搜档网
当前位置:搜档网 › 酵母单杂交技术的原理及应用

酵母单杂交技术的原理及应用

酵母单杂交技术的原理及应用
酵母单杂交技术的原理及应用

在所有的生命活动中,蛋白质是最终的执行者和体现者,并且随着大量生物基因组测序的完成,越来越多的研究人员将重点转移到蛋白组的研究上[1]。而酵母单杂交技术是新近发展起来的一种体外研究DNA与蛋白质相互作用的技术。众所周知,在生物体内DNA与蛋白质间相互作用的表达调控机制是非常普遍的,且具有重要的生物学功能。比如在基因转录和复制中都存在这种调控机制,因此目前酵母单杂交技术已经被广泛地应用于科学研究的各个领域。1酵母单杂交技术的原理

酵母单杂交技术最早是1993年由Wang和Reed创立的[2],其理论基础是:许多真核生物的转录激活因子均具有2个功能上独立的结构域——

—DNA结合结构域(DNA-bindingdomainBD)和DNA激活结构域(ActivationdomainAD),前者特异结合于顺式作用元件上,后者实施基因表达调控功能[3-4],因此DNA结合结构域和DNA激活结构域就可以分开使用,单独的结合结构域或转录激活结构域都不能启动下游报道基因的表达。酵母单杂交技术就是利用此原理构建各种基因与转录激活域融合的融合蛋白,只要转录激活域所融合的蛋白能与特异的DNA序列结合,也就是说它能够扮演转录因子结合结构域的功能,那么就会形成有功能的转录因子,从而实施基因表达调控,激活启动子下游报道基因的表达。人们用于酵母单杂交系统的酵母GAL4蛋白即是一种典型的转录因子。

2酵母单杂交技术的操作步骤

在实验过程中,首先要将报告质粒、文库和融合表达质粒同时转入酵母报告株,若文库所表达的某些蛋白能与设定的特异DNA序列相结合,则这些融合蛋白就具有转录因子的活性,能够激活与顺式作用元件相连的最小启动子,使下游报道基因得以表达,并使酵母细胞在相应的SD缺陷性培养基上生长,并能对3-AT产生抗性[5-6],然后提取报道基因表达的克隆株的质粒,转入大肠杆菌进行测序就可以获得这些蛋白(即能与特异DNA序列相结合的蛋白)的DNA序列。理论上,该体系可利用任何靶基因获得与其相结合的蛋白质,目前主要用于识别转录因子,也可用于研究DNA复制、转录和翻译中与核酸特异结合的蛋白。具体操作步骤为:①构建报道子载体:将已知的特定顺式作用元件按同一方向随机串联到一个最小启动子(minimalpromoter,Pmin)上游,其下游连有报道基因;②将构建好的报道子载体转化酵母细胞筛选合适的3-AT浓度;③提取总RNA,合成cDNA双链;④将报道子、cDNA和融合表达载体共转化到酵母中,在相应的缺陷性SD培养基上进行筛选阳性克隆;

⑤对阳性克隆进行鉴定,去除假阳性克隆;⑥对所获得的阳性克隆进行测序,为进一步分析打下基础。如可进一步分析DNA确切的结合位点。

3酵母单杂交技术的应用

目前,该技术广泛应用于DNA-蛋白质间相互作用的研究中,如准确定位已证实具有相互作用的DNA结合位点和蛋白质结合域;证明已知DNA和已知蛋白质间是否存在作用;利用特异的DNA序列分离与其相结合的新基因[7]。迄今为止,利用此方法已有多种蛋白质被克隆与鉴定。最早利用酵母单杂交技术克隆到的cDNA是OLF-1转录因子[2];黄建等人用ε-珠蛋白基因5′旁侧沉默子DNA核心保护序列作为靶序列,采用酵母单杂交系统首次筛选到了人核糖体大亚基蛋白3[8];Eklund等[9]利用CYBB基因启动子

作者简介:张开慧(1982-),女,河北张家口人,硕士,助教,主要从事高职生物教学与研究,E-mail:khzhang0211@163.com。

收稿日期:2011-11-23

酵母单杂交技术的原理及应用

张开慧

宝鸡职业技术学院,陕西宝鸡721013

摘要:酵母单杂交技术是一种体外分析DNA与蛋白质相互作用的技术。文章就酵母单杂交技术的原理、操作步骤、应用

及其优缺点作了简要概括。

关键词:酵母单杂交技术;DNA;蛋白质

中图分类号:Q78文献标识码:A文章编号:1002-204X(2012)02-0031-02

PrincipleandApplicationofYeastOne-HybridMethod

ZHANGKai-hui(BaojiCollegeofEngineeringTechnology,Baoji,Shaanxi721013)

AbstractYeastone-hybridmethodisanmethodaboutanalysisofDNAandproteininteractioninvitro.Inthispaper,theprincipleofyeastone-hybridmethod,operationsteps,applicationandadvantagesanddisadvantageswerebrieflysummarized.

KeywordsYeastone-hybridmethod;DNA;Protein

宁夏农林科技,NingxiaJournalofAgri.andFores.Sci.&Tech.2012,53(02):31-3231

区序列筛选λgt11表达文库,克隆到人RPS1基因,体外结合实验表明此蛋白质优先与单链和双链DNA结合,与RNA只有较弱的结合能力;Hemmerich等[10]则证明人与啮齿类RPL7蛋白中存在能与DNA特异结合的真核转录因子模体BZIP(basic-region-leucine-zipper-motif)。

酵母单杂交技术在医学和药学等领域的应用研究较早而且技术也比较成熟,但是在植物和动物基因工程方面研究应用较晚,尤其是对转录因子的研究。尽管技术还不成熟,但是已有一些学者开始利用此技术开展了对转录因子的研究[11]:廖名湘等[12]利用酵母单杂交技术筛选到了与大鼠谷胱甘肽S-转移酶相互作用的转录因子;彭日荷等[13]利用酵母单杂交技术从水稻cDNA文库中获得一个转录因子RWRKY,该转录因子能与玉米PRms基因启动子中W盒结合。

