搜档网
当前位置:搜档网 › 2020届高考物理计算题复习《竖直上抛运动》(解析版)

2020届高考物理计算题复习《竖直上抛运动》(解析版)

2020届高考物理计算题复习《竖直上抛运动》(解析版)
2020届高考物理计算题复习《竖直上抛运动》(解析版)

《竖直上抛运动》

一、计算题

1.如图甲所示,将一小球从地面上方处以的速度竖直上抛,不计空

气阻力,上升和下降过程中加速度不变,g取,求:

小球从抛出到上升至最高点所需的时间;

小球从抛出到落地所需的时间t;

在图乙中画出小球从抛出到落地过程中的图象。

2.在竖直井的井底,将一物块以的速度竖直向上抛出,物块在上升过程

中做加速度大小的匀减速直线运动,物块上升到井口时被人接住,在被人接住前1s内物块的位移求:

物块从抛出到被人接住所经历的时间;

此竖直井的深度.

3.原地纵跳摸高是篮球和羽毛球重要的训练项目。已知质量的运动员原地

摸高为米,比赛过程中,该运动员先下蹲,重心下降米,经过充分调整后,发力跳起摸到了米的高度。假设运动员起跳过程为匀加速运动,忽略空气阻力影响,g取求:

该运动员离开地面时的速度大小为多少;

起跳过程中运动员对地面的压力;

从开始起跳到双脚落地需要多少时间?

4.气球以的速度匀速上升,当它上升到离地面40m高处,从气球上落下一个物

体.不计空气阻力,求物体落到地面需要的时间;落到地面时速度的大

小.

5.小运动员用力将铅球以的速度沿与水平方向成

方向推出,已知铅球出手点到地面的高度为,

求:

铅球出手后运动到最高点所需时间;

铅球运动的最高点距地面的高度H;

铅球落地时到运动员投出点的水平距离x.

6.气球下挂一重物,以的速度匀速上升,当到达离地高度处时,

悬挂重物的绳子突然断裂,空气阻力不计,g取则求:

绳断后物体还能向上运动多高?

绳断后物体再经过多长时间落到地面。

落地时的速度多大?

7.气球下挂一重物,以的速度匀速上升,当到达离地高度

处时,悬挂重物的绳子突然断裂,那么重物经多长时间落到地面?落地时的速度多大?空气阻力不计,g取。

8.气球以的速度匀速上升,在离地面75m高处从气球上掉落一个物体,结果气

球便以加速度向上做匀加速直线运动,不计物体在下落过程中受到的空气阻力,问物体落到地面时气球离地的高度为多少?.

9.某人在25m高的阳台上以的速度竖直向上抛出一个小球,求

小球经过多少时间到达最高点?

最高点离地面的高度是多少?

小球从抛出到落到地面所经历的时间?取

10.在竖直井的井底,一人将一物块用弹射器竖直向上射出,站在井口的另一人测得物

块从飞出井口到再次落回井口用时2s,井底的人测得物块从射出到落回井底用时不计空气阻力,重力加速度求:

物块射出的初速度大小;

此竖直井的深度.

11.某同学将一个物体以的初速度从地面竖直上抛不计空气阻力,求:

物体从抛出上升到最高点所用的多长时间?

物体抛出后能上升的最大高度?

12.从距地面高h处将一小球以初速度竖直向上抛出,经时间落地,

不计空气阻力,重力加速度,求:

小球落地时速度v;

高度h.

13.从地面竖直向上以的速度抛出一个物体,空气的阻力可以忽略,,

求:

物体能够到达的最大高度是多少?

物体从抛出到落回地面所需的时间是多少?

14.将A小球以速度竖直向上抛出,经一段时间后,在同一地点又以

速度竖直向上抛出B小球。不计空气阻力,。求:为了使AB两球在空中相遇,的取值范围。

要使小球B在上升过程中与小球A相遇,的取值范围又如何?结果可用根式表示

15.从米的塔顶以的速度竖直上抛一物体,不计空气阻力求:

物体离地面的最大高度h;

经多长时间落到地面?

物体落地时的速度大小.

16.如图所示,以初速度v竖直向上抛出一个质量为m的小球,小球上升的最大高度为

,空气阻力的大小恒为F,则小球从抛出至回到出发点下方处,合外力对小球做的功为多少?

17.从15米的塔顶以的速度竖直上抛一物体,不计空气阻力.计算:

经多长时间落到地面?

物体落地时的速度大小.

18.将一个质量为1kg的小球从地面以初速度竖直上抛,若已知物体所受空

气阻力与速率成正比,物体上升的最大高度为15m,落回地面时速度大小为,求小球上升和下落过程中克服空气阻力做功各为多少?

19.竖直向上抛出质量为的石头,石头上升过程中,空气阻力忽略不计,石头离

手时的速度是取求:

石头离手时的动能.

石头能够上升的最大高度.

石头离抛出位置15m高处的速度大小.

20.某人站在高楼的平台边缘,以的初速度竖直向上抛出一石子.不考虑空气阻

力,g取,求:

物体上升过程中的平均速度;

石子从抛出到下落至抛出点正下方60m所需的时间.

21.在竖直的井底,将一物块以的速度竖直地向上抛出,物块在井口处被人接住,

在被人接住前1s内物块的位移是4m,位移方向向上,不计空气阻力,g取,求:物块从抛出到被人接住所经历的时间;

此竖直井的深度;

22.气球下挂一重物,以的速度匀速上升,当到达离地高度处时,

悬挂重物的绳子突然断裂,空气阻力不计,g取;求:

重物离地面的最大高度H;

绳子断裂到重物落地的时间t.

23.气球以的速度从地面匀速上升,上升过程中从气球上掉落一个小物体,该物

体离开气球后经2s着地。小物体离开气球后,气球以的加速度匀加速上升。

不计空气阻力,求:

小物体离开气球时,气球的高度;

小物体着地时,气球距地面的高度。

24.把质量为的石块,从离地面高为30m的某处,以的速度竖直向上方抛

出不计空气阻力,g取。求:

石块能到达的离地面最大高度?

石块落地时速度大小?

25.将一小球在足够高的地方以的初速度竖直上拋,不计空气阻力,g取

求:

小球上升到最高点所用的时间;

从拋出开始计时,求第末小球的速度和内小球的位移;

若运动过程中小球两次经过某点所用时间间隔为s,求该点与拋出点之间的高度差。

26.一只热气球以初速度的速度沿竖直方向匀速上升,在离地高度

处,一个物体从热气球上脱落,不计空气阻力,重力加速度取,试求:物体落地时的速度大小v;

物体从脱落到着地过程中的平均速度大小;

物体在落地前1s内位移s的大小.

27.一个重物离地面120m时以的速度竖直上抛,问从这时算起,,

重物还能上升多高?

重物经过多少时间落到地面?

重物着地速度大小为多少?

28.某人在离地高的屋顶将手伸出屋檐,以初速度竖直向上抛出

一小球,它抛出以后运动的过程中,忽略阻力,求:

小球抛出后离地的最大高度是多少?

小球经多长时间落到地上?

小球落地的速度大小是多少?

29.气球以的速度从地面匀速上升,上升过程中从气球上掉落一个小物体,该物

体离开气球后经2s着地.小物体离开气球后,气球以的加速度匀加速上升.空气对小物体的阻力不计,g取试求:

小物体离开气球时,气球上升的高度;

小物体着地时,气球上升的高度.

