搜档网
当前位置:搜档网 › 概率习题(附答案)

概率习题(附答案)

概率习题(附答案)
概率习题(附答案)

随机事件的概率

一、选择题(每题4分)

1、黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( ) A.能开门的可能性大于不能开门的可能性; B.不能开门的可能性大于能开门的可能性 C.能开门的可能性与不能开门的可能性相等 D.无法确定

2、有5个人站成一排,则甲站在正中间的概率与甲站在两端的概率的比值为( )

A.

2

1 B.

2 C.

2

1

或2 D.无法确定

3、如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( )

A 、 21

B 、 83

C 、 41

D 、 3

1

4、某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。若某人购物满100元,那么他中一等奖的概率是 ( ) A 、 1001 B 、10001 C 、100001 D 、10000111

5、连掷两次骰子,它们的点数都是4的概率是( ) A 、

61 B 、41 C 、161 D 、36

1 6、啤酒厂做促销活动,在一箱啤酒(每箱24瓶)中有4瓶的盖内印有“奖”字. 小明的爸爸买了一箱这种品牌的啤酒,但是连续打开4瓶均未中奖. 小明这时在剩下的啤酒中任意拿出一瓶,那么他拿出的这瓶中奖的概率( ). (A)

424 (B)16 (C)520 (D)1

5

二、填空题(每题3分)

7、可能事件的概率p 的取值范围是__________。必然事件发生的概率是_____,不可能事件发生的概率是_____。

8、投掷一个均匀的正六面体骰子,每个面上依次标有1、2、3、4、5、6,则掷得“5”的概率P=________,这个数表示的意思是__________________. 9、王刚的身高将来会长到4米,这个事件得概率为_____。 10、任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是

___

11、小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .

12、右图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______

13、一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .

14、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______

15、袋中装有3个白球和2个黄球,从中随机地摸出二个球,都为白球的概率为_______,为一个白球与一个黄球的概率是_______.

16、用1,2,3组成三位数(不重复使用),其中排出偶数的概率是_________.

17、一个口袋中有24个红球和若干个绿球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中搅匀,重复上述过程,试验200次,其中有125次摸到绿球,估计口袋中有绿球___个。 18、将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为,,a b c ,则,,a b c 正好是直角三角形三边长的概率是_________. 三、解答题

1、小明外出游玩时带了三件上衣和两条裤子,上衣分别是棕色、蓝色和黄色,裤子分别是白色和蓝色,他随意拿出一件上衣和一条裤子,请完成下面的列表,并求配成一套的上衣和裤子中含有蓝色的概率。

2、“大好大瓜子”厂家进行有奖销售,方法如下:每袋瓜子中装有一张小卡片,每张卡片上写着一个字,分别为“祝”、“您”、“好”、“运”,若能集起四个不同的字,则可领取奖品一份。假设生产厂家在包装时放入四种字的卡片总张数相同,你能用模拟试验的方法,估计买5袋就可中奖的概率吗?

3、如图,将两个可以自由转动的转盘分别分成面积相等的几个扇形,在分成的扇形上分别

标上数字1,2,3,4,5.同时转动两个转盘.

(1)用树状图或列表法表示转盘停止后指针所指扇形上的数字可能出现的所有结果(若指针指在分界线上,则重转);

(2)如果甲、乙两人分别同时转动两个转盘,并规定:转盘停止后,若两转盘指针所指扇形上的数字之和为偶数,则甲胜;若数字之和为奇数,则乙胜.这个游戏对甲、乙两人公平吗?请说明理由.

4、学习完统计知识后,小兵就本班同学的上学方式进行调查统计.如图是他通过收集数据后绘制的两幅不完整的统计图.

请你根据图中提供的信息解答下列问题: (1)该班共有 名学生;

(2)将表示“步行”部分的条形统计图补充完整;

(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是 度; (4)若全年级共1000名学生,估计全年级步行上学的学生有 名;

(5)在全班同学中随机选出一名学生来宣读交通安全法规,选出的恰好是骑车上学的学生的概率是 .

5、不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),篮球1个。若从中任意摸出一个球,它是篮球的概率为14

. (1)求袋中黄球的个数;

(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方

步行 骑车

上学方式

法,求两次摸到不同颜色球的概率.

