电缆测井与随钻测井进行比较 主题词:MWD 电阻率感应测井原理浅析 随钻测量(MWD—Measurement While Drilling),是一项在钻井过程中,实时对井底的各种参数进行测量的技术,MWD的最大优点在于它使得司钻和地质工作者实时看到井下正在发生的情况,可以极大的改善决策过程。随钻测量技术极大的推动了钻井技术的发展,为地层评价提供了新的手段,由于可以直接观测井下工程参数,这就为钻井的进一步科学化提供了有利的条件,及时获得地层资料对于准确评价地层和进行地层对比以及油藏描述也具有重要的意义。 MWD系统测量的一个十分重要的方面就是电阻率地层评价测井。自从八十年代中期起,就有许多种不同的MWD电阻率被测试并投入市场,包括16’’短电位电阻率,聚焦电阻率(有活动和被动聚焦能力),基于电极的装置(可利用钻头或接触按钮),目前Sperry-Sun Drilling Service服务公司的多空间1~2MHz“电磁波电阻率相位测井”是工业上唯一商业化的、真正的多探测深度的电阻率测井工具。Geolink公司应广大用户的普遍要求,也制造生产出随钻电阻率工具,它将MWD仪器测井结果与通常使用的电缆感应(20KHZ)测井相关联,用这种方法得到的响应与电缆深感应测井的探测深度相类似,其垂直分辨率优于电缆中感应测井。这种探测深度可以减少井眼环境及泥浆侵入地层对测量产生的影响。因而不需要对在不同泥浆(水基、油基、气基及泡沫基钻液)中作业中所产

随钻测井技术

第8卷第4期断 块 油 气 田 FAUL T-BLOCK OIL&G AS FIFLD2001年7月随钻测井技术 布志虹1 任干能2 陈 乐2 (11中原油田分公司勘探事业部 21中原石油勘探局地质录井处) 摘 要 随钻测井是一种新型的测井技术,它能够在钻开地层的同时实时测量地层信息。 本文介绍了斯伦贝谢公司最新的随钻测井技术,并通过对其新技术的分析,提出了在重点探井文古2井进行随钻测井的建议及方法。 关键词 随钻测量 随钻测井 随钻测量工具 引言 在钻井过程中同时进行的测井称之为随钻测井。 随钻测井系统中随钻测井的井下仪器的安装与常规测井的仪器基本相同,所不同的是各仪器单元均安装在钻铤中,这些钻铤必须能够适应正常的泥浆循环。 用随钻测井系统进行随钻测井作业比电缆测井作业简单。首先在地面把各种随钻测井仪器刻度好,然后把他们对接起来进行整体检验,再把随钻测井仪接在钻杆的底部,最后接上底部钻具总成和钻头,至此,就可以进行钻井和随钻测井作业了。 1 数据记录方式Ξ 随钻测井有2种记录方式,一是地面记录,即将井下实时测得的数据信号通过钻井液脉冲传送到地面进行处理记录;二是井下存储,待起钻时将数据体起出。这里仅介绍地面记录的方法。 在随钻测量仪中设计有一个十分重要的系统即钻井液脉冲遥测系统,该系统的作用是把各传感器采集的信号实时传送到地面。目前在随钻测量系统中主要使用连续钻井液脉冲进行遥测传输,它在井下用一个旋转阀在钻井液柱中产生连续压力波,这个旋转阀称为解制器。在井下改变波的相位(即调频),并在地面检测这些相位变化,就可以把信号连续地传输到地面。 来自各传感器的模拟信号首先被转换成二进制数。每一个二进制数则由一个具有适当的二进制位数的字来表示,每个字所含有的二进制位数的多少(即字长的大小)视测量结果所需的精度而定,如果所传输的信号对精度的要求不高,可用一个字长较小的字表示这个二进制数;反之,则需用一个字长较大的字表示。目前随钻测量系统中采用的字长一般为8位,即每个字含有8个二进制位,这是一个最优化方案,既满足了各测量信号对精度的要求,又能在单位时间里传送较多的二进制数到地面。 这些字由一系列的“0”和“1”组成,由调制器把它调制成代表这些字的钻井液脉冲发送到地面。调制器调制信号是一帧一帧地调制的,每一帧由16个字组成,其中15个字长为8位的字用于传输测量信号,一个字长为10位的字是用来标识一帧的起始位置的帧同步字。 最后,压力信号由安装在立管中的压力传感器检测出,由调制器调制并传送到地面。这些压力信号被送到地面计算机系统,由计算机系统调解后被还原成各传感器的测量信号值,并与其所对应的时间和深度一起存入数据库。这些测量信号和及其处理结果就可以实时地显示在荧光屏上或打印在绘图纸上。 在钻井液遥测系统的数据传输率和字长一定的情况下,系统在单位时间内向地面传送的二进 22Ξ收稿日期 2001-02-15 第一作者简介 布志虹,女,1962年生,高级工程师, 1982年毕业于江汉石油学院测井专业,现在中原油田分公司勘探事业部从事勘探管理工作,地址(457001):河南省濮阳市,电话:(0393)4822513。