4酵母单杂交技术的优点

酵母单杂交作为一种分子生物学技术,对研究DNA-蛋白质间的相互作用发挥了重要的作用,为探明真正的生物过程提供了有力的证据,目前已分离并鉴定了许多与特异顺式作用元件相结合的蛋白质。酵母单杂交技术得以广泛应用是因为该体系具有一些其他技术所不具有的优点:实验过程简单,耗时短,能直接识别并找出与特异顺式作用元件相结合的蛋白质及其编码序列,而不需通过制备纯化蛋白或抗体等繁琐的生化手段来建立这种相互作用关系,并使后续的基因功能鉴定不再难以进行,从而更进一步地了解真核生物体内的基因表达调控;另外酵母属于真核生物,在酵母体内进行研究更接近真核生物基因表达调控的真实情况,同时蛋白质处于自然构象,避免了体外研究的不足。

5酵母单杂交技术的缺点

①首先酵母细胞本身就具有局限性,因为插入的靶元件有可能与酵母内源性的表达激活因子发生相互作用,从而激活最小启动子下游报道基因的表达,这样相应的目的基因片段有可能会被漏检,另外该技术的灵敏度不是很好,因为HIS3基因的表达非常灵敏,对于很弱的甚至是非特异性的相互作用都能检测到,不过这些非特异的相互作用可通过其他技术避免[14];②插入的靶元件有可能不需要转录激活因子就可以直接激活报道基因的表达,提高了假阳性克隆的比率;③酵母单杂交技术会产生假阴性结果,比如融合蛋白对酵母细胞有毒性或在酵母细胞内不能稳定地表达,甚至发生错误折叠不能准确定位于酵母细胞核内或其DNA结合位点被封闭都有可能影响融合蛋白与顺式作用元件的结合能力;④酵母与一些高等真核生物相比,缺乏一些高等生物所特有的修饰过程。在酵母中发生的DNA-蛋白质相互作用,能否在植物细胞核内发生还需要进一步证实。通过该系统筛选得到的蛋白质是否对含有顺式作用元件的基因表达产生影响,还需要进行相应的功能鉴定,而目前对于非突变体方法分离得到的高等植物基因进行功能鉴定还是一个难题[15]。

6结语

总之,作为一种新的强有力的克隆基因手段,酵母单杂交系统的应用越来越广泛。又由于该体系自身的缺陷,使得对酵母单杂交体系的改进越来越受到大家的关注。随着人们探索脚步的不断延伸,酵母单杂交体系将逐渐完善成为一种简单、有效、快捷、适用的克隆基因的方法。

参考文献:

[1]李先昆,聂智毅,曾日中.酵母双杂交技术研究与应用进展[J].安徽农业科学,2009,37(7):2867-2869,2926.

[2]WANGMM,REEDRR.MolecularcloningoftheolfactoryneuronaltranscriptionfactorOlf-1bygeneticselectioninyeast[J].Nature,1993,364(6433):121-126.

[3]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.

[4]GSTAIGERM,KNOEPFELL,GEORGIEVO,etal.AB-cellcoactivatorofoctamer-bindingtranscriptionfactors[J].Nature,1995,373(6512):360-362.

[5]陈峰,李洁,张贵友,等.酵母单杂交的原理及应用实例[J].生物工程进展,2001,21(4):57-61.

[6]LIJJ,HERSKOWITZI.IsolationofORC6,acomponentoftheyeastoriginrecognitioncomplexbyaone-hybridsystem[J].Science,1993,262(5141):1870-1874.

[7]廖名湘.酵母单杂交体系——

—一种研究DNA-蛋白质相互作用的有效方法[J].中国医学科学院学报,2000,22(4):388-391.

[8]黄建.用酵母单杂交系统筛选与人ε-珠蛋白基因表达相关的基因[J].生物化学与生物物理学报,2001,33(2):246-250.

[9]EKLUNDEA,LEESW,SKALNIKDG.CloningofacDNAencodingahumanDNA-bindingproteinsimilartoribosomalproteinS1[J].Gene,1995,155(2):231-235.

[10]HEMMERICHP,VONMIKECZA,NEUMANNF,etal.StructuralandfunctionalpropertiesofribosomalproteinL7fromhumansandrodents[J].NucleicAcidsRes,1993,21(2):223-231.[11]王琪,朱延明,王冬冬.酵母单杂交系统在植物抗渗透胁迫转录因子研究中的应用[J].中国生物工程杂志,2007,27(9):91-96.[12]廖名湘,左瑾看,刘东远,等.应用酵母单杂交体系筛选与大鼠谷胱甘肽S-转移酶P增强子GPEⅠ相互作用的转录激活因子[J].中国医学科学院学报,2000,22(4):317-321.

[13]彭日荷,姚泉洪,熊爱生,等.酵母单杂交体系分离水稻中一个新的与W盒相关的转录因子[A].中国植物病理学会2004年学术年会论文集[C],2004年.

[14]LIUJD,WILSONTE,MILBRANDTJ,etal.IdentifyingDNA-bindingsitesandanalyzingDNA-bindingdomainsusingayeastselectionsystem[J].Methods,1993(5):125-137.

[15]齐虹凌,元野.大果沙棘杂交后代性状遗传变异分析[J].安徽农业科学,2011,39(7):3902-3903.