6、小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:

朝上的点数 1 2 3 4 5 6

出现的次数7 9 6 8 20 10

(1)计算“3点朝上”的频率和“5点朝上”的频率.

(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?

(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.

7、亲爱的同学,下面我们来做一个猜颜色的游戏:一个不透明的小盒中,装有A、B、C三张除颜色以外完全相同的卡片,卡片A两面均为红,卡片B两面均为绿,卡片C一面为红,一面为绿.

(1)从小盒中任意抽出一张卡片放到桌面上,朝上一面恰好是绿色,请你猜猜,抽出哪张卡片的概率为0?

(2)若要你猜(1)中抽出的卡片朝下一面是什么颜色,猜哪种颜色正确率可能高一些?请你列出表格,用概率的知识予以说明.

8、九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.

(1)男生当选班长的概率是;

(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.

,两种游戏:

9、小华与小丽设计了A B

游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.

游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.

10、一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。

红2一、4、B 5、D 6、D

二、13、3718、36

1 三、 3、

12

1 5、解:(1)袋中黄球的个数为1个;····························2分

所以两次摸到不同颜色球的概率为:126

P ==. ··························8分

6、解:(1)“3点朝上”出现的频率是61

6010

= “5点朝上”出现的频率是

201603

= (2)小颖的说法是错误的.这是因为,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的频率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.

小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次. (3)列表如下:

(3)363

P =

=点数之和为的倍数

7、解:(1)依题意可知:抽出卡片A 的概率为0;

(2)由(1)知,一定不会抽出卡片A ,只会抽出卡片B 或C ,且抽出的卡片朝上的一面是绿色,那么可列下表:

可见朝下一面的颜色有绿、绿、红三种可能,即:P (绿)=32,P (红)=3

1

, 所以猜绿色正确率可能高一些. 8、解:(1)

1

2

; (2)树状图为;

所以,两位女生同时当选正、副班长的概率是21126

.(列表方法求解略) 9、解:对游戏A : 画树状图 或用列表法

所有可能出现的结果共有9种,其中两数字之和为偶数的有5种,所以游戏A 小华获胜的

概率为59,而小丽获胜的概率为4

9.即游戏A 对小华有利,获胜的可能性大于小丽. 对游戏B :

画树状图

×

× ×

×

× ×

× × √

× × √

2 3 4 2

3 4 2 3

4

2 3 4

开始

开始

白1

白2

白1

白2

白2

白1

第二次摸出

的球

第一次摸出

的球

开始

或用列表法

所有可能出现的结果共有12种,其中小华抽出的牌面上的数字比小丽大的有5种;根据游

戏B的规则,当小丽抽出的牌面上的数字与小华抽到的数字相同或比小华抽到的数字小时,则小丽获胜.所以游戏B小华获胜的概率为

5

12

,而小丽获胜的概率为

7

12

.即游戏B对小

丽有利,获胜的可能性大于小华.

10解:(1)从箱子中任意摸出一个球是白球的概率是

2

3

P=

(2)记两个白球分别为白1与白2,画树状图如右所示:

从树状图可看出:事件发生的所有可能的结果总数为6,

两次摸出球的都是白球的结果总数为2,因此其概率

21

63

P==.

概率统计练习题答案

《概率论与数理统计》练习题7答案7 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设随机事件A 、B 互斥,(), (),P A P P B q ==则()P A B =( )。 A 、q B 、1q - C 、 p D 、1p - 答案:D 2、某类灯泡使用时数在500小时以上的概率为0.5,从中任取3个灯泡使用,则在使用500小时之后无一损坏的概率为:( )。 A 、 18 B 、2 8 C 、38 D 、 4 8 答案:A 3、设ξ的分布函数为1()F x ,η的分布函数为2()F x ,而12()()()F x aF x bF x =-是某随机 变量ζ的分布函数,则, a b 可取( )。 A 、32, 55a b = =- B 、2 3a b == C 、13 , 22a b =-= D 、13 , 22 a b ==- 答案:A 4、设随机变量ξ,η相互独立,其分布律为: 则下列各式正确的是( )。 A 、{}1P ξη== B 、{}14 P ξη== C 、{}12 P ξη== D 、{}0P ξη== 答案:C