答案和解析

1.【答案】解:竖直上抛运动是加速度为的匀减速

直线运动,上升过程有

取竖直向上为正方向,则整个过程小球的位移

由位移时间公式有。

解得负值舍去

小球的速度与时间的关系为

则画出小球从抛出到落地过程中的图象如图所示。

答:

小球从抛出到上升至最高点所需的时间是。

小球从抛出到落地所需的时间t是;

在图乙中画出小球从抛出到落地过程中的图象如图所示。

【解析】竖直上抛运动是加速度为的匀减速直线运动,上升到最高点时速度为0,根据速度时间公式求解。

对整个过程,根据位移时间关系公式列式求解时间t;

根据速度时间公式得到速度与时间关系式,再画出图象。

解决本题的关键要知道竖直上抛运动的加速度不变,是匀变速直线运动。本题可以分段求解,也可以对全过程列式求解。

2.【答案】解:被人接住前1s内的平均速度为

根据平均速度等于中间时刻的瞬时速度,可得在人接住前时的速度为:

设物体被接住时的速度,则:

得:

由竖直上抛运动的运动规律,物块从抛出到被人接住所经历的时间:此竖直井的深度:

答:

物体从抛出点到被人接住所经历的时间为;

竖直井的深度为.

【解析】竖直上抛运动是加速度为g的匀减速直线运动,根据匀变速直线运动的推论可求得被人接住前1s内的平均速度,得到该段时间内中间时刻的瞬时速度,由速度公式求出物体被接住时的速度和物块从抛出到被人接住所经历的时间.根据速度位移公式求井深.

竖直上抛运动的处理方法有整体法和分段法,要求路程或上升的最大高度时一般用分段法,此题只有竖直向上的匀减速运动,直接应用整体法求解即可.

3.【答案】解:设向上为正方向,则初速度,,物体的位移,

由位移公式得

物体落到地面需要的时间

根据可得

物体落到地面时速度大小为

【解析】本题考查匀变速直线运动的规律,由于已知初速度,加速度,位移,故可以利

用位移公式求运动时间t,可以利用速度位移的关系式求解落地速度.

运动学公式的熟练运用,要明确知道所有的运动学公式都是矢量式,要注意正方向的选择.每一个运动学公式都牵扯到四个物理量,而描述匀变速直线运动的物理量只有五个.要牢牢掌握每个公式.

4.【答案】解:运动员离开地面后做竖直上抛运动,根据可知,

在起跳过程中,根据速度位移公式可知,解得

,对运动员,根据牛顿第二定律可知,解得

根据牛顿第三定律可知,对地面的压力为1560N

起跳过程运动的时间

起跳后运动的时间

故运动的总时间

答:该运动员离开地面时的速度大小为;

起跳过程中运动员对地面的压力为1560N;

从开始起跳到双脚落地需要

【解析】运动员离开地面后竖直上抛,根据速度位移公式求得初速度;

起跳过程中,根据速度位移公式求得加速度,根据牛顿第二定律求得作用力;

根据速度时间公式求得加速和减速阶段的时间即可求得

本题主要考查了牛顿第二定律和运动学公式,加速度是解决问题的中间桥梁,明确运动过程是解题的关键

5.【答案】解:

代入数据,解得:

解得:

根据运动学公式,则有:

代入数据解得:

那么

再依据

解得:

代入数据解得:

答:铅球出手后运动到最高点所需时间;

铅球运动的最高点距地面的高度;

铅球落地时到运动员投出点的水平距离.

【解析】根据运动学公式,结合运动的合成与分解法则,及三角知识,即可求解;

根据位移公式,即可求解;

根据竖直方向位移公式,求得从最高点下落的时间,再依据水平方向位移公式,即可求解.

考查运动学公式的应用,掌握运动的合成与分解的方法,注意分清各过程中的时间,位移的不同.

6.【答案】解:重物离开气球后,向上作匀减速直线运动,设向上为正方向,经达最高点

得:

设绳子断后重物经t时间落地

得舍去,

落地速度,负号表示方向向下

【解析】竖直上抛运动是加速度不变的匀变速直线运动,本题可以全过程求解,也可以分段求解,即将竖直上抛运动分成上升阶段和下降阶段分析。

绳子断裂后,重物做竖直上抛运动,根据匀变速直线运动的位移时间公式和速度时间公式求出重物上升的最大高度、落地的时间和落地的速度。

7.【答案】解:规定竖直向下为正方向,则,,

根据:

代入数据得:。

根据速度时间公式得:。

答:重物经过7s后落地;落地的速度为。

【解析】绳子断裂后,重物做竖直上抛运动,根据匀变速直线运动的位移时间公式和速度时间公式求出重物落地的时间和落地的速度。

竖直上抛运动是加速度不变的匀变速直线运动,本题可以全过程求解,也可以分段求解,即将竖直上抛运动分成上升阶段和下降阶段分析。

8.【答案】解:设向上为正,,;

由公式;

代入数据:;

解得;

由公式;

代入数据:;

气球离地高度;

答:物体落到地面时气球离地的高度为。

【解析】本题采用整体法求解,比较方便,也可以采用分段法求解。注意公式的矢量性,规定正方向,与正方向同向为正,与正方向相反为负,同时要知道竖直上抛运动的全过程是匀变速直线运动。

物体掉落后由于惯性,具有向上的初速度,做竖直上抛运动,取竖直向上为正方向,把竖直上抛运动看成加速度为的匀减速直线运动,物体落到地面时位移为,由位移公式求出物体离开气球后运动到地面的时间,并求出气球做匀加速运动上升的高度,再求出物体落到地面时气球离地的高度。

9.【答案】解:小球上升到最高点所需时间为:

小球从抛出到最高点运动的位移为:

最高点离地面的高度:

小球从最高点落到地面的时间为t2

==3s

所以小球从抛出到落到地面所经历的时间为:

答:小球经过2s到达最高点;

最高点离地面的高度是45m;

小球从抛出到落到地面所经历的时间5s.

【解析】小球做竖直上抛运动,即是加速度为的匀减速直线运动,由速度公式求解上升的时间;

由位移公式可求小球从抛出到最高点的位移,再加上阳台高度即为所求高度;

由位移公式求出总时间.

本题是竖直上抛运动问题,采用整体法进行研究,也可以采用分段法求解.

10.【答案】解:由题意知物块从射出到最高点用时

物体从飞出井口到最高点用时

飞出井口的速度为

根据速度位移公式可得

答:物块射出的初速度大小为;

此竖直井的深度为40m

【解析】竖直上抛运动的处理方法有整体法和分段法,根据竖直上抛的对称性求得在井中运动的时间,结合运动学公式即可求得

竖直上抛运动的处理方法有整体法和分段法,要求路程或上升的最大高度时一般用分段法,此题物体冲过井口再落到井口时被某同学接住,直接应用整体法求解即可

11.【答案】解:物体做竖直上抛运动,初速度为,故上升时间为:

物体抛出后能上升的最大高度:;

答:物体从抛出上升到最高点所用的时间为3s;

物体抛出后能上升的最大高度为45m.