责任编辑:高菲

张开慧酵母单杂交技术的原理及应用53卷02期32

酵母双杂交技术

酵母双杂交系统 1.原理 酵母双杂交系统的建立得力于对真核细胞调控转录起始过程的认识。研究发现,许多真核生物的转录激活因子都是由两个可以分开的、功能上相互独立的结构域(domain)组成的。例如,酵母的转录激活因子GAL4,在N端有一个由147个氨基酸组成的DNA结合域(DNA binding domain,BD),C端有一个由113个氨基酸组成的转录激活域(transcription activation domain,AD)。GAL4分子的DNA结合域可以和上游激活序列(upstream activating sequence,UAS)结合,而转录激活域则能激活UAS下游的基因进行转录。但是,单独的DNA结合域不能激活基因转录,单独的转录激活域也不能激活UAS 的下游基因,它们之间只有通过某种方式结合在一起才具有完整的转录激活因子的功能。 2.试验流程 酵母双杂交系统正是利用了GAL4的功能特点,通过两个杂交蛋白在酵母细胞中的相互结合及对报告基因的转录激活来捕获新的蛋白质,其大致步骤为: 2.1、视已知蛋白的cDNA序列为诱饵(bait),将其与DNA结合域融合,构建成诱饵质粒。 2.2、将待筛选蛋白的cDNA序列与转录激活域融合,构建成文库质粒。2.3、将这两个质粒共转化于酵母细胞中。 2.4、酵母细胞中,已分离的DNA结合域和转录激活域不会相互作用,但诱饵蛋白若能与待筛选的未知蛋白特异性地相互作用,则可激活报告基因的转录;反之,则不能。利用4种报告基因的表达,便可捕捉到新的蛋白质。 3.特点 优点 蛋白--蛋白相互作用是细胞进行一切代谢活动的基础。酵母双杂交系统的建立为研究这一问题提供了有利的手段和方法。 缺点

酵母双杂实验步骤

2.1.1酵母双杂交 2.1.1.1Gateway入门克隆 设计Gateway引物时,在上游引物的5'端加上B1序列:GGGG-ACA-AGT-TT G-TAC -AAA-AAA-GCA-GGC-TNN-,下游引物的5'端加上B2序列:GGGG-ACC-ACT-TT G-T AC-AAG-AAA-GCT-GGG-TN-。其中,5'-GGGG序列是保护碱基,防止引物的重要部分被降解,下划线加粗的部分是在整个的Gateway克隆中可以保存下来的序列,3'端的碱基N是为了保证经过入门载体构建目的载体时阅读框的正确性,一般建议为C。 通过PCR扩增获得带有att B位点的基因片段,扩增体系和条件见3.2.2.2,其中将退火温度改为65℃。获得扩增产物后对其进行回收纯化,测定纯化后DNA 的质量和浓度后进行下一步的BP反应,反应体系如下: att B-PCR产物(≥10 ng/μL)1-7μL pDONR221 (150 ng/μL)1μL TE buffer, pH 8.0 补足8μL 将上述混合物加入离心管中,加入2μL BP反应酶,加入之前需将其在涡旋仪上轻轻振荡两次,所有组分混匀离心后,25℃反应1h,加入1μL蛋白酶K后,混匀离心,37℃反应10min终止BP反应,将BP反应产物参照3.2.2.6进行转化,由于pDONR221载体为Kan抗性,所以选用含有50μg/mL Kan抗生素的LB平板进行阳性克隆筛选,参照3.2.2.7检测阳性克隆,然后根据3.2.2.8中的方法提取重组质粒,测定质量和浓度后送至测序公司进行测序。 进行BP反应时,需注意以下几项: (1)对于BP反应来说,最高效的是采用线性的att B-PCR产物和超螺旋的att P 入门载体; (2)为了提高BP反应的效率,可以将建议的25℃反应1h适当延长至4-6h,可 以将效率提高2-3倍,或者延长至过夜反应,可以将效率提高5-10倍,对 于长片段克隆来讲,适当的延长反应时间是非常必要的; (3)提高体系中PCR产物的量可以增加反应效率,但每10μL体系中PCR产物 最好不要超过250ng。 2.1.1.2诱饵载体构建 重组的入门载体测序正确后,通过LR反应来构建酵母双杂交的诱饵载体,LR反应体系如下: 入门载体(50-150 ng)1-7μL pDEST32 (150 ng/μL)1μL TE buffer, pH 8.0 补足8μL

酵母单杂交

酵母单杂交 —研究蛋白质与特定DNA序列之间的相互作用 酵母单杂交技术最早是从酵母双杂交技术发展而来的,酵母双杂交技术通过对报告基因的表型进行检测以实现对蛋白质间相互作用的研究,而酵母单杂交技术则通过对报告基因的表型检测,分析DNA与蛋白之间的相互作用,以研究真核细胞内的基因表达调控。 ●顺式作用元件 存在于基因旁侧序列中能影响基因表达的序列,本身不编码任何蛋白质,仅仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控。 ●反式作用因子 是指能直接或间接地识别或结合在顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。 酵母单杂交(Yeast one-hybrid)是根据DNA结合蛋白(即转录因子)与DNA顺式作用元件结合调控报道基因表达的原理,克隆与靶元件特异结合的转录因子基因(cDNA)的有效方法。 其理论基础是:许多真核生物的转录激活子由物理和功能上独立的DNA结合区(DNA-binding domain BD)和转录激活区(Activationdomain AD)组成。BD可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游;AD可同转录复合体的其他成分作用,启动它所调节的基因的转录。两个结构域各据功能,互不影响。 (单独的BD虽然能和启动子结合,但是不能激活转录。) 这两个结构域各具功能,互不影响,单独存在时没有转录激活的功能,只有两者通过共价或非共价键连接建立起来的空间结构方可表现出一个完整的激活特定基因表达的激活因子的功能。 用于酵母单杂交系统的酵母GAL4蛋白即是一种典型的转录因子。研究表明GAL4 的DNA结合结构域靠近羧基端,含有几个锌指结构,可激活酵母半乳糖苷酶的上游激活位点(UAS);而转录激活结构域可与RNA 聚合酶或转录因子TFIID相互作用,提高RNA 聚合酶的活性。在这一过程中,DNA 结合结构域和转录激活结构域可完全独立地发挥作用。 据此,我们可将GAL4 的DNA结合结构域置换为其他蛋白,只要他能与我们想要了解的目的基因相互作用,就照样可以通过其转录激活结构域激活RNA聚合酶,从而启动对下游报告基因的转录。