^^ 5、两个随机变量的协方差为cov(,)ξη=( )。 A 、() () 2 2 E E E ηηξξ-- B 、()()E E E E ξξηη-- C 、()()2 2 E E E ξηξη-? D 、()E E E ξηξη-? 答案:D 6、设随机变量ξ在11,22?? -???? 上服从均匀分布sin ηπξ=的数学期望是( )。 A 、0 B 、1 C 、 1π D 、2π 答案:A 7、设12100,,,ξξξ???服从同一分布,它们的数学期望和方差均是2,那么 104n i i P n ξ=?? <<≥???? ∑( )。 A 、 12 B 、212n n - C 、12n D 、1 n 答案:B 8、设12, , , n X X X 是来自正态总体2(, )N μσ的样本( )。 A 、2 11~(,)n i i X X N n μσ==∑ B 、2 11()~(0, )n i X N n n σμ=-∑ C 、22 2111()~(1)n i i X n n μχσ=?--∑ D 、22 21 11()~()n i i X X n n χσ=?-∑ 答案:B 9、样本12(,, , )n X X X ,2n >,取自总体ξ,E μξ=,2D σξ=,则有( )。

概率统计习题及答案

1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( D )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( C ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( B ) A.91 9910098 .02.0C B.i i i i C -=∑100100 9 10098 .02.0 C.i i i i C -=∑100100 10 10098 .02.0 D.i i i i C -=∑- 1009 0100 98 .02.01 4、设)3,2,1(39)(=-=i i X E i ,则)( )3 12 53(32 1=+ +X X X E B A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 23 2 1X X X X X c +++? 服从t 分布。( C ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14(N ,则其概率密度为( A ) A.6 )14(2 61- -x e π B. 3 2 )14(2 61- - x e π C. 6 )14(2 321- - x e π D. 2 3 )14(2 61-- x e π 7、321,,X X X 为总体),(2 σμN 的样本, 下列哪一项是μ的无偏估计( A ) A. 32 12 110 351X X X + + B. 32 1416131X X X ++ C. 32 112 5 2 13 1X X X + + D. 32 16 13 13 1X X X + + 8 、设离散型随机变量X 的分布列为 则常数C 为( C ) (A )0 (B )3/8 (C )5/8 (D )-3/8

概率统计习题含答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

全概率公式与贝叶斯公式解题归纳

全概率公式与贝叶斯公式解题归纳 来源:文都教育 在数学一、数学三的概率论与数理统计部分,需要用到全概率公式及其贝叶斯公式来解题. 这类题目首先要区分清楚是“由因导果”,还是“由果索因”,因为全概率公式是计算由若干“原因”引起的复杂事件概率的公式,而贝叶斯公式是用来计算复杂事件已发生的条件下,某一“原因”发生的条件概率. 它们的定义如下: 全概率公式:设n B B B ,,,21 为样本空间Ω的一个划分,如果()0,i P B > 1,2,,i n =L ,则对任一事件A 有 )|()()(1 i n i i B A P B P A P ∑==. 贝叶斯公式 :设n ,B ,,B B 21 是样本空间Ω的一个划分,则 .,,2,1,)|()() |()()|(1n i B A P B P B A P B P A B P n j j j i i i ==∑= 例1 从数字1, 2, 3, 4中任取一个数,记为X ,再从1,…,X 中任取一个数,记为Y ,则(2)P Y == . 解 由离散型随机变量的概率分布有: (1)(2)(3)(4)14P X P X P X P X ========. 由题意,得 (21)0,(22)12,P Y X P Y X ====== (23)13,(24)14P Y X P Y X ======,则根据全概率公式得到

(2)(1)(21)(2)(22)P Y P X P Y X P X P Y X =====+=== (3)(23)(4)(24)P X P Y X P X P Y X +===+=== 111113(0).423448 =?+++= 例2 12件产品中有4件次品,在先取1件的情况下,任取2件产品皆为正品,求先取1件为次品的概率. 解 令A={先取的1件为次品},则,A A 为完备事件组,12(),(),33 P A P A = =令B={后取的2件皆为正品},则2821128(),55C P B A C ==2721121(),55C P B A C == 由贝叶斯公式得 128()()()2355().128221()()()()()5 355355 P A P B A P AB P A B P B P A P B A P A P B A ?====+?+? 若随机试验可以看成分两个阶段进行,且第一阶段的各试验结果具体结果怎样未知,那么:(1)如果要求的是第二阶段某一个结果发生的概率,则用全概率公式;(2)如果第二个阶段的某一个结果是已知的,要求的是此结果为第一阶段某一个结果所引起的概率,一般用贝叶斯公式,类似于求条件概率. 熟记这个特征,在遇到相关的题目时,可以准确地选择方法进行计算,保证解题的正确高效.