【解析】物体做竖直上抛运动,其上升过程是匀减速直线运动,已知初速度、加速度和末速度,根据速度时间关系公式列式求解时间,根据平均速度公式求解最大高度.

竖直上抛运动的两种研究方法:

分段法:上升阶段是匀减速直线运动,下落阶段是自由落体运动,下落过程是上升过程的逆过程.

整体法:从全程来看,加速度方向始终与初速度的方向相反,所以可把竖直上抛运动看成一个匀变速直线运动,要特别注意、、g、h等矢量的正、负号.一般选取竖直向上为正方向,总是正值,上升过程中为正值,下落过程中为负值;物体在抛出点以上时h为正值,物体在抛出点以下时h为负值.

住:竖直上抛运动的上升阶段和下降阶段具有对称性:速度对称:上升和下降过程经过同一位置时速度等大、反向;时间对称:上升和下降过程经过同一段高度的上升时间和下降时间相等.

12.【答案】解:取竖直向上为正方向,则小球的加速度为.

小球落地时速度为:,大小为,方向竖直向下.

小球的位移为:

故高度为:

答:小球落地时速度v大小为,方向竖直向下;

高度h是15m.

【解析】将竖直上抛运动看成一种初速度为、加速度为的匀减速运动,根据速度时间公式求解小球落地时速度v.

根据位移时间公式求解位移,即可得到h.

解决本题的关键要掌握竖直上抛运动的规律,并能灵活运用,要注意位移、速度都是矢量,要注意它们的方向.

13.【答案】解:选竖直向上为正方向,则,,最高点速度为

根据运动学公式:

求得:

根据,求得:

根据对称性关系,所以物体从抛出到落回地面所需的时间为。

【解析】本题简单考查了竖直上抛运动的基本规律,注意上升和下降两个过程的对称性。

最高点速度为零,由速度位移公式,代入即可求解;

由速度时间公式,结合末速度等于零和对称性关系即可求解。

14.【答案】解:球在空中运动的时间:

B球在空中运动的时间:

要使两球在空中相遇,B球必须在A球落地前抛出,且B球必须比A球后着地。故有:,即:

球在最高点与A球相遇是B球上升还是下降与A球相遇的临界时刻。B球上升的最大高度:,

B球上升的时间:

A球落回到时的速度:

A球落回到时所用的时间:

要使小球B在上升过程中与小球A相遇,应满足:

即:

【解析】根据速度时间公式和竖直上抛运动的对称性分析;

球在最高点与A球相遇是B球上升还是下降与A球相遇的临界时刻。根据速度时

间公式和位移速度公式求解。

本题是典型的竖直上抛和自由落体运动的综合题目,中等难度。

15.【答案】解:物体上升过程做匀减速直线运动:

解得

则物体离地面的最大高度为:

以向上为正方向,则有:

解得:

速度大小为,方向竖直向下。

【解析】物体上升过程做匀减速直线运动,速度减为零时上升高度最大,根据位移

速度关系式求解;

根据位移公式求出小球运动时间;

由速度公式求出物体落地速度。

竖直上抛运动的上升过程是匀减速运动过程,下降过程是自由落体运动过程,整个过程加速度不变,是匀变速运动过程,可以全程列式,也可以分段列式。

16.【答案】解:空气阻力做的功为上下,重力做功为

即合外力对小球做的功

【解析】分析物体的运动过程,分别求出求出各力做功,再求代数和。

本题关键在于分析清楚物体的运动过程,明确各力做功。

17.【答案】解:以向上为正方向,则有:

解得:

速度大小为,方向竖直向下

答:经3s落到地面;

物体落地时的速度大小为

【解析】根据位移公式求出小球运动时间;

由速度公式求出物体落地时间;

竖直上抛运动的上升过程是匀减速运动过程,下降过程是自由落体运动过程,整个过程加速度不变,是匀变速运动过程,可以全程列式,也可以分段列式.

18.【答案】解:上升过程,根据动能定理得:

代入数据解得:

所以小球克服空气阻力做功为50J.

下落过程,根据动能定理得:

代入数据解得:

则小球克服阻力做功为22J。

答:小球上升和下降过程克服阻力做功分别为50J和22J。

【解析】对上升过程分析,运用动能定理求出小球小球上升克服阻力所做的功;再对下降过程分析,运用同样的方法求小球克服阻力所做的功。

本题考查了动能定理的运用,运用动能定理解题关键选择好研究的过程,分析过程中有哪些力做功,结合动能定理列式。

19.【答案】解:根据动能的表达式得:;

石头上升的最大高度时速度为零,根据机械能守恒定律有:

解得:;

设石头离地面15m高处的速度为v,根据机械能守恒定律得:

解得:。

答:石头离手时的动能为20J;

石头能够上升的最大高度为20m;

石头离地面15m高处的速度为。

【解析】根据动能的表达式即可求出石头离手时的动能;

石头上升的最大高度时速度为零,根据机械能守恒定律即可求解;

设石头离地面15m高处的速度为v,根据机械能守恒定律即可求解。

本题主要考查了机械能守恒定律的直接应用,难度不大,属于基础题。

20.【答案】解:

以向上为正,物体上升过程中的平均速度由匀变速直线运动规律的推论可得:

,方向竖直向上;

以向上为正,石子从抛出到下落至抛出点正下方60m过程中的位移:,据,解得:舍去,。

【解析】本题考查了竖直上抛运动,解题需要明确竖直上抛运动的处理:1、分段法:上升过程是初速度为、的匀减速直线运动;下降过程是自由落体运动。2、整体法:全程是初速度为、的匀减速直线运动,需注意方程的矢量性。习惯上取向上为正,表物体在上升,表物体在下降,表物体在抛出点上方,表物体在抛出点下方。

据平均速度公式可得物体上升过程中的平均速度;

对从抛出到下落至抛出点正下方60m的全过程应用位移时间公式可得全程对应的时间。

21.【答案】解:最后1s内的平均速度:,

平均速度等于中间时刻的瞬时速度,即接住前的速度为:

设物体被接住时的速度,则

得:

由竖直上抛运动的运动规律得物块从抛出到被人接住所经历的时间:此竖直井的深度:

【解析】竖直上抛运动是加速度为g的匀减速直线运动,处理方法有整体法和分段法,要求路程或上升的最大高度时一般用分段法,此题直接研究上升过程即可。

竖直上抛运动的处理方法有整体法和分段法,要求路程或上升的最大高度时一般用分段法,此题只有竖直向上的匀减速运动,直接应用整体法求解即可。

22.【答案】解:重物离开气球后,向上作匀减速直线运动,设向上为正方向,经达最高点

故重物离地最大高度

设绳子断后重物经t时间落地

得舍去

落地速度

答:重物离地的最大高度.

从绳子断裂开始,重物经7s时间落到地面

重物落地的速度为

【解析】绳子断裂后,重物做竖直上抛运动,根据匀变速直线运动的位移时间公式和速度时间公式求出重物上升的最大高度、落地的时间和落地的速度.

竖直上抛运动是加速度不变的匀变速直线运动,本题可以全过程求解,也可以分段求解,即将竖直上抛运动分成上升阶段和下降阶段分析.

