搜档网
当前位置:搜档网 › 水平井井眼轨迹控制误差分析

水平井井眼轨迹控制误差分析

水平井井眼轨迹控制误差分析
水平井井眼轨迹控制误差分析

Mine Engineering 矿山工程, 2016, 4(4), 144-148

Published Online October 2016 in Hans. https://www.sodocs.net/doc/a112691938.html,/journal/me https://www.sodocs.net/doc/a112691938.html,/10.12677/me.2016.44022

文章引用: 张瑞平, 高飞, 许倩, 郑红军, 蒋天涯, 苗青. 水平井井眼轨迹控制误差分析[J]. 矿山工程, 2016, 4(4):

Error Analysis of Horizontal Well Path Control

Ruiping Zhang 1, Fei Gao 2, Qian Xu 1, Hongjun Zheng 1, Tianya Jiang 1, Qing Miao 1

1CNPC Xibu Drilling Directional Drilling Technology Services Company, Urumqi Xinjiang 2

Xinjiang Oil Field Co. Development Corporation, Karamay Xinjiang

Received: Sep. 30th , 2016; accepted: Oct. 14th , 2016; published: Oct. 19th , 2016

Copyright ? 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.sodocs.net/doc/a112691938.html,/licenses/by/4.0/

Abstract

With many new directional wells and horizontal wells (such as Multilateral wells, Cluster wells, ERW, SAGD, Fire Flooding wells) application, the geological environment is becoming more com-plex. The accuracy requirement of monitoring and controlling the trajectory of horizontal well in drilling is higher and higher, especially in the old wells and ultra dense marginal reservoirs wells. Due to the environment, the precision of the instrument, the change of the magnetic field, and so on, the influence of the factors on the measuring instrument in the measuring process is measured. So there is deviation between the real drilling trajectory and design trajectory. By recognizing the importance of measuring instrument error on trajectory control, this error can be reduced in slim hole trajectory control, and it also can improve the control precision of the well trajectory. It can reduce the risk of well drilling and improve the accuracy of the target. It has great realistic signi-ficance to field operation.

Keywords

Trajectory Control, Horizontal Well, Measurement Error, SAGD

水平井井眼轨迹控制误差分析

张瑞平1,高 飞2,许 倩1,郑红军1,蒋天涯1,苗 青1

1中国石油西部钻探定向井技术服务公司,新疆 乌鲁木齐 2

新疆油田公司开发公司,新疆 克拉玛依

Open Access

张瑞平等收稿日期:2016年9月30日;录用日期:2016年10月14日;发布日期:2016年10月19日

摘要

随着诸多新型定向井、水平井(如分支井、丛式井、大位移井、绕障井、SAGD水平井、火驱井等井型)的应用,所钻遇的地质环境日趋复杂,在井眼密集的老区和超薄边际油层钻井中,对水平井井眼轨迹监测与控制的精度要求越来越高。由于随钻测量仪器在测量过程中由于受到环境、仪器精度、磁场变化等因素影响,实钻井眼轨迹就会与设计轨道产生偏差。认识测量仪器误差对轨迹控制的重要性,减小井眼轨迹控制的误差,提高井眼轨迹的控制精度,可以有效降低井眼防碰的风险,也可以提高水平井的中靶精度,对水平井的现场施工具有重要的指导意义。

关键词

轨迹控制,水平井,测量误差,SAGD

1. 前言

随着石油钻井业的飞速发展,油气田勘探开发的不断深入,定向井、水平井成为目前石油勘探开发的最主要开采方式,定向井钻井技术作为实用而且有效的钻井方法,在钻井工程中得到了快速的发展。但井眼在地表之下,无法用肉眼进行观察,只能间接的通过测量仪器对井眼轨迹进行测量,通过分析计算测量的数据了解到井下的情况。近年来,虽然随钻测量技术、测井技术得到了快速发展,一定程度上提高了实钻轨迹的控制精度,但随钻测量仪器在测量过程中由于受到环境、仪器精度、磁场变化、测量仪器位置以及最后对数据的计算方法等因素影响[1],实钻井眼轨迹就会与设计轨道产生误差。