酵母双杂交原理(网摘综合)

酵母双杂交系统原理 https://www.sodocs.net/doc/0e11176310.html, 2005-6-5 16:04:32 来源:丁香园 酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。而且不同两结构域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道基因表达(如lacZ),从而可分析蛋白间的结合作用。 酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。主要是由于:①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。②信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。③杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。④通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。 酵母双杂交筛选原理 双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明, 转录激活因子在结构上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的结构域构成, 其中有DNA结合结构域(DNA binding domain, 简称为DB,?BD)和转录激活结构域(activation domain, 简称为AD), 它们是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合, 但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的DB与大肠杆菌的一个酸性激活结构域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。 Fields等人的工作标志双杂交系统的正式建立。他们以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB结构域融合, 另外一个与Gal4的AD结构域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵”(bait)和“猎物”或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转

酵母单杂交-实验步骤总结

1 pBait-AbAi载体的构建(酵母报道子的构建) 注:酵母报道子(pBait-AbAi)包含目的顺式作用元件的一个或多个拷贝,且插入到pAbAi载体AbAi r报告基因的上游。大量研究表明最有效的构建应包含目的DNA三个以上的首尾连接的拷贝。首尾连接的拷贝产生方式很多,但对于长度小于20 bp的调控元件,人工合成寡核苷酸是最方便可靠的途径。 (1)设计并合成包含目的序列的两条反向平行的寡核苷酸序列,且两端加上与pAbAi载体酶切产物一致的粘性末端(建议合成一个目的序列的突变序列作为对照,以排除可能的假阳性)。 (2)用TE buffer溶解寡核苷酸至终浓度100 μmol/L。 (3)将正向链和反向链按照1:1的比例混合(退火后的双链寡核苷酸最大浓度为50 μmol/L)。 (4)95 ?C保温30 s,去除二级结构。 (5)72 ?C保温2 min,37 ?C保温2 min,25 ?C保温2min。 注:缓慢退火,有助于双链寡核苷酸的形成。 (6)冰上放置。退火后的产物可贮存在-20 ?C冰箱备用。 (7)酶切1 μL pAbAi载体,用凝胶回收纯化或柱纯化的方式纯化酶切产物。 注:回收前,可用琼脂糖凝胶检测是否酶切完全。 (8)将退火后的寡核苷酸稀释100倍至终浓度为0.5 μmol/L。 (9)在连接反应管中加入如下成分: pAbAi载体(50 ng/μL) 1.0 μL annealed oligonucleotide (0.5 μmol/L) 1.0 μL 10×T4 DNA ligase buffer 1.5 μL BSA(10 mg/mL)0.5 μL Nuclease-free H2O 10.5 μL T4 DNA ligase (400 U/μL)0.5 μL 总体积15 μL 注:如果有必要,可用1 μL nuclease-free H2O代替寡核苷酸作为阴性对照。 (10)将反应体系室温放置连接3 h,转化E coli,采用常规方法检测阳性克隆。

!!酵母双杂交操作步骤(中文翻译)

各种SD培养基: 1)SD/-ade(腺嘌呤)/-leu(亮氨酸)/-trp(色氨酸)/-his (组氨酸)(1000 ml)(? “四缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.60g (购买来就配好的) ; 葡萄糖20g (即2%) 2)SD/-leu/-trp/-his (1000 ml) 酵母氮源(YNB):6.7g ; -leu/-trp/-his DO supplement 0.62g ; (购买来就配好的) 葡萄糖 20g. (即2%) 3)SD/-leu/-trp (1000 ml) (?“二缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.64g (购买来就配好的); 葡萄糖 20g (即2%) 4)SD/-leu (1000 ml) 酵母氮源(YNB):6.7g ; -leu DO supplement 0.69g ; (购买来就配好的) 葡萄糖 20g (即2%) 5)SD/-trp (1000 ml) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.74g ; (购买来就配好的) 葡萄糖 20g (即2%) 注意:YNB有两种,一种含有硫酸胺,另外一种不含硫酸胺。我们这用的是含硫酸铵的。(买来就加进去了的)。如果不含硫酸铵,那么要在终浓度0.17%的YNB中再加入0.5%的硫酸铵,即最终在1000 ml溶液中加入总量为6.7g的YNB与硫酸铵。 实际配制的方法是: 1.配制40%的葡萄糖贮存液(贮存在4℃),过滤除菌,待高压灭菌的溶液温度降至55℃ 以下时,再将50ml葡萄糖贮存液加入。(李博士经验这一步不高压,过滤即可使用)2.酵母氮源6.7g,加DO supplement 在920ml水中溶解,调PH至5.8(李博士的经验大 约加10M NaOH 200ul即可),之后补水至950 ml。 3.高压完后待温度降至55℃以下,加入50 ml40%葡萄糖。