概率统计练习题8答案

《概率论与数理统计》练习题8答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设有10个人抓阄抽取两张戏票,则第三个人抓到有戏票的事件的概率等于( )。 A 、0 B 、1 4 C 、18 D 、15 答案:D 2、如果,A B 为任意事件,下列命题正确的是( )。 A 、如果,A B 互不相容,则,A B 也互不相容 B 、如果,A B 相互独立,则,A B 也相互独立 C 、如果,A B 相容,则,A B 也相容 D 、AB A B =? 答案:B 3、设随机变量ξ具有连续的分布密度()x ξ?,则a b ηξ=+ (0,a b ≠是常数)的分布密度为( )。 A 、 1y b a a ξ?-?? ? ?? B 、1y b a a ξ?-?? ??? C 、1y b a a ξ?--?? ??? D 、 1y b a a ξ??? - ? ??? 答案:A 4、设,ξη相互独立,并服从区间[0,1]上的均匀分布则( )。 A 、ζξη=+服从[0,2]上的均匀分布, B 、ζξη=-服从[- 1,1]上的均匀分布, C 、{,}Max ζξη=服从[0,1]上的均匀分布,

D 、(,)ξη服从区域01 01x y ≤≤??≤≤? 上的均匀分布 答案:D 5、~(0, 1), 21,N ξηξ=-则~η( )。 A 、(0, 1)N B 、(1, 4)N - C 、(1, 2)N - D 、(1, 3)N - 答案:B 6、设1ξ,2ξ都服从区间[0,2]上的均匀分布,则12()E ξξ+=( )。 A 、1 B 、2 C 、0.5 D 、4 答案:B 7、设随机变量ξ满足等式{||2}116P E ξξ-≥=,则必有( )。 A 、14D ξ= B 、14 D ξ> C 、1 4 D ξ< D 、{} 15216 P E ξξ-<= 答案:D 8、设1(,,)n X X 及1(,,)m Y Y 分别取自两个相互独立的正态总体21(, )N μσ及 2 2(, )N μσ的两个样本,其样本(无偏)方差分别为21 S 及22 S ,则统计量2 122 S F S =服从F 分 布的自由度为( )。 A 、(1, 1)n m -- B 、(, )n m C 、(1, 1)n m ++ D 、( 1, 1,)m n -- 答案:A 9、在参数的区间估计中,给定了置信度,则分位数( )。 A 、将由置信度的大小唯一确定; B 、将由有关随机变量的分布唯一确定; C 、可按置信度的大小及有关随机变量的分布来选取; D 、可以任意规定。 答案:C 10、样本容量n 确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有( )。

概率统计例题

已知二维连续型随机向量),(Y X 的联合密度函数为 ?? ?<<<<=其他。 ,; ,, 010104),(y x xy y x f 则X 与Y 相互独立 【解:由二维连续型随机向量),(Y X 的联合密度函数为 ?? ?<<<<=其他。 , ; ,, 010104),(y x xy y x f 可得两个边缘密度函数分别为: ?? ?<<==?∞+∞ -其他。, ; , 0102),()(x x dy y x f x f X ?? ?<<==? ∞ +∞ -其他。 , ; , 0102),()(y y dx y x f y f Y 从而可得)()(),(y f x f y x f Y X ?=,所以X 与Y 相互独立。 ■12、设二维随机变量(X , Y ) ~4,01,01 (,)0,xy x y f x y <<<===??? ()1()0.5P Y X P X Y ≥=->=】