23.【答案】解:已知,,

设物体离开气球时,气球的高度为小物体离开气球后做竖直上抛运动,取竖直向下为正方向,则有:

解得:

物体下落过程中,气球继续上升,上升的高度为:

小物体着地时,气球距地面的高度为h,有:

解得:h:

答:小物体离开气球时,气球的高度是12m。

小物体着地时,气球距地面的高度是22m。

【解析】小物体离开气球后,由于惯性具有竖直向上的速度,做竖直上抛运动,由于已知初速度,加速度和运动时间,可以利用位移公式求气球的高度;

气球做匀加速运动,根据位移公式求解小物体着地时气球的高度。

对于运动学公式,要熟练运用,要明确知道所有的运动学公式都是矢量式,要注意正方向的选择。每一个运动学公式都牵扯到四个物理量,而描述匀变速直线运动的物理量只有五个。要牢牢掌握每个公式。

24.【答案】解:由运动学公式得:

石块上升离平台的最大高度;

离地面的高度为;

以竖直向下为正方向,石块从抛出到落地的全过程,有:;

2021届高考物理人教版二轮复习 计算题精解训练 机械波 作业(12) 含解析

2021届高考物理二轮复习计算题精解训练 (12)机械波 1.如图是一列横波在某一时刻的波形图像。已知这列波的频率为5 Hz ,此时0.5 m x =处的质点正向 y 轴正方向振动,可以推知: (1)这列波正在沿轴哪个方向方向传播; (2)波速大小是多少; (3)该质点1 s 内通过的路程是多少。 2.一列沿 x 轴传播的简谐横波,在0t =时刻的波形如图实线所示,在1=0.2 s t 时刻的波形如图虚线所示: (1)若波向 x 轴负方向传播,求该波的最小波速; (2)若波向 x 轴正方向传播,且1t T <,求 2 m x =处的 P 质点第一次出现波峰的时刻。 3.简谐横波沿 x 轴传播,M N 、是 x 轴上两质点,如图甲是质点 N 的振动图象.图乙中实线是 3 s t =时刻的波形图象,质点 M 位于8 m x =处,虚线是再过t ?时间后的波形图象.图中两波峰间距离7.0 m x ?=.求 (1)波速大小和方向; (2)时间t ?.

4.如图所示、一列简谐横波沿 x 轴正方向传播,实线和虚线分别为10 s t =时与2 2 s t =时的波形图像,已知该波中各个质点的振动周期大于4 s 。求: (i)该波的传播速度大小; (ii)从10 s t =开始计时,写出 1 m x =处质点的振动方程。 5.如图,在平静的湖面上有相距12 m 的B C 、两片小树叶,将一枚小石子投到B C 、连线左侧的 O 点, 6 m OB =,经过24 s ,第1个波峰传到树叶 B 时,第13个波峰刚好在 O 点形成。求: (ⅰ)这列水波的波长和水波的频率; (ⅱ)从第1个波峰传到树叶 B 算起,需要多长时间 C 树叶开始振动。 6.如图所示,图甲为一列简谐横波在2s t =时的图象,Q 为4m x =处的质点,P 为11m x =处的质点,图乙为质点P 的振动图象。 (1)求质点P 的振动方程及该波的传播速度; (2)2s t =后经过多长时间Q 点位于波峰?

高中物理 运动学经典试题

1.如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2 s 将熄灭,此时汽车距离 停车线18m 。该车加速时最大加速度大小为,减速时最大加速度大小为。 此路段允许行驶的最大速度为,下列说法中正确的有 A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线 B .如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速 C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线 D .如果距停车线处减速,汽车能停在停车线处 2.甲、乙两车在公路上沿同一方向做直线运动,它们的 v -t 图象如图所示.两图象在t =t 1时 相交于P 点,P 在横轴上的投影为Q ,△OPQ 的面积为S .在t =0时刻,乙车在甲车前面,相距为 d .已知此后两车相遇两次,且第一次相遇的时刻为t ′,则下面四组t ′和d 的组合可能的是 ( ) A . B . C . D . 3.A 、B 两辆汽车在笔直的公路上同向行驶,当B 车在A 车前84 m 处时,B 车速度为4 m/s ,且以2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12 s 后两车相遇.问B 车加速行驶的时间是多少? 4. 已知O 、A 、B 、C 为同一直线上的四点.AB 间的距离为l 1,BC 间的距离为l 2,一物体自O 点 由静止出发,沿此直线做匀加速运动,依次经过A 、B 、C 三点,已知物体通过AB 段与BC 段所用的时间相等.求O 与A 的距离. 5. 甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t =0时刻同时经过公路旁的同一 个路标.在描述两车运动的v -t 图中(如图),直线a 、b 分别描述了甲乙两车在0~20秒的 运动情况.关于两车之间的位置关系,下列说法正确的是 ( ) A .在0~10秒内两车逐渐靠近 B .在10~20秒内两车逐渐远离 C .在5~15秒内两车的位移相等 D .在t =10秒时两车在公路上相遇 6.如图是一娱乐场的喷水滑梯.若忽略摩擦力,人从滑梯顶 端滑下直到入水前,速度大小随时间变化的关系最接近图 8m/s 22m/s 25m/s 12.5m/s 5m S d t t ==',1S d t t 41,211=='S d t t 2 1,211=='S d t t 43,211=='

高考物理超经典力学题集萃

高考物理经典力学计算题集萃 =10m/s沿x1.在光滑的水平面内,一质量m=1kg的质点以速度v 0 轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点 时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

2020高考物理计算题专题训练含答案

计算题 1.为了使航天员能适应在失重环境下是的工作和生活,国家航天局组织对 航天员进行失重训练。故需要创造一种失重环境;航天员乘坐到民航客机 上后,训练客机总重5×104kg,以200m/s速度沿300倾角爬升到7000米 高空后飞机向上拉起,沿竖直方向以200m/s 的初速度向上作匀减速直线 运动,匀减速的加速度为g,当飞机到最高点后立即掉头向下,仍沿竖直 方向以加速度为g加速运动,在前段时间内创造出完全失重,当飞机离地 2000米高时为了安全必须拉起,后又可一次次重复为航天员失重训练。若 飞机飞行时所受的空气阻力f=Kv(k=900N·s/m),每次飞机速度达到 350m/s 后必须终止失重训练(否则Array飞机可能失速)。 求:(1)飞机一次上下运动为航天员创 造的完全失重的时间。 (2)飞机下降离地4500米时飞机 发动机的推力(整个运动空间重力加速 度不变)。 (3)经过几次飞行后,驾驶员想在保持其它不变,在失重训练时间不 变的情况下,降低飞机拉起的高度(在B点前把飞机拉起)以节约燃油, 若不考虑飞机的长度,计算出一次最多能节约的能量。

2.如图所示是一种测定风速的装置,一个压力传感器固定在竖直墙上,一弹簧一端固定在传感器上的M 点,另一端N 与导电的迎风板相连,弹簧穿在光滑水平放置的电阻率较大的金属细杆上,弹簧是不导电的材料制成的。测得该弹簧的形变量与压力传感器示数关系见下表。 迎风板面积S =0.50m 2,工作时总是正对着风吹来的方向。电路的一端与迎风板相连,另一端在M 点与金属杆相连。迎风板可 在金属杆上滑动,且与金属杆接触良好。定值电阻R =1.0Ω,电源的电动势E =12V ,内阻r =0.50Ω。闭合开关,没有风吹时,弹簧处于原长L 0=0.50m ,电压 传感器的示数U 1=3.0V ,某时刻由于风吹迎风板,电压传感器的示数变为 U 2=2.0V 。求: (1)金属杆单位长度的电阻; 形变量(m ) 0 0.1 0.2 0.3 0.4 压 力(N ) 0 130 260 390 520

