搜档网
当前位置:搜档网 › 自由网格、映射网格、扫略网格、边界层网格

自由网格、映射网格、扫略网格、边界层网格

自由网格、映射网格、扫略网格、边界层网格

自由网格:自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。自由网格对于单元形状无限制,并且没有特定的准则。

映射网格:映射网格划分是对规整模型的一种规整网格划分方法,映射网格对包含的单元形状有限制,而且必须满足特定的规则。映射面网格只包含四边形或三角形单元,而映射体网格只包含六面体单元。而且,映射网格典型具有规则形状,明显成排的单元。如果想要这种网格类型,必须将模型生成具有一系列相当规则的体或面才能接受映射网格划分。

扫略网格:形成的单元几乎都是六面体单元。通常,采用扫略方式形成网格是一种非常好的方式,对于复杂几何实体,经过一些简单的切分处理,就可以自动形成规整的六面体网格

边界层网格:边界层网格设置方法如下。菜单“网格>边界层网格参数”中选定需要设置边界层的求解域,然后在“边界”标签中选择需要设置的边界。另外,“网格>自由网格参数”的“高级”标签的“几何松弛度”控制的是如何在划分网格时控制程序能识别的几何结构。几何松弛度以百分比表示按边长的比例对曲边进行解析,数字越大,结构越不精细。如果它很大,网格就较少。如果很小,网格剖分时往往就会得到很大数量的网格。

壁面网格划分规则

The goal is to determine the required near wall mesh spacing, , in terms of Reynolds number, running length, and a target value. A < 200 is acceptable if you are using the automatic wall treatment, if not, continue to read the advice below. After running a solution, the value of (in particular, the value given by the solver variable , representing the value for the first node from the wall) should agree with: model means using a fine mesh and one of the models (which include the SST model). The models do accept coarser meshes, due to the automatic near-wall treatment for these models. with characteristic velocity and length of the plate . The correlation for the wall shear stress coefficient, , is given by: where is the distance along the plate from the leading edge. The definition of for this estimate is: 目的是由雷诺数、行程长度及”

有限元网格划分的基本原则

有限元网格划分的基本原则 划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1 位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2 网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减

网格划分的方法

网格划分的方法 1.矩形网格差分网格的划分方法 划分网格的原则: 1)水域边界的补偿。舍去面积与扩增面积相互抵消。2)边界上的变步长处理。 3)水、岸边界的处理。 4)根据地形条件的自动划分。 5)根据轮廓自动划分。

2.有限元三角网格的划分方法 1)最近点和稳定结构原则。 2)均布结点的网格自动划分。 3)逐渐加密方法。 35 30 25 20 15 10 5 05101520253035

距离(m)距 离 (m) 3. 有限体积网格的划分方法 1) 突变原则。 2) 主要通道边界。 3) 区域逐步加密。

距离(100m) 离距(100m )距离(100m)离距(100m )

4. 边界拟合网格的划分方法 1) 变换函数:在区域内渐变,满足拉普拉斯方程的边值问题。 ),(ηξξξP yy xx =+ ),(ηξηηQ yy xx =+ 2) 导数变化原则。 ?????? ??????=?????? ??????-ηξ1J y x ,???? ??=ηηξξy x y x J 为雅可比矩阵,??? ? ??--=-ηηξξy x y x J J 11, ξηηξy x y x J -= )22(1 222233ηηξηξηηξηξξηηηηηξξηηξξξηξy y x y y y x y y x x y y x y y x y J xx +-+-+-= 同理可得yy ξ,xx η,yy η。 变换方程为 020222=+++-=+++-)()(ηξηηξηξξηξηηξηξξγβαγβαQy Py J y y y Qx Px J x x x 其中2222,,ξξηξξηηηγβαy x y y x x y x +=+=+=。