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率统计练习题答案

概率统计练习题答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

《概率论与数理统计》练习题 2答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、A 、B 任意二事件,则A B -=( )。 A 、B A - B 、AB C 、B A - D 、A B 答案:D 2、设袋中有6个球,其中有2个红球,4个白球,随机地等可能地作无放回抽样,连 续抽两次,则使P A ()=1 3成立的事件A 是( )。 A 、 两次都取得红球 B 、 第二次取得红球 C 、 两次抽样中至少有一次抽到红球 D 、 第一次抽得白球,第二次抽得红球, 答案:B 3、函数()0 0sin 01 x F x x x x ππ

A 、ξη= B 、2ξηξ+= C 、2ξηξ= D 、~(2,)B p ξη+ 答案:D 5、设随机变量12,,,n ξξξ???相互独立,且i E ξ及i D ξ都存在(1,2, ,)i n =,又 12,,, ,n c k k k ,为1n +个任意常数,则下面的等式中错误的是( )。 A 、11n n i i i i i i E k c k E c ξξ==??+=+ ???∑∑ B 、11n n i i i i i i E k k E ξξ==??= ???∏∏ C 、11n n i i i i i i D k c k D ξξ==??+= ???∑∑ D 、()111n n i i i i i D D ξξ==??-= ???∑∑ 答案:C 6、具有下面分布密度的随机变量中方差不存在的是( )。 A 、()150050x x x e x ?-≤?=?>? B 、( )2 6 2x x ?-= C 、()312 x x e ?-= D 、()() 42 1 1x x ?π= + 答案:D 7、设随机变量的数学期望和方差均是1m +(m 为自然数),那么 (){}041P m ξ<<+≥( )。 A 、 11m + B 、1m m + C 、0 D 、1m 答案:B 8、设1, , n X X 是来自总体2(, )N μσ的样本, 2 211 11, (),1n n i n i i i X X S X X n n --==--∑∑则以下结论中错误的是( )。 A 、X 与2n S 独立 B 、 ~(0, 1)X N μ σ -

全概率公式及其应用

1绪论 1.1问题的提出 概率论是统计学在实际生活中应用的理论基础,在实际生活、生产、工作中经常会遇到各种各样有关于概率计算问题的模型或者事件,而往往有些实际事件的解决是十分复杂的,如果只是使用一般的概率计算方法是无法快捷甚至根本无法解决这些问题,而全概率公式是概率论中的一个重要公式,它提供了计算复杂事件概率的一条有效途径,使一个复杂事件的概率计算问题化繁为简,使用全概率公式解决问题可以借助引入各种小前提,将事件分解为两个或是若干个互不相容的简单事件的并集并且在每个小部分中可以比较容易的求得所需要的概率,从而进一步应用加法公式求出复杂事件的概率,所以针对某些复杂事件的处理一般可以使用全概率公式进行简化计算。 大家不禁思量,在解决概率问题时,使用全概率公式与使用一般方法相比有何不同?其优势体现在哪?全概率公式主要应用于哪些领域?本文主要探究的即是全概率公式在解决一些实际生活中遇到的问题中的应用以及其优势。 1.2使用全概率公式解决问题的意义 通过调查和统计我发现全概率公式的应用范畴十分广泛,同时其涉及领域也非常宽广。 我们可以看到,在现实的各种领域,比如生活、生产、经济、保险、投资、医疗等领域中,常常会涉及各种类型的概率计算,但是由于这些实际事件都会有着各种各样的限制条件或者其样本空间极为

复杂,因此在计算中也会遇到各种复杂问题。全概率公式的存在即有效地解决了一些复杂繁琐类的问题。在遇到使用一般方法进行处理分析十分麻烦乃至容易出错的复杂事件时,如果可以把这个事件分割成为互不相容的两个或者若干个简单事件,那么就可以运用全概率公式将样本空间按照某种方式进行分割,使原本复杂的事件转变为两个或者若干个简单事件,再使用条件概率对每个简单是件进行运算,最后运用加法公式将所有结果进行相加即可以准确便捷的得出结果,这也就是全概率公式的意义所在。灵活使用全概率公式有助于把握随机事件间的相互影响关系,为生产实践提供更有价值的决策信息。 1.3研究背景及预期结果 目前很多文献与论文都提及到了全概率公式的应用,但是一般都是对全概率公式进行证明、解释或者深度推广,其中很多文章都对全概率公式在某一部分领域的应用做出了阐释,并未能总结出全概率公式在各种领域中的实际问题上的应用。本文就是为了探求全概率公式在各种实际问题上的应用,归纳总结全概率公式的理解方法、求解问题时的分析方法、解决实际应用时的具体步骤以及应用此公式时应该注意的事项等几点研究体会,旨在更加完备的总结出全概率公式在解决各种复杂问题时的作用。 2全概率公式的概述 2.1全概率公式 全概率公式是概率论中的一个重要公式,它主要展示了“化整为零”的数学思想,将复杂的问题分割为两个或者若干个简单问题进行