2020高考物理运动学专题练习

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= m m t v v s t 71210 4201=?+=?+= 反向时2202/14/14 10s m s m t v v a t -=--=-= m m t v v s t 312 10 4202-=?-=?+= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳 台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向 的运动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速 度 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

2020届高考物理计算题复习《竖直上抛运动》(解析版)

《竖直上抛运动》 计算题 在竖直井的井底,将一物块以 的速度竖直向上抛出,物块在上升过程 中做加速度大小 的匀减速直线运动,物块上升到井口时被人接住,在 被人接住前1s 内物块的位移 求: 物块从抛出到被人接住所经历的时间; 此竖直井的深度. 原地纵跳摸高是篮球和羽毛球重要的训练项目。已知质量 的运动员原地 摸高为 米,比赛过程中,该运动员先下蹲, 重心下降 米,经过充分调整后, 发力跳起摸到了 米的高度。假设运动员起跳过程为匀加速运动,忽略空气阻 力影响,g 取 求: 1. 如图甲所示,将一小球从地面上方 气阻力,上升和下降过程中加速度不变, 小球从抛出到上升至最高点所需的时间 小球从抛出到落地所需的时间 t; 在图乙中画出小球从抛出到落地过程中的 处以 的速度竖直上抛,不计空 g 取 ,求: 图象。 2. 3.

该运动员离开地面时的速度大小为多少; 起跳过程中运动员对地面的压力; 从开始起跳到双脚落地需要多少时间? 4. 气球以的速度匀速上升,当它上升到离地面40m高处,从气球上落下一个物 体.不计空气阻力,求物体落到地面需要的时间;落到地面时速度的大小. 5.小运动员用力将铅球以的速度沿与水平方向成 方向推出,已知铅球出手点到地面的高度为 求: 铅球出手后运动到最高点所需时间; 铅球运动的最高点距地面的高度H ; 铅球落地时到运动员投出点的水平距离x.

6. 气球下挂一重物,以的速度匀速上升,当到达离地高度处时, 悬挂重物的绳子突然断裂,空气阻力不计,g取则求: 绳断后物体还能向上运动多高? 绳断后物体再经过多长时间落到地面。 落地时的速度多大? 7.气球下挂一重物,以的速度匀速上升,当到达离地高度 处时,悬挂重物的绳子突然断裂,那么重物经多长时间落 到地面?落地时的速度多大?空气阻力不计,g取。 8.气球以的速度匀速上升,在离地面75m高处从气球上掉落一个物体,结果气 球便以加速度向上做匀加速直线运动,不计物体在下落过程中受到的 空气阻力,问物体落到地面时气球离地的高度为多少?

高三物理复习〈运动学〉测试题

1.(07北京理综18)图示为高速摄影机拍摄到的子弹穿透苹果瞬间的照片.该照片经放大后分析出,在曝光时间内,子弹 影像前后错开的距离约为子弹长度的1%~2%.已知子弹飞 行速度约为500 m/s,由此可估算出这幅照片的曝光时间最 接近() A.10-3 s B.10-6 s C.10-9 s D.10-12 s 2.(1)在测定匀变速直线运动加速度的实验中,将以下步骤的代号按合理顺序填空写在横线上:_____________. (A)拉住纸带,将小车移至靠近打点计时器处,先接通电源,后放开纸带; (B)将打点计时器固定在平板上,并接好电路; (C)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码; (D)断开电源,取下纸带; (E)将平板一端抬高,轻推小车,使小车恰能在平板上作匀速运动; (F)将纸带固定在小车尾部,并穿过打点计时器的限位孔; (G)换上新的纸带,再重复做两三次. (2)某同学利用打点计时器所 记录的纸带来研究做匀变速 直线运动小车的运动情况, 实验中获得一条纸带,如图 三所示,其中两相邻计数点 间有四个点未画出。已知所 用电源的频率为50H Z,则打A点时小车运动的速度v A=_______m/s,小车运动的加速度a=_______m/s2。(结果要求保留三位有效数字) 3.如右图所示,甲、乙两个同学在平直跑道上练习“4×100m” 接力,他们在奔跑时具有相同的最大速度。乙从静止开始全力奔跑需跑出25m才能达到最大速度,这一过程可视为匀变速运动。现在甲手持接力棒以最大速度向乙奔来,乙在接力区伺机全力奔出。若要 求乙接棒时奔跑速度达到最大速度的80%,试求: ⑴乙在接力区须奔跑多少距离? ⑵乙应在距离甲多远处时起跑?5.(07全国卷Ⅰ23)甲乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保 持9 m/s 的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的.为了确定乙起跑的时机,需在接力区前适当的位置设置标记.在某次练习中,甲在接力区前s0=13.5 m 处作了标记,并以v=9 m/s 的速度跑到此标记时向乙发出起跑口令.乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒.已知接力区的长度为L=20 m.求: (1)此次练习中乙在接棒前的加速度 a. (2)在完成交接棒时乙离接力区末端的距离. 6.(08·四川理综·23)A、B两辆汽车在笔直的公路上同向行驶,当B车在A车前84 m 处时,B 车速度为 4 m/s,且以2 m/s2的加速度做匀加速运动;经过一段时间后,B车加速度突然变为零.A车一直以20 m/s的速度做匀速运动,经过12 s后两车相遇.问B车加速行驶的时间是多少? .如图所示,直线MN表示一条平直公路,甲、乙两辆汽车原来停在A、B两处, A、B间的距离为85m,现甲车先开始向右做匀加速直线运动,加速度a1=2.5m/s2, 甲车运动 6.0s时,乙车立即开始向右做匀加速直线运动,加速度a2=5.0m/s2,求两 辆汽车相遇处距A处的距离. 8.火车A以速度v1匀速行驶,司机发现正前方同一轨道上相距s处有另一火车B沿同方向以速度v2(对地,且v2小于v1)做匀速运动,A车司机立即以加速度(绝对值)a紧急刹车,为使两车不相撞,a应满足什么条件?