无网格法的应用

无网格方法的研究应用与进展 引言 有限元法(FEA)是随着电子计算机的发展而迅速发展起来的一种现代计算方法,但FEA 是基于网格的数值方法,在分析涉及特大变形(如加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。 同时,复杂的三维结构的网格生成和重分也是相当困难和费时的。近年来,无网格得到了迅速的发展,受到了国际力学界的高度重视。与有限元的显著特点是无网格法不需要划分网格,只需要具体的节点信息,采用一种权函数(或核函数)有关的近似,用权函数表征节点信息。克服了有限元对网格的依赖性,在涉及网格畸变、网格移动等问题中显示出明显的优势。 无网格方法的概述 无网格方法(Meshless Method)是为有效解决有限元法在数值模拟分析时网格带来的重大问题而产生的,其基本思想是将有限元法中的网格结构去除,完全用一系列的节点排列来代之,摆脱了网格的初始化和网格重构对问题的束缚,保证了求解的精度[1]。是一种很有发展的数值模拟分析方法。 目前发展的无网格方法有:光滑质点流体动力学法(SPH)、无网格枷辽金法(EFGM)、无网格局部枷辽金法(MLPGM)、扩散单元法(DEM)、Hp-clouds 无网格方法;有限点法(FPM)、无网格局部Petrov-Galerkin方法(MLPG)、多尺度重构核粒子方法(MRKP)、小波粒子方法(WPM)、径向基函数法(RBF)、无网格有限元法(MPFEM)、边界积分方程的无网格方法等。 这些方法的基本思想都是在问题域内布置一系列的离散节点,然后采用一种与权函数或核函数有关的近似,使得某个域上的节点可以影响研究对象上的任何一点的力学特性,进而求得问题的解。 无网格方法国内外研究的进展 无网格法起源于20 世纪70 年代。Perrone,Kao 最早采用任意网格技术将传统有限差分进行扩展,提出了有限差分法,这可看作无网格技术的最初萌芽。 1977年Lucy 和Monaghan 首次提出了基于拉格朗日公式的光滑质点流体动力法(Smoothed Particle Hydrocynamics:SPH),这是一种纯拉格朗日法,无需网格。最初运用SPH 方法解决了无边界天体物理问题。Monaghan 在对SPH 方法深入研究后,将其解释为核(kernel)近似方法。 Swegle 等指出了SPH 方法不稳定的原因,并提出了一个黏度系数来保证其运算稳定。Dyka 则提出了应力粒子法来改善其稳定性。SPH 方法已经被应用于水下爆炸数值模拟、弹丸侵彻混凝土数值模拟、高速碰撞等材料动态响应的数值模拟等。 近年,我国学者张锁春对SPH 方法进行了综述,贝新源等将SPH 方法用于高速碰撞问题,宋顺成等将SPH 方法用于模拟弹丸侵彻混凝土。

矢量边界经纬网格说明

矢量边界经纬网格说明 1.在ArcMap当中打开.shp文件,注意当前打开的矢量文件是否是地理坐标系 (Geographic Coordinate System),若为投影坐标系(Projected Coordinate System)应将其转换到地理坐标系之下。 判断当前工作区坐标系的方法有2。可以查看最先加载到工作区的文件的属性,右击该文件,选择Properties,Layer Properties->Source,如图1所示当前工作区为投影坐标系,单位为米。 图 1 再者,还可以查看页面右下角的显示,单位为Meters即为投影坐标系(如图2),单位为Decimal Degrees为地理坐标系(如图3)。 图 2 图 3 2.若当前工作区即为地理坐标系可以跳过步骤2。本步将投影坐标系转换到地 理坐标系之下,ArcToolbox->Data Management Tools->Projections and Transformations->Feature->Project,出现Project对话框,依次选择对应内容输入,如图4,单击OK,完成。转换后的文件需要在加载到新的工作区。