随钻测井介绍

随钻测井技术的新认识 2008-9-1 分享到: QQ空间新浪微博开心网人人网 摘要:随钻测井由于是实时测量,地层暴露时间短,其测量的信息比电缆测井更接近原始条件下的地层,不但可以为钻井提供精确的地质导向功能,而且可以避免电缆测井在油气识别中受钻井液侵入影响的错误,获取正确的储层地球物理参数和准确的孔隙度、饱和度等评价参数,在油气层评价中有非常独特的作用。通过随钻测井实例,对随钻测井与电缆测井在碎屑岩中的测井效果进行了对比评价,指出前者受钻井液侵入和井眼变化的影响小,对油气层的描述更加准确,反映出来的地质信患更加丰富。通过对几个代表性实例的分析,对随钻测井在油气勘探中的作用提出了新认识。 主题词:随钻测井;钻井;钻井液;侵入深度;技术 一、引言 20世纪80年代中期,专业厂商开始将电缆测井项目逐渐随钻化,形成了有真正意义的随钻测井技术,简称LWD(1099ing while drill ing)。由于LWD包含了所有MWD(measurement while drilling)的功能及传统测井项目,所以其具备了识别岩性和地层流体性质的能力,现场可以根据实时上传的各种信息判断钻头是否钻达目的层,这就是LWD的地质导向作用[1~3]。塔里木油田油气埋藏较深,直井开发的成本相对较高,1994年开始在油田钻水平井,已完钻水平井约占开发井的1/4,但产量超过了总产量的50%以上,经济效益非常明显。在水平井和侧钻井的施工中,保证命中靶心和取全取准测井资料是成功完井的关键,推广MWD/LWD技术后,其施工质量大大提高。 目前,在塔里木油田MWD/LWD技术主要用在以下几方面:①在比较熟悉的地质构造中进行非直井施工时,仅采用MWD,测井采集使用钻杆传输测井技术;②在较复杂的地质构造或薄层中进行非直井施工时,采用LWD,以防止钻井设计中可能的错误,一些非常必要的测井项目可使用钻杆传输测井技术;③在一些井眼状况复杂、井下有溢流、井漏等现象的井中,无法使用电缆及钻杆传输测井时,用LWD进行划眼测井,采集最基本的测井数据;④在欠平衡条件下钻井时,采用L WD。目前该油田已经使用过的随钻测井设备包括PathFinder、Sperr y-Sun和PowerPwlse等。

世界各大测井集团仪器编码表

世界各大测井集团仪器编码表BAKER ATLAS WIRELINE (贝克休斯公司-电缆测井) 3DEX 3D Induction Logging Service (三维感应) AC BHC Acoustilog (井眼补偿声波) CAL Caliper (井径) CBIL Circumferential Borehole Imaging Log (井周成像测井)CDL Compensated Density Log (补偿密度测井) CN Compensated Neutron Log (补偿中子测井) DAC Digital Array Acoustilog (数字阵列声波测井) DAL Digital Acoustilog (数字声波测井) DEL2 Dielectric Log - 200 Mhz (介电测井-200兆赫) DEL4 Dielectric Log - 47 Mhz (介电测井-47兆赫) DIFL Dual Induction Focused Log (双感应聚聚测井) DIP High Resolution 4-Arm Diplog (高分辨率4臂地层倾角)DLL Dual Laterolog (双侧向测井) DPIL Dual Phase Induction Log (双相位感应测井) EI Earth Imager (地层成像仪) FMT Formation Multi-Tester (地层多功能测试器) GR Gamma Ray (伽马仪) HDIL_BA High-Definition Induction Log (高分辨率感应测井)HDIP Hexagonol Diplog (六臂倾角测井) HDLL High-Definition Lateral Log (高分辨率侧向测井)ICAL Imaging Caliper (井径成像仪) IEL Induction Electrolog (感应-电测井)