高考物理物理学史知识点经典测试题含答案(2)

高考物理物理学史知识点经典测试题含答案(2) 一、选择题 1.下列叙述正确的是() A.开普勒三定律都是在万有引力定律的基础上推导出来的 B.爱伊斯坦根据他对麦克斯韦理论的研究提出光速不变原理,这是狭义相对论的第二个基本假设 C.伽利略猜想自由落体的运动速度与下落时间成正比,并直接用实验进行了验证 D.红光由空气进入水中,波长变长,颜色不变 2.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。以下符合史实的是( ) A.焦耳发现了电流的磁效应 B.法拉第发现了电磁感应现象,并总结出了电磁感应定律 C.惠更斯总结出了折射定律 D.英国物理学家托马斯杨利用双缝干涉实验首先发现了光的干涉现象 3.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步,关于科学家和他们的贡献,下列说法正确的是() A.古希腊学者亚里士多德认为物体下落的快慢由它们的重量决定,伽利略在他的《两种新科学的对话》中利用逻辑推断,使亚里士多德的理论陷入了困境 B.德国天文学家开普勒对他导师第谷观测的行星数据进行了多年研究,得出了万有引力定律 C.英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了静电力常量 D.牛顿首次提出“提出假说,数学推理实验验证,合理外推”的科学推理方法 4.科学发现或发明是社会进步的强大推动力,青年人应当崇尚科学在下列关于科学发现或发明的叙述中,存在错误的是 A.安培提出“分子电流假说”揭示了磁现象的电本质 B.库仑发明了“扭秤”,准确的测量出了带电物体间的静电力 C.奥斯特发现了电流的磁效应,揭示了电与磁的联系 D.法拉第经历了十年的探索,实现了“电生磁”的理想 5.关于物理学家做出的贡献,下列说法正确的是() A.奥斯特发现了电磁感应现象 B.韦伯发现了电流的磁效应,揭示了电现象和磁现象之间的联系 C.洛伦兹发现了磁场对电流的作用规律 D.安培观察到通电螺旋管和条形磁铁的磁场很相似,提出了分子电流假说 6.理想实验有时更能深刻地反映自然规律。伽利略设想了一个理想实验,其中有一个是经验事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来原来释放时的高度。 ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面。 ③如果没有摩擦,小球将上升到原来释放时的高度。 ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面作持续的匀速运动。

2020高考物理计算题专题练习题含答案

计算题 1.如图所示的电路中,用电动势E=6V,内阻不计的电池组向电阻R0=20Ω,额电压U0=4.5V的灯泡供电,求: (1)要使系统的效率不低于η0=0.6,变阻器的阻值及它应承受的最大电流是多大? (2)处于额定电压下的灯泡和电池组的最大可能效率是多少?它们同时适当选择的变阻器如何连接,才能取得最大效率? 2.环保汽车将为2008年奥运会场馆服务。某辆以蓄电池为驱动能源的环保汽车,总质量3 m=?。当它在水平路面上以v=36km/h的速度匀速行驶310kg 时,驱动电机的输入电流I=50A,电压U=300V。在此行驶状态下 ; (1)求驱动电机的输入功率P 电 (2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P机,求汽车所受阻力与车重的比值(g取10m/s2);

(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积。结合计算结果,简述你对该设想的思考。 已知太阳辐射的总功率260410W P =?,太阳到地球的距离111.510m r =?,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%。

3.太阳与地球的距离为1.5×1011m,太阳光以平行光束入射到地面。地球表面2/3的面积被水面所覆盖,太阳在一年中辐射到地球表面水面部分的总能量W约为1.87×1024J。设水面对太阳辐射的平均反射率为7%,而且将吸收到的35%能量重新辐射出去。太阳辐射可将水面的水蒸发(设在常温、常压下蒸发1 kg水需要2.2×106 J的能量),而后凝结成雨滴降落到地面。 (1)估算整个地球表面的年平均降雨量(以毫米表示,球面积为4πR2 地球的半径R=6.37×106 m)。 (2)太阳辐射到地球的能量中只有约50%到达地面,W只是其中的一部分。太阳辐射到地球的能量没能全部到达地面,这是为什么?请说明二个理由。

高考物理计算题专项练习(轨道型)

高三物理计算题专练(轨道类) 1.如图所示,质量为m=0.10kg的小物块以初速度v0=4.0m/s,在粗糙水平桌面上做直线运动,经时间t=0.4s后以速度v飞离桌面,最终落在水平地面上。已知物块与桌面间的动摩擦因数μ=0.25,桌面离地高h=0.45m,不计空气阻力,重力加速度g取10m/s2。求: (1)小物块飞离桌面时的速度大小v。 (2)小物块落地点距飞出点的水平距离s。 2.如图所示,一滑板爱好者总质量(包括装备)为50kg,从以O为圆心,半径为R=1.6m光滑圆弧轨道的A点(α=60°)由静止开始下滑,到达轨道最低点B后(OB在同一竖直线上),滑板爱好者沿水平切线飞出,并恰好从C点以平行斜面方向的速度进入倾角为37°的斜面,若滑板与斜面的动摩擦因数为μ=0.5,斜面长s=6m,(g取10m/s2,sin37°=0.6,cos37°=0.8)求: (1)滑板爱好者在B、C间运动的时间。 (2)滑板爱好者到达斜面底端时的速度大小。 3.学校科技节上,同学发明了一个用弹簧枪击打目标的装置,原理如图甲,AC段是水平放置的同一木板;CD段是竖直放置的光滑半圆弧轨道,圆心为O,半径R=0.2m;MN是与O点处在同一水平面的平台;弹簧的左端固定,右端放一可视为质点、质量m=0.05kg的弹珠P,它紧贴在弹簧的原长处B点;对弹珠P施加一水平外力F,缓慢压缩弹簧,在这一过程中,所用外力F与弹簧压缩量x的关系如图乙所示。已知BC段长L=1.2m,EO间的距离s=0.8m。计算时g取10m/s2,滑动摩擦力等于最大静摩擦力。压缩弹簧释放弹珠P后,求:

(1)弹珠P通过D点时的最小速度v D; (2)弹珠P能准确击中平台MN上的目标E点,它通过C点时的速度v C; (3)当缓慢压缩弹簧到压缩量为x0时所用的外力为8.3N,释放后弹珠P能准确击中平台MN 上的目标E点,求压缩量x0。 4.一长l=0.80m的轻绳一端固定在O点,另一端连接一质量m=0.10kg的小球,悬点O距离水平地面的高度H=1.00m。开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示。让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂。不计轻绳断裂的能量损失,重力加速度g取10m/s2。求: (1)当小球运动到B点时的速度大小。 (2)绳断裂后球从B点抛出并落在水平地面的C点,求C点与B点之间的水平距离。 (3)若OP=0.6m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力。

高中物理运动学测精彩试题(附答题卷和问题详解)