图4 3.应用渔网工具,在矢量边界内生成规则的经纬网格。ArcToolbox->Data Management Tools->Feature Class->Create Fishnet,如图5。 图5 4.用矢量边界裁剪新生成的格网。ArcToolbox->Analysis Tools->Extract->Clip,裁 剪结果如图6。 图6 5.从裁剪结果当中分别析出经度和纬度。右击裁剪结果,在菜单中选择Open Attribute Table,出现Attribute of XX裁剪结果对话框,尝试在图7中选中前4个,对应工作区上Polyline会显示为加粗的蓝线,如图8。在Attribute of XX 对话框上右击选择Copy,如图9。右击裁剪结果,依次Selection->Create Layer From Selected Features,如图10,得到结果如图11,即为纬度。

ansys workbench网格约束求解仿真

仿真教材,要学习材料力学。弹性力学不推荐学习,有点难用处不大。 网格精度判定指标:默认显示的红色区域存在部分连续位置至少完整覆盖两层网格。 应力奇异性:一般认为应力奇异是应力集中的极端现象。根据弹性理论,在尖角处应力是无穷大的。在有限元分析中,尖角处不会产生无穷大应力结果,而是会随着网格细化,应力大幅度增加。所以用有限元分析尖角处和刚性约束的应力奇异点是无效的,没有正确结果的。 网格精度对变形结果的影响很小,并且不存在类似应力奇异的问题,因此可以优先对比变形结果,如果出现偏差较大说明设置存在问题。 虽然说同等情况下六面体(在mesh control中点method,automatic就是默认的六面体)网格精度高于四面体(在mesh control中点method,将method由automatic改为tetrahedrons),但是六面体网格划分太过繁琐。因此四面体网格是最常用的,随着模型复杂程度提高,四面体网格划分在效率上优势明显,而且精度也能满足工程需求。 一般来说局部网格精度为全局网格精度的十倍,即如果全局网格设置为1mm,则局部网格应该在0.1左右合适。 接触分类:bonded绑定:默认接触形式,可以将此看做连接在一起作为一个零件,类似于焊接。frictionless无摩擦:代表单边接触,如果出现分离则法向压力为0,同时假设摩擦系数为0。frictional有摩擦:两接触面可以通过接触区域传递一定数量剪应力。法向可分离,切向摩擦滑动。 网格改变,软件版本改变或者不同软件同样设置导致计算结果发生巨大变化只能说明设置存在问题,就算能算出来结果那也是运气好,不能证明是正确结果。 刚体位移,弱弹簧功能原则上可以抵消微小力,但是经常出现一些新手发现不了的问题,不推荐使用弱弹簧功能。一般情况下,现实中一定有产生抵消的约束,只是我们没有设置上,所以仔细查找出产生微小力的原因。 圣维南原理:分布于弹性体上一小块面积内的载荷所引起的物体中的应力,在离载荷作用区稍远的地方,基本上只同载荷的合力和合力矩有关。载荷的具体分布只影响载荷作用区附近的应力分布。 一般情况下,有限元分析读取的变形结果是多个零件累加结果,并不是我们真正意义上的零件变形。 四大强度理论:第一:最大拉应力理论。第二:最大伸长线应变理论。第三:最大切应力理论。第四:形状改变比能理论,von mises应力。其中第四强度理论基本都要用,第一跟第三根据实际工况选用,第二基本不用。 变形量计算以目前电脑硬件水平,基本都能够算出接近测试结果的解(单个零件仿真误差百分之十就已经很大了),多数原因在于我们在建立数学模型的时候产生了错误,而非误差。

边界重叠图像的网格拼接算法

毕业设计(论文)说明书 题目:边界重叠图像的网格拼接算法 系名计算机科学与技术系 专业软件工程 学号 6007203156 姓名徐御臣 指导教师殷妍 2011年6月3日

图像拼接技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。针对边界部分有重叠的图像,提出了一种基于网格匹配的快速对准算法,并通过平滑因子对图像实现了无缝拼接。提出了一种适宜于生成全方位全景图像的拼接和平滑算法,给出了一种消除拼接积累误差的方法,进而首次在立方体表面拼接成功了全方位全景图像,并由此生成了球面上的全方位全景图像。 关键词:图像拼接;图像配准;图像融合;全景图

Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, we present a fast stitching algorithm for overlapping images based on grid matching, which makes images matching correctly, stitching images seamless and smooth. Both a mosaic method and a smoothing method that are adaptive to be used to create omni-directional images are proposed. A method by which the mosaic accumulative error can be eliminated is also proposed. As the first time, an omni-directional image is created on cube face, through which an omni-directional image on a sphere face is created. Keywords: image mosaic; image registration; image fusion; panorama

网格划分的原则

划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。 图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。 图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b 中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减小。因此,网格数量应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

网格划分基本原则

有限元网格划分的基本原则 杜平安 《机械设计与制造》 划分网格是建立有限元模型的一个重要环节,它要求考虑的问题较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、合理的有限元模型,这里介绍划分网格时应考虑的一些基本原则。 1网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。 图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。所以应注意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。 图1位移精度和计算时间随网格数量的变化 在决定网格数量时应考虑分析数据的类型。在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。 2网格疏密 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。 图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔附近存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减小。因此,网格数量应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

整车网格规范

1、网格单元尺寸及质量要求 1.1基本要求 1、对于车身上的钣金件,抽中面画成2D网格,尽量减少三角形的数量,尽量不要出现三角形单元相邻; 2、保留主要的几何结构,网格要与几何保持良好的相符性; 3、每个零件的单元法向必须一致; 4、每个零件的单元应连续,自由边只能出现在零件的实际边界上; 1.2 2D单元 单元基本尺寸8mm 1.3 3D单元 常见的3D单元有四面体和六面体两种,实际情况下多以四面体为主,网格标准如下:

warpage Aspect skew length jacobian ≤15 ≤5 ≤40 ≥5 ≥0.6 Quad face Tria face min angle ≥45 Min angle ≥30 Max angle ≤135 Max angle ≤120 注:对于3D单元,要求在厚度方向上至少有三排网格。 2、几何处理和网格划分 2.1 孔的处理 1、定位孔以及一般的连接孔 直径小于5mm的,忽略孔 直径在5mm和10mm之间的,在孔的周围布置四节点,画成四边形; 直径大于10mm的,在孔的周围布置≥6的偶数个节点。 2、螺栓连接孔 直径小于5mm的,忽略孔 直径在5mm和12mm之间的,在孔的周围布置6节点和washer 5mm的孔; 直径在12mm和18mm之间的,布置8节点和washer 8mm的孔。 刚性连接孔最好用两圈单元模拟 2.2 椭圆孔的处理 R小于5mm时,忽略椭圆孔; R在5mm和8mm之间,采用一排单元,长边上根据网格尺寸布置节点; R在8mm以上,采用两排或者两排以上的单元,长边上根据网格尺寸布置节点。

几何建模、网格划分与边界条件施加

深圳大学实验报告课程名称:有限元分析方法 实验项目名称:几何建模、网格划分与边界条件施加学院:机电与控制工程学院 专业:机械设计制造及其自动化 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间:2011-11- 24 教务处制

悬臂板的模态有限元分析 长:2.5米; 宽:2米; 厚:0.1113米 材料:有机玻璃: 弹性模量:2.35*10^9N/m2;波松比:0 .4 密度:1180kg/m3 边界条件:一断固定、一端自由。 建立板的几何模型 点击“新建”新建一个文档,点击“geometry”,action选择“create”,object选择“surface”,method 选择“XYZ”创建一个长为2.5宽为2的长方形,如图:

划分网格 点击“elements”,action选择“create”,object选择“mesh”,type选择“surface”,其他参数如图,划分表格如图:

建立边界约束 点击“loads/...”,再点击“input data...”进行参数设置如图,再点击“select application region...”,在select 中选择“FEM”选择区域建立边界约束如图:

设置材料特性 点击“material”新建材料有机玻璃(PMMA),点击“input properties...”设置有机玻璃的弹性模量、泊松比和密度,相关参数如图: 定义单元特性1 点击“property”,再点击“input property...”进行参数设置,具体参数如图,进行定义单元特性如图:

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述?几何体划分网格之前需要确定单元类型.单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。? 2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不同的分类方法,上述单元可以分成以下不同的形式。?3。按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。?一维单元的网格为一条直线或者曲线。直线表示由两个节点确定的线性单元。曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。 ?二维单元的网 格是一个平面或者曲面,它没有厚度方向的尺寸.这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

??三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示.在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。 ? 4.按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面.这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模.但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。

ANSYS网格划分原则

ANSYS有限元网格划分的基本原则 默认分类 2009-05-20 13:56:46 阅读508 评论0 字号:大中小订阅 1 引言 ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 2 ANSYS网格划分的指导思想 ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题 ANSYS软件平台提供了网格映射划分和自由适应划分的策略。映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。 3 ANSYS网格划分基本原则 3.1 网格数量 网格数量的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

有限元、边界元、无网格法的比较

首先,从五个方面进行有限元和无网格方法比较,分别是网格划分、形函数的产生、边界条件、系统离散方案、系统方程的求解: 1、网格划分 有限元方法:连续体被划分成由有限个称作单元的小网格组合而成的离散结构。单元划分是前处理过程中非常重要的部分, 通常占整个分析过程中大部分时间。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同的形状,因此可以模拟几何形状复杂的求解域。 无网格方法:问题域由一系列任意分布的节点来代替, 不需要用单元或网格来进行场变量插值, 也无须描述节点之间的关系。节点的生成可完全由计算机自动完成, 这大大节省了分析人员的时间, 也相对较容易在分析过程中对节点进行重新划分。几何体边界是由节点替代(而非离散) , 如图1所示,两个节点之间的任意一点可由近似函数插值。 (a)有限元法中光滑曲线边界由三角形直线边代替(b)无网格法中光滑边界由节点替代 图1 网格-节点示意图 2、形函数的产生: 有限元法和无网格法都可从哈密尔顿原理推出, 它们之间最关键的区别是形函数的构造。有限元法:形函数是定义于单元的局部近似函数,因此函数的连续性、光滑性在网格的分界处必然受到限制,计算后还需要进一步的后处理。形函数可以直接插值得到,故相对较容易构造且相同类型的单元具有相同的形函数。 无网格方法:形函数是围绕每一个节点建立插值函数构成的,不同的点具有不同的形函数,形函数定义于全域,具有较好的连续性和光滑性,不需要后处理过程。 3、边界条件 有限元法:施加边界条件并不很困难, 通常在网格划分时使网格形式满足边界条件特点, 本质边界条件可直接加在节点上。 无网格方法:本质边界条件不仅依赖边界点,而且也与内部点有关,无网格法不能直接施加本质边界条件都是用离散的点来代替连续的边界值,这样会给本质边界条件的精确实现造成困难。,拉格朗日乘子法和罚函数法是两种基本的方法。

边界层厚度计算方法详述

边界层厚度的计算方法详述 与边界层厚度相关的概念,包含边界层厚度,边界层位移厚度和边界层动量厚度三个概念。 边界层厚度δ:严格而言,边界层区与主流区之间无明显界线,通常以速度达到主流区速度的0.99U 作为边界层的外缘。由边界层外缘到物面的垂直距离称为边界层名义厚度。 边界层位移厚度δ*:设想边界层内的流体为无粘性时,以均流速度U流过平板的速度分布如图 1所示。实际流体具有粘性,以相同速度流过平板时,由于壁面无滑移条件,速度从U跌落至0。如此形成的边界层对流动的影响之一是使设想中的无粘性流体流过该区域的质量流量亏损了(图 1中阴影区,平板宽度设为1)。将亏损量折算成无粘性的流量,厚度为δ*(图 1中阴影区)。 图 1 边界层位移厚度示意图 其公式推导: *0()U U u dy δ ρδρ=-? 对不可压缩流体 *0(1)u dy U δδ=-? 其中存在的问题是,很显然,边界层内的质量流量减少了,因为边界层内的沿着壁面切向的速度最大为自由来流的速度,最小为0,而无粘的时候,整个流动的速度都是U 。 损失的质量去哪里了呢?质量是不会丢失的,损失的质量流动到了边界层之外了,如图 2所示。 图 2 排挤厚度 在图 2中,可以明显看出,由于边界层的存在,整个流动向边界层外“排挤”了,把一部分流