随钻测井技术

随钻测井技术发展水平 引言 据统计,近十年来,世界上有关随钻测井(LWD)技术和应用的文献呈现出迅速增多的趋势。这反映了西方国家开始越来越多地重视LWD/MWD。这是两个方面的原因产生的结果。一方面石油工业界强烈需要勘探和开发业降低成本,减少风险,增加投资回报率。另一方面,MWD/LWD有许多迎合石油工业需要的优势,如随钻测井时,钻机不必停钻就能获得大量地层评价信息,节省了宝贵的钻井时间,从而降低了钻井成本。MWD提供的实时信息可即时使用,如可用于预测钻头前方地层的超常压力、预测复杂危险的构造,给钻井工程师警报提示,迅速采取措施,减少事故发生率。近几年里,大斜度井和水平井迅速发展,海上石油的开发受到重视。在这样的井中测井,常规电缆测井难以进行,挠性管输送测井和钻杆传送测井成本十分高,现场操作困难。LWD是在这类井中获取地层评价测井资料的最佳方法,此外,LWD信息还能指导钻头钻进的方向,引导钻井井迹进入最佳的目标地层。 随钻测井(LWD)技术是在钻井的同时用安装在钻铤上的测井仪器测量地层电、声、核等物理性质,并将测量结果实时地传送到地面或部分存储在井下存储器中的一种技术。该技术要求测井仪器应能够安装在钻铤内较小的空间里,并能够承受高温高压和钻井震动;安装仪器的专用钻铤应具有同实际钻井所用的钻铤同样的强度;还应具有用于深井的足够功率和使用时间的电源。 LWD是随钻测量技术的重要组成部分。MWD除了提供LWD信息外,还提供井下方位信息(井斜、方位、仪器面方向)和钻井动态和钻头机械的监测信息。MWD探头组合了LWD探头、方位探头、电子/遥测探头,一般放在钻头后50-100英尺的范围内,一般来说,MWD探头越靠近钻头越好。LWD探头提供地层评价信息,用于识别层面、地层对比、评价地层岩石和流体性质,确实取心和下的点。方位数据用于精确引导井迹向最理想的储层目标。钻井效率和安全性通过连续监测钻井而达到最佳。 目前的随钻测井技术已达到比较成熟的阶段,能进行电、声、核随钻测量的探头系列十分丰富,各种型号的、适用于各种环境的随钻电阻率、密度、中子测井仪器进入MWD 市场。哈里伯顿的PathFinder随钻测井系统包括自然伽马、电磁波电阻率、密度、中子孔隙度、井径和声波等。斯仑贝谢公司的VISION475测井系统包括声波(SI)、电阻率(RAB)、阵列电磁波电阻率(ARC5)及密度中子(ADN)等。Sperry Sun公司的三组合测井系统包括SLIM PHASE4电阻率仪、SLIM稳定岩性密度仪及补偿热中子仪,还测量伽马射线。在地层评价的许多方面LWD已经可以取代常规电缆测井。世界各地的MWD作业实践已经表明,随钻测井对于经济有效的测井评价,相对于常规电缆地层评价有明显优势。 发展MWD/LWD技术,应用MWD/LWD成果已是西方钻井/测井相关公司的热点研究领域。必须承认我国自行研究和开发随钻测井技术是一片空白。本报告将深入地调查国外随钻测井技术的发展历程,技术水平现状,应用情况,预测发展趋势,分析LWD市场,分析LWD风险,供管理决策和研究人员参考。