运动学测试(附答案) 一.不定项选择题(5分×12=60分) 1. 一物体以初速度0v 、加速度a 做匀加速直线运动,若物体从t 时刻起,加速度a 逐渐减小至零,则物体从t 时刻开始 ( ) A.速度开始减小,直到加速度等于零为止 B.速度继续增大,直到加速度等于零为止 C.速度一直增大 D.位移继续增大,直到加速度等于零为止 2.某人欲估算飞机着陆时的速度,他假设飞机停止运动前在平直跑道上做匀减速运动,飞机在跑道上滑行的距离为x ,从着陆到停下来所用的时间为t ,则飞机着陆时的速度为( ) A.x t B.2x t C.x 2t D.x t 到2x t 之间的某个值 3.2009年7月16日,中国海军第三批护航编队16日已从某军港启航,于7月30日抵达亚丁湾、索马里海域如图1-1-1所示,此次护航从启航,经东海、海峡、南海、马六甲海峡,穿越印度洋到达索马里海域执行护航任务,总航程五千多海里.关于此次护航,下列说确的是( ) A .当研究护航舰艇的运行轨迹时,可以将其看做质点 B .“五千多海里”指的是护航舰艇的航行位移 C .“五千多海里”指的是护航舰艇的航行路程 D .根据题中数据我们可以求得此次航行的平均速度 4.一质点沿直线Ox 方向做变速运动,它离开O 点的距离随时间变化的关系为x =5+2t 3(m),它的速度随时间t 变化关系为v =6t 2(m/s).该质点在t =0到t =2 s 间的平均速度和t =2 s 到t =3 s 间的平均速度大小分别为( ) A .12 m/s ,39 m/s B .8 m/s ,38 m/s C .12 m/s ,19.5 m/s D .8 m/s ,12 m/s 5. 机车在高速公路上行驶,车速超过100 km/h 时,应当与同车道前车保持100 m 以上的距离.从驾驶员看见某一情况到采取制动动作的时间里,汽车仍要通过一段距离(称为反应距离);从采取制动动作到车完全停止的时间里,汽车又要通过一段距离(称为制动距离),如表所示给出了汽车在不同速度下的反应距离和制动距离的部分数据.如果驾驶员的反应时间一定,路面情况相同 A .驾驶员的反应时间为1.5 s B .汽车制动的加速度大小为2 m/s 2 C .表中Y 为49 D .表中X 为32 6. 在某可看做直线的高速公路旁安装有雷达探速仪,可以精确抓拍超速的汽车,以及测量汽车运动过程中的加速度.若B 为测速仪,A 为汽车,两者相距345 m ,此时刻B 发出超声波,同时A 由于紧急情况而急刹车,当B 接收到反射回来的超声波信号时,A 恰好停止,且此时A 、B 相距325 m ,已知声速为340 m/s ,则汽车刹车过程中的加速度大小为( ) A. 20 m/s 2 B. 10 m/s 2 C. 5 m/s 2 D. 1 m/s 2 7.一人看到闪电12.3 s 后又听到雷声.已知空气中的声速为330 m/s ~340 m/s ,光速为3×108 m/s ,于是他用12.3除以3很快估算出闪电发生位置到他的距离为4.1 km.根据你所学的物理知识可以判断( ) A .这种估算方法是错误的,不可采用 B .这种估算方法可以比较准确地估算出闪电发生位置与观察者间的距离 C .这种估算方法没有考虑光的传播时间,结果误差很大

高三物理计算题训练

天津市第一百中学高三物理计算题训练 1、如图所示,质量为1kg的物体静置在水平地面上,现对物体施以水平方向的恒定拉力,1s末将拉力撤 去,物体运动的v—t图象如图所示,试求: (1)在0~3s内物体的位移; (2)滑动摩擦力的大小; (3)拉力的大小。 2、如图所示,在光滑水平面上放有一个长为L的长木板C,在C左端和距左端s处各放有一个小物块A、B,A、B都可视为质点,它们与C之间的动摩擦因数都是μ,A、B、C的质量都是m。开始时B、C静止,A以某一初速度v0向右运动。设B与C之间的最大静摩擦力等于滑动摩擦力。求:⑴A相对于C向右滑动过程中,B与C之间的摩擦力大小。⑵为使A、B能够相碰,A的初速度v0应满足什么条件? v0 A B C 3、如图所示,原来静止在水平面上的长纸带上放有一个质量为m的小金属块A。金属块离纸带左端距离为d,与纸带间动摩擦因数为μ。现用力向右将纸带从金属块下面抽出,设纸带的加速过程极短,可以认为一开始抽动纸带就做匀速运动。求:⑴金属块刚开始运动时所受的摩擦力大小和方向。⑵为了能把纸带从金属 块下面抽出,纸带的速度v应满足什么条件? A v d 4、真空中存在空间范围足够大的、水平向右的匀强电场。在电场中,若将一个质量为m带正电的小球由静止释放,运动中小球的速度与竖直方向夹角为53o(取sin37o=0.6,cos37o=0.8)。现将该小球从电场中某点以v0=10m/s的初速度竖直向上抛出。求运动过程中 (1)小球受到的电场力的大小和方向; (2)小球从抛出点至最高点的电势能变化量; (3)小球的最小动量的大小和方向。 5、如图所示,质量均为m的A、B两物体,用劲度为k的轻质弹簧相连,A被手用外力F提在空中静止,这时B离地面的高度为h。放手后,A、B下落,若B与地面碰撞后不再反弹,求:A从开始下落到其速度达到最大的过程中,A的重力势能的改变量。 A B h 6、如图所示,竖直的光滑杆上套着一轻质弹簧,弹簧长度为原长时,上端在O 点处。现将质量,m2=3kg 的圆环套在杆上,压缩弹簧,平衡于A点处,A点和O点间距为x0;再将一质量m1=6kg的圆环套在杆上,从距A点3x0处的B点由静止开始下滑并与m2碰撞后粘为一体。它们运动到C处时 速度达到最大值,此时动能E k=19.5J。已知弹簧劲度系数k=300N/m。求: (1)m1在与m2碰撞前瞬间的速度v;

高考物理-计算题专题突破

计算题专题突破 计算题题型练3-4 1.一列横波在x轴上传播,t1=0和t2=0.005 s时的波形如图中的实线和虚线所示. (1)设周期大于(t2-t1),求波速; (2)设周期小于(t2-t1),并且波速为6 000 m/s,求波的传播方向. 解析:当波传播时间小于周期时,波沿传播方向前进的距离小于一个波长;当波传播时间大于周期时,波沿传播方向前进的距离大于一个波长,这时从波形的变化上看出的传播距离加上n个波长才是波实际传播的距离. (1)因Δt=t2-t1T,所以波传播的距离大于一个波长,在0.005 s内传播的距离为 Δx=vΔt=6 000×0.005 m=30 m. 而Δx λ= 30 m 8 m=3 3 4,即Δx=3λ+ 3 4λ.

因此可得波的传播方向沿x轴负方向. 答案:(1)波向右传播时v=400 m/s;波向左传播时v=1 200 m/s(2)x轴负方向 2. (厦门一中高三检测)如图所示,上下表面平行的玻璃砖折射率为n=2,下表面镶有银反射面,一束单色光与界面的夹角θ=45°射到玻璃表面上,结果在玻璃砖右边竖直光屏上出现相距h=2.0 cm的光点A和B(图中未画出). (1)请在图中画出光路示意图(请使用刻度尺); (2)求玻璃砖的厚度d. 解析:(1)画出光路图如图所示. (2)设第一次折射时折射角为θ1,

@高考物理计算题训练——滑块与木板模型(答案版)

1、木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求下列各种情况下力F的大小范围。 (1)m与M刚要发生相对滑动的临界条件:①要滑动:m 与M间的静摩擦力达到最大静摩擦力;②未滑动:此时m与 M加速度仍相同。受力分析如图,先隔离m,由牛顿第二定 律可得:a=μmg/m=μg 再对整体,由牛顿第二定律可得:F0=(M+m)a 解得:F0=μ(M+m) g 所以,F的大小范围为:F>μ(M+m)g (2)受力分析如图,先隔离M,由牛顿第二定律可得:a=μ mg/M 再对整体,由牛顿第二定律可得:F0=(M+m)a 解得:F0=μ(M+m) mg/M 所以,F的大小范围为:F>μ(M+m)mg/M 2、如图所示,有一块木板静止在光滑水平面上,木板质量M=4kg,长L=1.4m.木板右端放着一个小滑块,小滑块质量m=1kg,其尺寸远小于L,它与木板之间的动摩擦因数μ=0.4,g=10m/s2, (1)现用水平向右的恒力F作用在木板M上,为了使得m能从M上滑落下来,求F的大小范围. (2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求m在M上滑动的时间. (1)小滑块与木板间的滑动摩擦力 f=μFN=μmg=4N…………① 滑动摩擦力f是使滑块产生加速度的最大合外力,其最大加速度 a1=f/m=μg=4m/s2…② 当木板的加速度a2> a1时,滑块将相对于木板向左滑动,直至脱离木板 F-f=m a2>m a1F> f +m a1=20N …………③ 即当F>20N,且保持作用一般时间后,小滑块将从木板上滑落下来。 (2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2'