概率统计习题带答案

概率统计习题带答案 概率论与数理统计习题及题解沈志军盛子宁第一章概率论的基本概念1.设事件A,B及A?B的概率分别为p,q及r,试求P(AB),P(AB),P(AB)及P(AB) 2.若A,B,C相互独立,试证明:A,B,C 亦必相互独立。3.试验E为掷2颗骰子观察出现的点数。每种结果以(x1,x2)记之,其中x1,x2分别表示第一颗、第二颗骰子的点数。设事件A?{(x1,x2)|x1?x2?10},事件B?{(x1,x2)|x1?x2}。试求P(B|A)和P(A|B) 4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。问:恰好第三次打开房门锁的概率?三次内打开的概率?如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n个白

球、m个红球,乙袋中装有N个白球、M个红球。今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为,,在甲系统失灵的条件下乙系统也失灵的概率为。试求下列事件的概率:仓库发生意外时能及时发出警报;乙系统失灵的条件下甲系统亦失灵?9.设A,B为两随机变量,试求解下列问题:已知P(A)?P(B)?1/3,P(A|B)?1/6。求:P(A|B);

概率论与数理统计经典考试题型

概率论经典考试题型 一,选择题 1 设A 、B 为互不相容的事件,且()0,()0,P A P B >>下面四个结论中, 正确的是( ) (A)(|)0P B A > (B)(|)0P A B = (C)(|)()P A B P A =(D)()()()P AB P A P B = 如果A 、B 为互不相容的事件,且 ()0,()0,P A P B >>则上述不正确的是( ) 2 总体),(~2 σμN X ,n X X X ,,,21 是来自总体的样本, ∑==n k k X n X 1 1,则n X /σμ- ~ ( ) (A) ),(2σμN (B) )1,0(N (C) )(n t (D) )1(-n t 3. 已知相互独立的随机变量 ~(1,16), Y ~(2,9), (2)X N N D X Y -=则

。 4. 设3.0)(=A P , 6.0)(=B P , 且事件A 与B 互不相容, ()P A B ?=则 。 5. 已知随机变量X 的概率密度为 2,0,()0,0.x ae x f x x -?>=?≤? 则a = . 6. 设随机变量X 满足2(),()E X D X μσ==, 则由切比雪夫不等式,有{||3}P X μσ-≥≤ 。 7.设总体),(~2σμN X ,2,σμ未知, n X X X ,,,21 是来自总体 X 的样本, 则 μ的矩估计量是 ,2σ最大似然估 计量 。

8 电路由电池A 、B 及两个并联的电池C 、D 串联而成, 设电池A, B, C, D 损坏与否是 相互独立的, 且它们损坏的概率依次为0.3, 0.2, 0.2, 0.5, 求这个电路发生间断的概率. 9 已知(,)X Y 的联合分布率如下: 求(1)边缘分布率; (2))(),(X D X E ; (3) Z X Y =+的分布率。

概率统计练习题

第一次 1.6个毕业生,两个留校,另4人分配到4个不同单位,每单位1人.则分配方法有___________种. 2.平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_______条不同的直线. 3.若随机试验E是:在六张卡片上分别标有数字0,1,2,3,4,5,从中任意依次取出两张,取后不放回,组成一个二位数,则E的样本空间中基本事件个数是______________ 4.由0,1,2,3,4,5六个数字可以构成多少个不能被5整除的六位数. 5.一项工作需5名工人共同完成,其中至少必须有2名熟练工人.现有9名工人,其中有4名熟练工人,从中选派5人去完成该项任务,有多少种选法. A表示“第i个零件是正品”()4,3,2,1=i.试用i A表示事件A: 6.设有四个零件.事件 i “至少有一个次品”,B:“至多一个次品”