酵母双杂交系统的发展和应用

酵母双杂交系统的发展和应用 随着对多种重要生物的大规模基因组测序工作的完成,基因工程领域又迎来了一个新的时代---功能基因组时代。它的任务就是对基因组中包含的全部基因的功能加以认识。生物体系的运作与蛋白质之间的互相作用密不可分,例如:DNA合成、基因转录激活、蛋白质翻译、修饰和定位以及信息传导等重要的生物过程均涉及到蛋白质复合体的作用。能够发现和验证在生物体中相互作用的蛋白质与核酸、蛋白质与蛋白质是认识它们生物学功能的第一步。 酵母双杂交技术作为发现和研究在活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,在近几年来得到了广泛运用。酵母双杂交系统是在真核模式生物酵母中进行的,研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、瞬间的作用也能够通过报告基因的表达产物敏感地检测得到,它是一种具有很高灵敏度的研究蛋白质之间关系的技术。大量的研究文献表明,酵母双杂交技术既可以用来研究哺乳动物基因组编码的蛋白质之间的互作,也可以用来研究高等植物基因组编码的蛋白质之间的互作。因此,它在许多的研究领域中有着广泛的应用。本文就酵母双杂交的技术平台和应用加以介绍。 酵母双杂交系统的建立是基于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。反式转录激活因子,例如酵母转录因子GAL4在结构上是组件式的(modular),往往由两个或两个以上结构上可以分开,功能上相互独立的结构域(domain)构成,其中有DNA结合功能域(DNA binding domain,DNA-BD)和转录激活结构域(activation domain,DNA-AD)。这两个结合域将它们分开时仍分别具有功能,但不能激活转录,只有当被分开的两者通过适当的途径在空间上较为接近时,才能重新呈现完整的GAL4转录因子活性,并可激活上游激活序列(upstream activating sequence, UAS)的下游启动子,使启动子下游基因得到转录。 根据这个特性,将编码DNA-BD的基因与已知蛋白质Bait protein的基因构建在同一个表达载体上,在酵母中表达两者的融合蛋白BD-Bait protein。将编码AD的基因和cDNA文库的基因构建在AD-LIBRARY表达载体上。同时将上述两种载体转化改造后的酵母,这种改造后的酵母细胞的基因组中既不能产生GAL4,又不能合成LEU、TRP、HIS、ADE,因此,酵母在缺乏这些营养的培养基上无法正常生长。当上述两种载体所表达的融合蛋白能够相互作用时,功能重建的反式作用因子能够激活酵母基因组中的报告基因HIS、ADE、LACZ、MEL1,从而通过功能互补和显色反应筛选到阳性菌落。将阳性反应的酵母菌株中的AD-LIBRARY 载体提取分离出来,从而对载体中插入的文库基因进行测序和分析工作。在酵母双杂交的基础上,又发展出了 酵母单杂交、酵母三杂交和酵母的反向杂交技术。它们被分别用于核酸和文库蛋白之间的研究、三种不同蛋白之间的互作研究和两种蛋白相互作用的结构和位点。 基于酵母双杂交技术平台的特点,它已经被应用在许多研究工作当中。

酵母双杂交操作步骤(中文翻译)

(酵母菌储存在-70℃中,引物和质粒DNA储存在-20℃中) 概念: 1. 次序转化:指的是先将一种质粒转化进酵母中(常是DNA-BD/bait plasmid),在选择培养基中选择出阳性克隆,之后再将另外一个质粒(AD fusion library)转化进去。优点:就是比共转化使用更少的质粒DNA,也就是节约质粒DNA。 2. 共同转化:将两种质粒一起转化进酵母中。优点:比次序转化更容易操作。 pGBKT7----的选择物是:kanamycin(卡那霉素)? pGADT7----的选择物是:ampicillin (氨苄西林) ? 各种SD培养基: 1) SD/-ade(腺嘌呤)/-leu(亮氨酸)/-trp(色氨酸)/-his (组氨酸)(1000 ml)(?“四缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.60g (购买来就配好的); 葡萄糖 20g (即2%) 2) SD/-leu/-trp/-his (1000 ml) 酵母氮源(YNB):6.7g ; -leu/-trp/-his DO supplement 0.62g ; (购买来就配好的) 葡萄糖 20g. (即2%) 3) SD/-leu/-trp (1000 ml) (?“二缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.64g (购买来就配好的); 葡萄糖 20g (即2%) 4) SD/-leu (1000 ml) 酵母氮源(YNB):6.7g ; -leu DO supplement 0.69g ; (购买来就配好的)

酵母单杂交技术

酵母单杂交技术 1.酵母单杂交的基本原理 酵母单杂交技术是1993年由酵母双杂交技术发展而来的,其基本原理为:真核生物基因的转录起始需转录因子参与,转录因子通常由一个DNA特异性结合功能域和一个或多个其他调控蛋白相互作用的激活功能域组成,即DNA 结合结构域(DNA—bindingdomain,BD)和转录激活结构域(activationdomain,AD)。用于酵母单杂交系统的酵母GAL4蛋白是一种典型的转录因子,GAL4的DNA结合结构域靠近羧基端,含有几个锌指结构,可激活酵母半乳糖苷酶的上游激活位点(UAS),而转录激活结构域可与RNA聚合酶或转录因子TFIID相互作用,提高RNA聚合酶的活性。在这一过程中,DNA结合结构域和转录激活结构域可完全独立地发挥作用。据此,我们可将GAL4的DNA结合结构域置换为文库蛋白编码基因,只要其表达的蛋白能与目的基因相互作用,同样可通过转录激活结构域激活RNA聚合酶,启动下游报告基因的转录。 酵母单杂交原理示意图 2.酵母单杂交技术的特点 酵母单杂交体系自1993年由Wang和Reed创立以来,在生物学研究领域中已经显示出巨大的威力。应用酵母单杂交体系已经验证了许多已知的DNA与蛋白质之间的相互作用,同时发现了新的DNA与蛋白质的相互作用,并由此找到了多种新的转录因子。近来,已有应用酵母单杂交体系进行疾病诊断的研究报道。随着酵母单杂交体系的不断发展和完善,它在科研、医疗等方面的应用将会越来越广泛。采用酵母单杂交体系能在一个简单实验过程中,识别与DNA特异结合的蛋白质,同时可直接从基因文库中找到编码蛋白的DNA序列,而无需分离纯化蛋白,实验简单易行。由于酵母单杂交体系检测到的与DNA结合的蛋白质是处于自然构象,克服了体外研究时蛋白质通常处于非自然构象的缺点,因而具有很高的灵敏性。目前,多种酵母单杂交体系的试剂盒和相应的cDNA文库已经商品化,为酵母单杂交体系的使用提供了有利的条件。 但酵母单杂交也存在以下缺点:有时由于插入的靶元件与酵母内源转录激活因子可能发生相互作用,或插入的靶元件不需要转录激活因子就可以激活报告基因的转录,因此往往产生假阳性结果。如果酵母表达的AD融合蛋白对细胞有毒性,或融合蛋白在宿主细胞内不能稳定地表达,或融合蛋白发生错误折叠,或者不能定位于酵母细胞核内,以及融合的Gal4AD封闭了蛋白质上与DNA相互作用的位点,则都可能干扰AD融合蛋白结合于靶元件的能力,从而产生假阴性结果。 3.酵母单杂交的基本操作过程