2014-2018高考物理运动学真题

专题一质点的直线运动 (2017~2018年) 201803 4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍 B.4倍 C.6倍 D.8倍 5.甲乙两车在同一平直公路上同向运动,甲做匀加速直线运动, 乙做匀速直线运动。甲乙两车的位置x随时间t的变化如图所示。 下列说法正确的是 A.在t1时刻两车速度相等 B.从0到t1时间内,两车走过的路程相等 C.从t1到t2时间内,两车走过的路程相等 D.从t1到t2时间内的某时刻,两车速度相等 6.地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。不考虑摩擦阻力和空气阻力。对于第①次 和第②次提升过程, A.矿车上升所用的时间之比为4:5 B.电机的最大牵引力之比为2:1 C.电机输出的最大功率之比为2:1 D.电机所做的功之比为4:5

201802 6.甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。已知两车在t2时刻并排行驶,下列说法正确的是() A.两车在t1时刻也并排行驶 B.t1时刻甲车在后,乙车在前 C.甲车的加速度大小先增大后减小 D.乙车的加速度大小先减小后增大 (2016~2014年) 1.(2016·全国卷Ⅲ,16,6分)(难度★★)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍。该质点的加速度为() A.s t2 B.3s 2t2 C.4s t2 D.8s t2 2.(2016·全国卷Ⅰ,21,6分)(难度★★★)(多选)甲、乙两车在平直公路上同向行驶,其v-t图象如图所示。已知两车在t=3s时并排行驶,则() A.在t=1s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C.两车另一次并排行驶的时刻是t=2s D.甲、乙车两次并排行驶的位置之间沿公路方向的距离为40m

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

高考物理二轮复习 计算题专题训练

计算题专题训练 第1组 1.(2012·惠州一中月考)如图所示,一弹丸从离地高度H =1.95 m 的A 点以v 0=8.0 m/s 的初速度水平射出,恰以平行于斜面的速度射入静止在固定斜面顶端C 处的一木块中,并立 即与木块具有相同的速度(此速度大小为弹丸进入木块前一瞬间速度的1 10 )共同运动,在斜 面下端有一垂直于斜面的挡板,木块与它相碰没有机械能损失,碰后恰能返回C 点。已知斜面顶端C 处离地高h =0.15 m ,求:(1)A 点和C 点间的水平距离。(2)木块与斜面间的动摩擦因数μ。(3)木块从被弹丸击中到再次回到C 点的时间t 。 2.(2012·广州一模,35)如图所示,有小孔O 和O ′的两金属板正对并水平放置,分别与平行金属导轨连接,Ⅰ、Ⅱ、Ⅲ区域有垂直导轨所在平面的匀强磁场。金属杆ab 与导轨垂直且接触良好,并一直向右匀速运动。某时刻ab 进入Ⅰ区域,同时一带正电小球从O 孔竖直射入两板间。ab 在Ⅰ区域运动时,小球匀速下落;ab 从Ⅲ区域右边离开磁场时,小球恰好从O ′孔离开。已知板间距为3d ,导轨间距为L ,Ⅰ、Ⅱ、Ⅲ区域的磁感应强度大小相等、宽度均为d 。带电小球质量为m ,电荷量为q ,ab 运动的速度为v 0,重力加速度为g 。求: (1)磁感应强度的大小。 (2)ab 在Ⅱ区域运动时,小球的加速度大小。 (3)小球射入O 孔时的速度v 。 第2组 3.如图所示,AB 、BC 、CD 三段轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度L =5 m ,轨道CD 足够长且倾角θ=37°,A 点离轨道BC 的高度为H =4.30 m 。质量为m 的小滑块自A 点由静止释放,已知小滑块与轨道BC 间的动摩擦 因数μ=0.5,重力加速度g 取10 m/s 2 ,sin 37°=0.6,cos 37°=0.8,求: (1)小滑块第一次到达C 点时的速度大小; (2)小滑块第一次与第二次通过C 点的时间间隔; (3)小滑块最终停止位置距B 点的距离。 4.如图所示,磁感应强度为B =2.0×10-3 T 的磁场分布在xOy 平面上的MON 三角形区域,其中M 、N 点距坐标原点O 均为1.0 m ,磁场方向垂直纸面向里。坐标原点O 处有一个粒子源,不断地向xOy 平面发射比荷为q m =5×107 C/kg 的带正电粒子,它们的速度大小都是v =5×104

(完整word版)高考物理计算题训练

高考物理计算题训练(1) 1.(17分)如图为一滑梯的示意图,滑梯的长度AB为L= 5.0m,倾角θ=37°。BC段为与滑梯平滑连接的水平地面。一个小孩从滑梯顶端由静止开始滑下,离开B点后在地面上滑行了s = 2.25m后停下。小孩与滑梯间的动摩擦因数为μ = 0.3。不计空气阻力。取g = 10m/s2。已知sin37°= 0.6,cos37°= 0.8。求: (1)小孩沿滑梯下滑时的加速度a的大小; (2)小孩滑到滑梯底端B时的速度v的大小; (3)小孩与地面间的动摩擦因数μ′。 2.(18分)在如图甲所示的电路中,螺线管匝数n = 1500匝,横截面积S = 20cm2。螺线管导线电阻r = 1.0Ω,R1 = 4.0Ω,R2 = 5.0Ω,C=30μF。在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化。求: (1)求螺线管中产生的感应电动势; (2)闭合S,电路中的电流稳定后, 求电阻R1的电功率; (3)S断开后,求流经R2的电量。 2 图甲 图乙 s

3.(20分)如图,在平面直角坐标系xOy 内,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y = h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x = 2h 处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场。不计粒子重力。求 (1)电场强度大小E ; (2)粒子在磁场中运动的轨道半径r ; (3)粒子从进入电场到离开磁场经历的总时间t 。 答案 1.(17分) 解:(1)物体受力如右图所示 (1分) 由牛顿运动定律 mg sin θ -μN = ma (1分) N - mg cos θ = 0 (1分) 解得 a = g sin θ -μg cos θ = 3.6m/s 2 (1分) (2) 由 (1分) 求出 (1分) (3)由匀变速直线运动规律 (1分) 由牛顿第二定律 (1 分) 解得 (1分) 2.(18分) 解:(1)根据法拉第电磁感应定律 (3分)求出 E = 1.2(V ) (1分) (2)根据全电路欧姆定律 (1分) 根据 (1分) 求出 P = 5.76×10-2(W ) (1 分) (3)S 断开后,流经R 2的电量即为S 闭合时C 板上所带的电量Q 电容器两端的电压 U = IR 2=0.6(V ) (1分) P O y M N x B v 0 N mg f

相关主题