随钻测井

内容摘要 摘要:随钻测井是在钻开地层的同时实时测量地层信息的一种测井技术,自1989年成功投入商业应用以来得到了快速的发展,目前已具备了与电缆测井对应的所有技术,包括比较完善的电、声、核测井系列以及随钻核磁共振测井、随钻地层压力测量和随钻地震等技术,随钻测井已成为油田工程技术服务的主体技术之一。随钻测井(LWD)技术的萌芽只比电缆测井晚10年。由于基础工业整体水平的制约,随钻测井技术在前50多年发展缓慢。其业务收入和工作量快速增长。勘探开发生产的需要仍是随钻测井继续发展的强劲动力。作为一种较新的测井方法,随钻测井技术仍有许多有待发展和完善的方面,尤其是数据传输技术、探测器性能、资料解释和评价等。 关键词:随钻测井 LWD 研究进展

第一章随钻测井技术现状 迄今为止,随钻测井能提供地层评价需要的所有测量,如比较完整的随钻电、声、核测井系列,随钻地层压力、随钻核磁共振测井以及随钻地震等等。有些LWD 探头的测量质量已经达到或超过同类电缆测井仪器的水平。 1.1随钻测井数据传输技术 多年来,数据传输是制约随钻测井技术发展的“瓶颈”。泥浆脉冲遥测是当前随钻测量和随钻测井系统普遍使用的一种数据传输方式。泥浆脉冲遥测技术数据传输速率较低,为4~10 bit/s,远低于电缆测井的传输速率,这种方法不适合欠平衡水平井钻井。电磁波传输数据的方法也用于现场测井,但仅在较浅的井使用才有效。哈里伯顿公司的电磁波传输使用的频率为10Hz,在无中继器的情况下传输距离约10000 ft。此外,声波传输和光纤传输方法还处于研究和实验阶段。 1.2随钻电阻率测井 与电缆测井技术一样,随钻电阻率测井技术也分为侧向类和感应类2类。侧向类适合于在导电泥浆、高电阻率地层和高电阻率侵入的环境使用,目前的侧向类随钻电阻率测井仪器能商业化的只有斯伦贝谢公司的钻头电阻率仪RAB及新一代仪器GVR。GVR使用56个方位数据点进行成像,图像分辨率比RAB有较大提高。感应类在导电性地层测量效果好,适合于导电或非导电泥浆。新型随钻电磁波电阻率的仪器结构相似,使用多个发射器和多个接收器,测量2个接收器之间的相移和衰减,工作频率相近,只能使用有限的几种频率才能消除钻铤等背景影响而测量到地层信号,如低频20、250、400、500 kHz,高频一般都使用2 MHz。 通过比较随钻电阻率测井和电缆电阻率测井曲线之间的区别可知,在储层内部二者相差不大;在界面处由于受地层界面表面电荷、钻井液侵入等影响,随钻电阻率数值远大于电缆测井数值;在界面附近,二者电阻率数值还受地层界面表面电荷、钻井液侵入井眼轨迹与地层倾角之间的夹角大小影响。 井眼轨迹与地层倾角之间的关系对电阻率有较大的影响,有效地控制井眼轨迹能大大降低钻井成本和提高效益。同时根据电阻率响应特征和其他测井曲线正确地划分地层界面,能有效地提高测井解释精度及为工程施工提供更好地依据。 1.3随钻声波测井 现场服役的随钻声波测井仪器使用的声源有单极子、偶极子和四极子,如贝克休斯INTEQ公司的AP既使用单极子也使用四极子声源,斯伦贝谢公司的Son-icVision使用单极子声源,哈里伯顿Sperry公司的BAT是偶极子仪器。这些仪器可测量软/硬地层纵/横波速度和幅度,测量数据一般保存在井下存储器内,

贝克休斯随钻测井技术介绍

贝克休斯随钻测井技术介绍
贝克休斯随钻测井 技术介绍
1
随钻测量(MWD)
旋转倾斜角
– 旋转钻井过程中的井眼倾斜角
旋转方位角
– 旋转钻井过程中的井眼方位角
方向原始数据
– 用于对钻柱轴向磁场干扰进行修正
振动粘滑动态
– 轴向振动 – 横向振动 – 粘滑振动
2
3
2008年5月28日
1