酵母单杂交

酵母单杂交 酵母单杂交技术最早是1993年由Li等从酵母双杂交技术发展而来,通过对报告基因的表型检测,分析DNA与蛋白之间的相互作用,以研究真核细胞内的基因表达调控。由于酵母单杂交方法检测特定转录因子与顺式作用元件专一性相互作用的敏感性和可靠性,现已被广泛用于克隆细胞中含量微弱的、用生化手段难以纯化的特定转录因子。酵母单杂交(Yeast one-hybrid)是根据DNA结合蛋白(即转录因子)与DNA顺式作用元件结合调控报道基因表达的原理,克隆与靶元件特异结合的转录因子基因(cDNA)的有效方法。其理论基础是:许多真核生物的转录激活子由物理和功能上独立的DNA结合区(DNA-binding domain BD)和转录激活区(Activation domain AD) 组成,因此可构建各种基因与AD的融合表达载体,在酵母中表达为融合蛋白时,根据报道基因的表达情况,便能筛选出与靶元件有特异结合区域的蛋白。理论上,在单杂交检测中,任何靶元件都可被用于筛选一种与之有特异结合区域的蛋白。(百度百科) 酵母单杂交法 酵母单杂交体系(yeast one-hybrid system)常用于研究DNA-蛋白质间的相互作用。 酵母单杂交体系可识别稳定结合于DNA上的蛋白质,可在酵母细胞内研究真核DNA-蛋白质间的相互作用,并通过筛选DNA文库直接获得靶序列相互作用蛋白的编码基因。也可用于分析鉴定细胞中转录调控因子与顺式作用元件相互作用。 酵母单杂交原理:将已知的顺式作用元件构建到最基本启动子(minimal promoter,Pmin)上游,把报告基因连接到Pmin下游。将待测转录因子的cDNA与酵母转录激活结构域(activation domain,AD)融合表达载体导入细胞,该基因产物如果能够与顺式作用元件结合,而激活Pmin启动子使报告基因表达。 酵母单杂交体系主要用于分离编码结合于特定顺式调控元件或其他DNA位点的功能蛋白编码基因,验证反式转录调控因子的DNA结合结构域,准确定位参与特定蛋白质结合的核苷酸序列。

酵母单杂交

Two-hybrid assay of yeast transformation Qi's protocol (This method can be used for both laboratory and industrial yeast) Yeast strain we used for two-hybrid is S. cerevisiae HF7c (MATa ura3-52 his3-200 ade2-101 lys2-801 trp1-901 leu2-3,112 gal4-542 gal80-538 LYS2::GAL1UAS-GAL1TATA-HIS3 URA3::GAL4 17mers(x3)-CyC1TATA-LacZ), which contains the two reporter genes LacZ and HIS3, was used in two-hybrid analysis. Yeast can be co-transformation with plasmids carrying the different GAL4 DNA binding domain-target protein fusions (TRP1marker) and plasmid carrying the GAL4 activation domain (LEU2marker) to perform the protein-protein interaction study or two-hybrid screening. The transformation method is modified from Schiestl and Gietz (1989) GAL4 DNA binding domain vector (pGBT8 or pGBT9, difference only in polylinker, relatively low expression, TRP1 marker) GAL4 activation domain vector (pGAD424, low expression; pGADGH, high expression, LEU2 marker ) Transformation protocol for unique plasmid or for two known plasmids 1. From the stock (-70aC) the yeast were inoculated on YPAD plate for 2 days at 28-32aC 2. Inoculate 2-3 independent yeast colonies to 10 ml YPAD medium for the preinoculation, shaking at 28-32aC for 10 to 12 hours, check OD600. 3. Make an inoculation of the volume necessary for the transformation. (Usually 10 ml of OD600 0.3 cells or 5 ml of OD600 0.8 is used for each sample transformation. You can use the formula: OD -------- 2n ------------- x Vinoc. = Vpreinoc. ODpre OD is OD600 of cells you will use for transformation, 0.3-0.8 of OD600 is good for LiOAc transformation. ODpre is OD600 of the preinoculation. n is the generation time of yeast, different yeast strain has different generation time. The generation time for HF7C is 1.5 hours in rich medium and 2 hours in minimal medium. Vinoc. The volume you need for the transformation. Vpreinoc. is the volume you need take from preinoculation. Shaking at 28-32aC and an overnight inoculation is recommended

酵母双杂交实验流程(精).doc

模块七蛋白质之间的相互作用 1.实验目的 本实验以重组质粒和酵母细胞为材料, 学习检测蛋白质相互作用的基本原理和 技术方法。主要介绍酵母双杂交的基本原理与操作技术 ; 让学生了解和掌握酵母双 杂交系统的应用 ; 掌握酵母感受态的制备的基本原理和主要的操作步骤。 2.实验原理 1989 年Fields 和Song 等人根据当时人们对真核生物转录起始过程调控的认 识(即细胞内基因转录的起始需要转录激活因子的参与,提出并建立了酵母双杂交系 统。该系统作为发现和研究活细胞体内的蛋白质与蛋白质之间的相互作用的技术平 台 ,近几年得到了广泛的运用和发展。 相比于其它蛋白质筛选系统,酵母双杂交系统具有以下优点:(1 检测在真核活细 胞内进行 ,在一定程度上代表细胞内的真实情况。(2 作用信号是在融合基因表达后, 在细胞内重建转录因子的作用而给出的 ,省去了纯化蛋白质的繁琐步骤。(3 检测结果是基因表达产物的积累效应,因而可检测存在于蛋白质之间的微弱或暂时的相互 作用。(4 酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA 文库 ,能分析细胞质、细胞核及膜结合蛋白等多种不同亚细胞部位及功能蛋白。(5 通过mRNA 产生多种稳定的酶使信号放大。同时,酵母表型、X-Gal 及 HIS3 蛋白表达等检测方法均很敏感。 酵母双杂交系统也具有一定的局限性。首先 , 经典的双杂交系统分析蛋白间的 相互作用定位于细胞核内,因而限制了该系统对某些细胞外蛋白和细胞膜受体蛋白 的研究。酵母双杂交系统的另一个局限性是“假阳性”。在酵母双杂交系统建立的 初期阶段 ,由于仅仅采用β-半乳糖苷酶这一单一的报告基因体系,这种报告基因的表 达往往不能十分严谨地被控制,因此容易产生假阳性。由于某些蛋白本身具有激活 转录的功能或在酵母中表达时发挥转录激活作用, 使DNA 结合结构域融合蛋白在 无特异激活结构域的情况下也可被激活转录。另外某些蛋白表面含有对多种蛋白