1.下列诸结论中, 错误的是( ) )(A 若0)(=A P 则A 为不可能事件 )()()()(B A P B P A P B ≥+ )()()()(A P B P A B P C -≥- )()()()(BA P B P A B P D -=- 2.设事件B A ,互斥 ,q B P p A P ==)(,)(, 则)(B A P 等于 ( ) q A )( q B -1)( p C )( p D -1)( 3.已知 ===)(,18.0)(,72.0)(A P B A P AB P 则 ___________ 4.将3个球随机地放入4个盒子中,记事件A 表示:“三个球恰在同一盒中” .则)(A P 等于 _________________ 5.8件产品中有5件是一级品,3件是二级品,现从中任取2件,求下列情况下取得的2件产品中只有一件是一级品的概率:( 1 ) 2件产品是无放回的逐次抽取;( 2 ) 2件产品是有放回的逐次抽取. 6.两人相约7点到8点在某地会面,先到者等候另一人2 0分钟,过时就可离去.试求这两人能会面的概率.

概率论经典试题

第一章 概率论的基本概念课外习题 一.单项选择题 1. 设1)|()|(,1)(0,1)(0=+<<<

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,01 0,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2 +ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=

概率统计例题及练习题(答案)

第八讲 概率统计 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:

① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [考查目的]本题主要考查概率的概念和等可能性事件的概率求法. [解答过程]0.3提示:1 33 5 C 33.54C 10 2 P ===? 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 . [考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法. 用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20 提示:51.10020P == 例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________. [考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.

概率论典型例题第4章

第四章 大数定律与中心极限定理 例1.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6{Y X P 。 分析:切比雪夫不等式:2{}DX P X EX εε?≥≤或2{}1DX P X EX εε?<≥?, 显然需用到前一不等式,则只需算出()E X Y +与()D X Y +即可。 解:由于 0)(=+Y X E , ()2(,)2XY D X Y DX DY Cov X Y DX DY ρ+=++=++14212(0.5)3=++×××?=, 故由切比雪夫不等式 1216 )(}6{2=+≤≥+Y X D Y X P 。 注:还是用到第三章数字特征的一些性质。 除了切比雪夫不等式本身,这也是另外的知识点。 例2.设()0(0)g x x ><<+∞,且为非降函数。 设X 为连续型随机变量且[()]E g X EX ?存在。 试证对任意0ε>,有 [()] {}()E g X EX P X EX g εε??≥≤。 分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的证明思想试试看。 证明:设随机变量X 的概率密度为()f x ,则有 {}()x EX P X EX f x dx εε?≥?≥= ∫ 由于()0g x >,且非降,故当X EX ε?≥时,有 ()()g X EX g ε?≥,() 1()g X EX g ε?≥, 所以

(){}()()()x EX x EX g X EX P X EX f x dx f x dx g εεεε?≥?≥??≥= ≤∫∫ 1()()()g X EX f x dx g ε+∞?∞ ≤?∫ [()] ()E g X EX g ε?=。 注:这是切比雪夫不等式的推广。 当2()g x x =时,即为切比雪夫不等式。 例3.设随机变量序列12,,,n X X X L 相互独立,且都服从参数为2的指数分 布,则当n →∞时,21 1n n i i Y X n ==∑依概率收敛于 。 (A ) 0 (B ) 12 (C ) 14 (D ) 1 分析:出现依概率收敛就要考虑应用大数定律,题设给出的是一列独立同分布的随机变量序列,自然会想到辛钦大数定律。 解:由题设12,,,n X X X L 独立同分布于参数为2的指数分布,因此22212,,,n X X X L 也都独立同分布,且它们共同的期望值为 2 22111()422i i i EX DX EX ??=+=+=????。 根据辛钦大数定律,当n →∞时,21 1n n i i Y X n ==∑依概率收敛于其期望值12,故应选择选项B 。 注:几个大数定律条件、结论都非常相似,下面对其条件进行一下比较: 伯努利大数定律和辛钦大数定律都要求随机变量序列有独立性、同分布和有限数学期望。 切比雪夫大数定律对条件有所放宽,不要求同分布,但要求有某种独立性。 但是只有辛钦大数定律不要求方差存在。 同时要注意大数定律中所给的假设条件都是大数定律成立的充分条件,切不