体质量排挤到了边界层之外。所以,边界层位移厚度,又称作排挤厚度,这个叫法比较形象地说明了边界层位移厚度的物理意义。

对于边界层的动量厚度θ:边界层对流动的影响之二是使设想中的无粘流体流过该区域的动量流量亏损了,按平板单位宽度计算动量流量亏损量,并将其折算成厚度为θ无粘性流体的动量流量 0()U U u U u dy δρθρ* =-? 对不可压缩流动 0(1)u u dy U U δθ*=-? 称θ为动量亏损厚度,简称动量厚度。 现在很多教材中对边界层的动量厚度的说明比较模糊,没有强调出为什么使用上述公式计算。以至于很多人对边界层的动量厚度有了错误的理解。 计算边界层的动量厚度,必须考虑边界层的排挤厚度,即位移厚度!因为在计算动量厚度的时候,要考虑质量守恒的问题。 在边界层内,理想流体通过时的动量为: 10E UUdy UU δ ρρδ==? 在边界层内,考虑壁面无滑移条件,对于实际粘性流体来说,流体的动量为: 20()()E u y u y dy δ ρ=? 要注意,我们并不能拿以上两项相减来作为边界层动量的损失,因为有一部分质量被“排挤”到了边界层之外,如果是理想流动,这一部分质量在边界层厚度之内呢。所以,计算动量厚度的时候,一定要把排挤厚度之内的那些动量也减掉,这样才遵守了基本的质量守恒的原则,所以边界层动量厚度的计算方法为: *12E E UU ρδ-- 如此,在推导之,方可得到以上的结果。当然,要注意利用一下 ()*0()U u y dy δ δδ-=?

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述 几何体划分网格之前需要确定单元类型。单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。 2.单元分类 选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不同的分类方法,上述单元可以分成以下不同的形式。 3.按照维度进行单元分类 根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。 一维单元的网格为一条直线或者曲线。直线表示由两个节点确定的线性单元。曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。 二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸。这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示。在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。 4.按照插值函数进行单元分类 根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。 线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面。这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模。但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。