贝克休斯随钻测井技术介绍
高速数据传输 (aXcelerate)
原始信号的形状清晰且容易 确定 泵噪音和反射作用导致到达 地表传感器的信号失真 对泵噪音的消除使得对井下 脉冲发生器信号的识别成为 可能 动态优先级提升(DPP)算 法可消除反射作用和表面噪 音 对信号进行最终过滤,并采 用自适应相关器恢复井下脉 冲发生器的原始信号
4
高速数据传输 (aXcelerate)
3比特/秒的实时数据 密度具有足够分辨率 能确保图像重要特征 的识别 增加至6比特/秒的数 据密度可产生清晰的 图像,可确保特征识 别以及实时倾角选择
5
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Gamma 伽马射线 Ray
6
2008年5月28日
2

贝克休斯随钻测井技术介绍
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率 Resistivity
MPRTEQ
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
7
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Density & 密度与孔 Porosity 隙度
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
8
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
9
2008年5月28日
3

国外主要测井公司介绍

国外主要测井公司介绍 (34)Rabinovich,et al.,2001,enhanced anistropy from jiont processing of multicomponent induction and multi-array induction tools, paper HH,in 42th Annual logging symposium transactions:Society of Professional Well Log Analysts,2001 测井是技术密集型产业,测井仪器装备一次性投资大,投资回收期较长。国际性的油田技术服务公司中,以测井为主营业务的公司,主要有斯仑贝谢公司、哈里伯顿公司、贝克-阿特拉斯公司,这三家公司占据90%多的测井服务市场(斯仑贝谢约占62%),哈里伯顿和贝克-阿特拉斯分别约占14%和15%)。其他公司还有威德福公司、Tucker能源服务公司、REEVES 公司和PROBE公司等等,这些公司在整体上逊色于三大公司,但在部分专项上可以与三大公司媲美。 第一节斯仑贝谢公司 一、公司概况 斯仑贝谢是测井行业的开山鼻祖,公司总部位于美国纽约。经过70多年的发展,斯仑贝谢公司已成为一家除工程建设服务以外的全球性油田和信息服务超级大型企业集团,但公司主要的经营活动还是集中在石油工业,在世界上100多个国家和地区有业务往来。公司员工60,000余人,来自140多个国家。公司2002年总收入为135亿美元,其中测井部分年收入为56亿美元,测井研发经费4亿美元(占测井收入的7%)。除现场作业外,斯仑贝谢公司在美国、英国等地建有研发中心,作为公司经营服务的强大技术支持。 斯仑贝谢公下设三个主要的经营部门: 斯仑贝谢油田服务公司:是世界上最大的油田技术服务公司,为石油和天然气工业提供宽广的技术服务和解决方案。 斯仑贝谢Sema公司:为能源工业,同时也为公共部门、电信和金融市场,提供IT咨询、系统集成、网络和基础建设服务。 斯仑贝谢西方地震服务公司:是与贝克休斯公司合作经营的公司,是世界最大的、最先进的地面地震服务公司。 斯仑贝谢公司其他方面的业务还有智能卡服务(电子付款、安全识别、公用电话、移动电话、身份证、停车系统等)、半导体测试和诊断服务、水资源服务等等。 二、斯仑贝谢油田服务公司 斯仑贝谢油田服务公司是具有测井、测试、钻井、MWD/LWD和定向钻井、陆上和海上地震、井下作业和油田化学、软件开发和资料处理等多种能力的综合性油田技术服务公司,在开放的国际测井服务方面,其市场占有率达到62%左右。 在长达七十多年的时间内,斯仑贝谢公司在测井方面始终保持着领先地位。世界上第一套数字测井仪、第一套数控测井仪、第一套成像测井仪都是斯仑贝谢公司首先推出的;各种新的测井仪器,十有八、九是斯仑贝谢公司首先推出的。可以说,斯仑贝谢一直领导着测井发展的潮流。 该公司于20世纪90年代初率先推出了成像测井系统——MAXIS 500多任务采集成像测井系统,能完成裸眼井和套管井地层评价、生产测井和射孔服务。 1996年又率先推出了快测平台技术,提高了作业效率、仪器可靠性和数据精度。 1998年推出套管井地层电阻率测量仪CHFR,采集套管后地层电阻率数据。2000年推出改进型套管井电阻率测井仪CHFR-Plus。 该公司的核磁共振测井技术也处于领先地位。1996年推出CMR200可组合磁共振成像测井仪,1998年推出其改进型CMR-Plus

相关主题