酵母双杂交试验流程

4月4日划线配培养基 TE/LIAC PEG/LIAC 配置培养基(YPD YPDA)取酵母细胞划线 30°生长3天。 需要用品:三角瓶灭菌封口膜酵母提取物蛋白胨 注:以下所有涉及菌的操作均需在超净台中完成。 4月6号星期三 (1)选择2-3mm的单克隆(枪头吸取)放入3-5ml的YPDA液体培养基,30°摇菌200rpm,8h 7号下午开始,过夜培养,次日若菌液浓度达到标准,可先置于4度冰箱保存。 需要用品:200ul灭菌枪头、50ml三角瓶、YPDA液体培养基、摇床。 4月7号星期四 (2)吸取2.5-10ul酵母培养液,加入25ml YPDA液体培养基,摇菌16-20h直到OD值0.15-0.3。 下午4点开始 8号 8点结束 Tips:由于第一次活化的菌夜浓度不一,此处建议设置梯度,分别取2.5、5、10 ul酵母培养液,加入25ml YPDA液体培养基(转化5个以下质粒的话,25ml菌量就够后续使用)。 4月8号星期五 (3)将菌液转移至灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。 (4)弃掉上清,加入50ml新鲜的YPDA液体重悬菌体(由于离心转速较低,沉淀易悬起来,故倒掉上清液时要小心操作)。 (5)30°震荡培养,直到OD值达到0.4-0.5 (3-5h)。8号 8点开始下午一点结束进行以下操作之前,配置好TE/LiAc溶液,并准备好冰浴。 (6)将上述菌液转移至一个灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。(7)弃掉上清,用30ml无菌水重悬菌体(小心操作)。 (8)再次用天平配平后,室温下700g离心5分钟,弃去上清,加入1.5ml 1.1xTE/LIAC重悬菌体。(9)将上述溶液转移到灭菌的1.5ml EP管中,高速离心15s。 (10)弃去上清,加入600ul 1.1x TE/LIAC,感受态细胞制备完成,置于冰上待用。 需要物品:50ml 灭菌离心管、50ml 三角瓶、1.5ml EP管、5ml灭菌枪头、1ml灭菌枪头、灭菌ddH2O、YPDA液体培养基、1.1x TE/LIAC。 1.1x TE/LIAC 10ML 10xTE 1.1ml 10xliac 1.1ml Dh2O 8.8ml

文库构建及酵母双杂交技术

第四章基因文库构建及酵母双杂交技术 1 基因组文库的构建 基因组文库(genomic library)将某种生物细胞的整个基因组DNA切割成大小合适的片断,并将所有这些片断都与适当的载体连接,引入相应的宿主细胞中保存和扩增。 理论上讲,这些重组载体上带有了该生物体的全部基因,称为基因文库。 1. 1构建基因文库的载体选用 载体能够容载的DNA片断大小直接影响到构建完整的基因文库所需要的重组子的数目。

第四章基因文库构建及酵母双杂交技术1.1.1对载体的要求:载体容量越大,所要求的DNA片断数目越少,所需的重组子越少。 1.1.2目前常用的载体: 载体系列(容量为24 kp )、cosmid载体(容量为50 kb )、YAC(容量为1 Mb )、BAC (容量为300 kb) 1.2 基因文库构建的一般步骤 1.2.1染色体DNA大片段的制备:断点完全随机,片断长度合适于载体连接。不能用一般的限制性内切酶消化法,使用物理切割法或不完全酶切法。 1.2.2载体与基因组DNA大片段的连接:直接连接、人工接头或同聚物加尾。

噬菌体载体构建基因组文库

第四章基因文库构建及酵母双杂交技术2 cDNA文库的构建 cDNA克隆的基本过程是通过一系列,酶酶催作用,使poly(A) mRNA转变成双链cDNA群体并插入到适当的载体分子上,转化大肠杆菌寄主细胞,构建包含所有基因编码序列的cDNA基因文库。 2.1高质量mRNA的制备 应用Promega PolyAT tract mRNA Isolation System 分离Poly(A)RNA。将Biotinylated Oligo(dT)引物与细胞总RNA共温育,加入与微磁球相连的Streptavidin,用磁场吸附与PMP相连的SA-Biotinylated Oligo(dT)-mRNA。