基于GIS的高质量约束Delaunay三角网格剖分

第26卷 第5期2010年9月地理与地理信息科学 Geog ra phy and Geo-Infor matio n Science V ol.26 N o.5September 2010 收稿日期:2010-04-21; 修订日期:2010-06-10 基金项目:国家自然科学基金重点项目(50839001);国家自然科学基金项目(50874021、50779006);辽宁省高等学校科研项目计划(L20100321) 作者简介:赵晓东(1969-),男,博士,教授,从事GIS 在采矿、岩土工程应用和水动模型耦合的研究。E-mail:xdong.zhao@https://www.sodocs.net/doc/e715590787.html, 基于GIS 的高质量约束Delaunay 三角网格剖分 赵晓东1 ,晏小宝1 ,沈永明2 ,王 亮 2 (1.大连大学院士创业园中日地层环境科学研究中心,辽宁大连116622;2.大连理工大学海岸和近海工程国家重点实验室,辽宁大连116023) 摘要:在分析现有非结构化网格剖分算法的基础上,提出了一种GIS 支持下的改进分治算法实现约束Delaunay 三角网格剖分。该方法利用了GIS 的空间拓扑关系对算法输入数据进行预处理,基于三角形的统一数据结构实现了网格细化,对输出剖分网格进行准确的拓扑和约束条件的检查,并基于推进阵面算法思想,结合空间邻近拓扑关系实现了三角剖分节点和网格的重新编号,方便了实际问题中开边界条件的赋值,提高了计算效率。实例应用表明,该方法大大简化了数值模型非结构化网格剖分的前处理过程,集成了几种综合算法的优点,在保证原分治算法时间复杂度的基础上,提高了约束条件下Delauna y 三角网格生成的质量。关键词:网格剖分;GIS;约束Delaunay 三角剖分 中图分类号:P208 文献标识码:A 文章编号:1672-0504(2010)05-0024-05 0 引言 在应用有限元、有限差分和有限体积法对力学问题进行数值计算的前处理中,网格自动剖分占有重要的位置。目前,实现网格剖分的算法很多,而且不断有新的算法推出,其相关研究领域不仅针对数值模拟计算,对GIS 数据表达、地学分析、计算机视觉、表面目标重构等众多领域也是一项重要的应用技术[1-3]。网格剖分可分为结构化网格(Structured Gr id)和非结构化网格(Unstructured Grid)两种。非结构化网格易于控制网格单元大小、形状及网格点位置,可以实现合理分布网格的密度,提高计算精度,因此具有比结构化网格更大的灵活性和对复杂边界更强的适应性。生成二维非结构化网格的常用方法[4]有四叉树法(Quadtr ee)、Delaunay 三角剖分法(Delaunay T riangulation,DT)和推进阵面法(Ad -v ancing Fr ont M ethod,AFM)以及几种方法的综合和改进。由于Delaunay 三角网是Vor ono i 图的直线对偶图,具有空外接圆和最大最小角特性,还可以尽可能地避免病态三角形的出现,实现约束条件下的三角剖分,因此,在数值计算非结构化网格剖分和GIS 三角网(T IN)的数据格式表达中广泛使用。 目前常见的构建Delaunay 三角网的算法有:分治算法(Div ide -and -conquer )、逐点插入算法(Incre -m ental Insertio n)、生长算法和扫描线算法(Sw eep -line)[3,5-7],其中以分治算法效率最高,时间复杂度 为O(N logN)[5]。由于实际的不同需要,除几何约束条件外,对三角剖分的角度、大小和节点物理量的控制也都有相应约束,目前的剖分算法尚不能满足以上全部约束条件进行剖分。本文基于改进的分治 算法,提供了梯度变化和针对实际问题的单元和节点重编号,并利用GIS 强大的空间数据处理和分析功能对算法做数据前后处理,保证了高质量约束Delaunay 三角网格剖分的生成。 1 约束Delaunay 三角化方法 分治算法[5]的基本思路是把输入点集分割为数个较小的点集,在各个子点集内生成小三角网,再逐级合并的一个递归过程。子点集最终只有两点或者三点,形成一条边、共线边或者三角形。算法必须将点集连接为凸区域(凸壳),对凹区域和多连通区域会产生域外三角形,无法保证约束边的存在。约束Delaunay 三角化的分治算法的关键过程及实现方法如下。 1.1 点集划分 原分治算法只有Y 轴方向的分割,这里改进为交替分割[8],即点域X 轴方向的长度大于Y 轴方向的长度,则以X 轴方向对半分割点集,否则以Y 轴方向对半分割点集。该过程为递归调用的分割过程。 1.2 约束特征线重构 在Delaunay 三角剖分上,采用逐次加入约束特

有限元网格划分和收敛性

一、基本有限元网格概念 1.单元概述几何体划分网格之前需要确定单元类型。单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。 2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。根据不同的分类方法,上述单元可以分成以下不同的形式。 3.按照维度进行单元分类根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。一维单元的网格为一条直线或者曲线。直线表示由两个节点确定的线性单元。曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。 二维单元的网 格是一个平面或者曲面,它没有厚度方向的尺寸。这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。采用薄壳单元通常具有相当好的计算效率。

三维单元的网格 具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示。在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。 4.按照插值函数进行单元分类根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面。这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模。但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。 二次单元的插值

相关主题