全概率公式解释的经典问题

Advances in Education教育进展, 2017, 7(6), 328-333 Published Online November 2017 in Hans. https://www.sodocs.net/doc/115362021.html,/journal/ae https://https://www.sodocs.net/doc/115362021.html,/10.12677/ae.2017.76051 Some Famous Problems Solved by Full Probability Formula Xiaohan Yang School of Mathematics Science, Tongji University, Shanghai Received: Oct. 19th, 2017; accepted: Nov. 1st, 2017; published: Nov. 8th, 2017 Abstract Full probability formula is a basic subject of the theory of Probability. By presenting some inter-esting and famous problems that are applications of this subject instead of mathematics deduction, this paper attempts not only to illustrate how this extremely important formula comes into play but also to let individual feel it is fundamental and awesome to learn probability. Keywords Full Probability Formula, Monty Hall Problem, Simpson’s Paradox, Sensitivity Analysis 全概率公式解释的经典问题 杨筱菡 同济大学数学科学学院,上海 收稿日期:2017年10月19日;录用日期:2017年11月1日;发布日期:2017年11月8日 摘要 《概率论与数理统计》课程与实际问题联系非常密切,其重要性不言而喻。另一方面,不管是教科书还是学生,在教学和学习过程中都缺乏直接体会概率统计课程重要性的载体。本文尝试以课程中一个非常重要的公式——全概率公式为切入点,收集整理了用全概率公式解释的一些有趣的经典问题,并结合直观的树图讲解,使得学生在轻松掌握全概率公式这个知识点的同时,还有了利用概率统计方法解释现实中经典案例的直观体验,寓教于乐,提高学习积极性。

全概率公式及应用

【标题】全概率公式及应用 【作者】刘媛 【关键词】全概率公式随机事件条件概率 【指导老师】林昌盛 【专业】数学与应用数学 【正文】 一、引言 在研究实际问题的过程中,除了要考虑事件A的概率P(A)之外,还须考虑在“已知事件B已发生”条件事件A发生的概率.一般地说,后者的概率与前者的概率未必相同.为了清晰起见,第二类情况下的概率称为条件概率,记为P(A|B)或PB(A).条件概率是概率论中一个重要的基础概念,与之有关的三个重要公式是:乘法公式、全概率公式与贝叶斯公式,其中以乘法公式为基础的全概率公式在实际中有着广泛的应用.全概率公式就是把一个复杂的事件分解成若干个互不相容的简单事件,再由简单事件的概率求得最后的结果.本文在具体分析全概率公式的同时还发展出几个由全概率公式导出的推论,在分析其中定理的同时还运用其公式解决实际生活中比较典型的例 子. 二、全概率公式的基本理论 定义设A1,A2,…,An为n个事件,若满足: (1)完全性:A1∪A2∪…∪An=Ω; (2)互不相容性:AiAj=,i≠j,I,j=1,2,…,n; (3)P(Ai)>0,i=1,2,…,n, 则称A1,A2,…,An为Ω的一个完备事件组. 定理1 设A1,A2,…,An为一完备事件组,则对任一事件B,成 立:= 分析:从形式上看,公式的右边比左边复杂.实质上,定理中给出的条件“B是任一事件”往往很复杂,要直接求出B的概率很难入手,若能把事件B分解为许多简单的、互不相容的事件之和,且这些事件的概率可求,则求出就迎刃而解了.从下面的证明,也可以看出这个思路. 证明:∵=Ω=( )= 由条件(2)AiAj=,i≠j ∴(BAi)(BAj)=B(AiAj)==(i≠j) ∴=( )= 由于>0,应用乘法公式得:=.这个公式称为全概率公式. 全概率公式中的条件(1)可推广为,得如下定理: 定理2 设(1)A1,A2,…,An,…是两两互不相容的事件;(2).则对事件有=. 分析:从形式上看, 是的一个子集,并且A1,A2,…,An,…是两两互不相容的事件,那么我

相关主题