酵母双杂交实验流程

模块七蛋白质之间的相互作用 1. 实验目的 本实验以重组质粒和酵母细胞为材料,学习检测蛋白质相互作用的基本原理和技术方法。主要介绍酵母双杂交的基本原理与操作技术;让学生了解和掌握酵母双杂交系统的应用;掌握酵母感受态的制备的基本原理和主要的操作步骤。 2. 实验原理 1989年Fields和Song等人根据当时人们对真核生物转录起始过程调控的认识(即细胞内基因转录的起始需要转录激活因子的参与),提出并建立了酵母双杂交系统。该系统作为发现和研究活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,近几年得到了广泛的运用和发展。 相比于其它蛋白质筛选系统,酵母双杂交系统具有以下优点:(1)检测在真核活细胞内进行,在一定程度上代表细胞内的真实情况。(2)作用信号是在融合基因表达后,在细胞内重建转录因子的作用而给出的,省去了纯化蛋白质的繁琐步骤。(3)检测结果是基因表达产物的积累效应,因而可检测存在于蛋白质之间的微弱或暂时的相互作用。(4)酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA文库,能分析细胞质、细胞核及膜结合蛋白等多种不同亚细胞部位及功能蛋白。(5)通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型、X-Gal 及HIS3 蛋白表达等检测方法均很敏感。 酵母双杂交系统也具有一定的局限性。首先,经典的双杂交系统分析蛋白间的相互作用定位于细胞核内,因而限制了该系统对某些细胞外蛋白和细胞膜受体蛋白的研究。酵母双杂交系统的另一个局限性是“假阳性”。在酵母双杂交系统建立的初期阶段,由于仅仅采用β-半乳糖苷酶这一单一的报告基因体系,这种报告基因的表达往往不能十分严谨地被控制,因此容易产生假阳性。由于某些蛋白本身具有激活转录的功能或在酵母中表达时发挥转录激活作用,使DNA结合结构域融合蛋白在无特异激活结构域的情况下也可被激活转录。另外某些蛋白表面含有对多种蛋白质的低亲和力区域,能与其他蛋白形成稳定的复合物,从而引起报告基因的表达,产生“假阳性”结果。产生“假阴性”结果的原因可能有许多蛋白质间的相互作用依赖于翻译后加工如糖基化、磷酸化和二硫键形成,还有些蛋白的正确折叠和功能有赖于某些非酵母蛋白的辅助等。 现在的酵母双杂交系统大都采用多种报告基因,如AH109酵母株含有三类报告基因—ADE2、HIS3、MEL1/lacZ,这三类报告基因受控于三种完全不同、异源性的GAL4-反应元件和三类启动子元件-GAL1、GAL2以及MEL1(如图6-1-1)。通过这种方法就消除了两类最主要的假阳性,一类是融合蛋白可以直接与GAL4结合位点结合或者是在结合位点附近结合所带来的假阳性;另一类是融合蛋白和某种转录因子结合后再结合到特定的TA TA盒上所带来的假阳性。ADE2一种报告基因就已经能够提供较强的营养选择压力,这时选择性地使用HIS3报告基因,一来可以降低假阳性率;二来可以控制筛选的严格性(如果需要筛选与诱饵蛋白具有较强结合的蛋白,就可以同时使用ADE2、HIS3两种报告基因;如果只需要筛选与诱饵蛋白具有中等强度或较弱结合的蛋白,就可以使用ADE2或HIS3两者中的一种)。MEL1和lacZ分别编码α-半乳糖苷酶和β-半乳糖苷酶,可以作用于相应的底物

生化复习资料:酵母单杂交技术

酵母单杂交技术(Yeast One-hybrid method) 一、原理 酵母单杂交方法是根据DNA结合蛋白(即转录因子)与DNA顺式作用元件结合调控报道基因表达的原理来克隆编码目的转录因子的基因(cDNA)。该方法也是在细胞内(in vivo)分析鉴定转录因子与顺式作用元件结合的有效方法。将已知的特定顺式作用元件构建到最基本启动子(minimal promoter,Pmin)上游,Pmin启动子下游连接报道基因。进行c DNA 融合表达文库筛选时,编码目的转录因子的c DNA 融合表达载体被转化进入酵母细胞后,其编码产物(转录因子)与顺式作用元件结合,就可以激活Pmin启动子,并促使报道基因表达。根据报道基因的表达,筛选出与已知顺式元件结合的转录因子。 二、实验步骤 ①构建报道子载体:将已知的特定顺式作用元件按同一方向随机串联到一个最小启动子(minimal promoter,Pmin)上游,其下游连有报道基因; ②将构建好的报道子载体转化酵母细胞筛选合适的3-AT浓度; ③提取总RNA,合成c DNA双链; ④将报道子、c DNA和融合表达载体共转化到酵母中,在相应的缺陷性SD培养基上进行筛选阳性克隆; ⑤对阳性克隆进行鉴定,去除假阳性克隆; ⑥对所获得的阳性克隆进行测序,为进一步分析打下基础。如可进一步分析DNA确切的结合位点。 三、图片分析 1、选择YM4271[ pHISi3NF4] 克隆株重复进行3-AT 梯度试验,在没有3-AT的SD/-His平板上生长状态很好,在15mM 3-AT存在下被明显抑制,而在30mM 3-AT存在下完全不能生长。故选择15mM为筛库实验的3-AT工作浓度。 2、经9天培养,在SD/-Leu/-His/ +15mM[3-AT]选择培养基上共长出351个大小不同的阳性候选克隆。取100个菌落划线于30mM 3-AT和60mM[3-AT]平板,仅有1个克隆被淘汰。证实15mM[3-AT]的选择是正确的。挑取阳性候选克隆菌落提取酵母质粒并转化E .coli Top 10F'后,酶切鉴定,共得到31个初筛阳性克隆。 四、严谨性分析 1、为了克服His3基因的渗漏表达对筛库实验结果的影响,我们选择克隆株重复进行3-AT 梯度试验。菌株在没有3-AT的SD/-His平板上生长状态很好,在15mM 3-AT下被明显抑制,

(完整版)酵母双杂交原理

酵母双杂交系统原理 酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。而且不同两结构域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道基因表达(如lacZ),从而可分析蛋白间的结合作用。 酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。主要是由于:①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。②信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。③杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。④通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。 酵母双杂交筛选原理 双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明, 转录激活因子在结构上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的结构域构成, 其中有DNA结合结构域(DNA binding domain, 简称为DB,?BD)和转录激活结构域(activation domain, 简称为AD), 它们是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合, 但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的DB与大肠杆菌的一个酸性激活结构域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。 Fields等人的工作标志双杂交系统的正式建立。他们以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB结构域融合, 另外一个与Gal4的AD结构域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵”(bait)和“猎物”或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转

相关主题