实际钻出的定向井、水平井井眼轨迹是一条空间曲线,轨迹某点测量数据包括井深、井斜角、方位角3项基本参数;把相邻两测点间井眼轨迹假设不同曲线形式,使用相应的数学计算方法[2],计算出实钻井眼轨迹。由于假设条件和数学算法的不同,到目前为止,国内外已经提出的轨迹计算方法有20多种,所有这些方法的计算结果都不一致,且没有一种计算方法可以完全准确地计算出真实的井眼轨迹曲线。目前国内普遍使用轨迹计算方法是最小曲率法和圆柱螺线法。

实钻轨迹中测量取得参数中井斜角和方位角是测量的关键参数。方位角在水平井轨迹控制中扮演着重要的角色。方位角是靠磁性测斜仪测量出,为了监测和控制井眼轨迹,必须将井眼轨迹归算到同一个坐标系内,这将涉及到磁偏角和子午线收敛角。假设某油田的子午线收敛角为2?,这对于水平位移为1000 m的水平井,如果钻井中不考虑子午线收敛角的影响,实钻井眼轨迹的在水平方向上将会产生超过34.9 m 的偏差。由于实钻井眼轨道的误差,可能发生井眼相碰或不能钻达设计目的油气藏,导致钻井事故发生或钻穿油气层。

2. 特殊井对轨迹控制技术要求

SAGD水平井:SAGD井组对轨迹控制要求:生产井(P井)A点垂深以上20~30 m,要求井斜角不得超过60?,狗腿度小于3?/30m;注气井I井在水平段开始就与已完钻的P井的轨迹平行垂向距离始终控制在5 m (误差±0.5 m),水平方向偏移量控制在±1 m。

火驱油:火驱井轨迹控制技术要求是:水平井水平段靶区B点与直井间距离在3 m以内且不能打穿。

“U”型井:轨迹控制技术要求是:实现水平井与直井(洞穴井)的连通。

张瑞平 等

3. 井眼轨迹控制的误差分析

现场获得实钻井眼轨迹[3]的操作分为两个步,第一步是测斜,测出井眼轨迹上多个点的测斜数据;第二步是计算,把测斜数据输入轨迹计算软件,计算出井眼轨迹曲线。下面主要分析在测斜过程中,导致测量数据出现误差,以至于对井眼轨迹控制的影响。

3.1. 测斜仪器精度的影响

测斜仪器因工作原理、制造工艺和功能不同而影响仪器精度误差,仪器自身系统误差是普遍存在且无法被消除的。无论是MWD 、电子多点还是陀螺仪器都存在此项误差。因各类测斜仪器精度不同的影响,所产生的测量误差也会不同。表1介绍了目前公司常用的几种仪器精度对比。

3.2. 方位角的影响及校正

在钻井中,井眼轨迹方向在水平面上的投影与磁北方向之间的夹角为方位角。由于存在不同的基准,所以有不同的方位角。目前,在施工现场定向井、水平井的井口、目标靶区位置几乎都是用高斯投影坐标来表示的,所以用于轨迹计算的方位角必须以网格坐标为参照。在使用磁性测斜仪测量数据时,测得的方位角需要对磁偏角和子午线收敛角[4]进行校正才能参与井眼轨迹的计算。方位角的校正公式为:

s ??δγ=+? 式中:?——经过校正之后的方位角;s ?——磁性测量仪器测得的方位角;δ——磁偏角;γ——子午收敛角。

磁偏角和子午收敛角都是随着时间和地区的不同在变化的动态值。当前方位的磁偏角校正已经在我国各油田普遍推行,而子午收敛角的校正在某些油田仍然被忽略。如一口定向井设计水平位移为1500 m ,靶区半径为25 m ,该井所在位置的子午收敛角为1?,而在现场轨迹控制过程中,对方位角只进行了磁偏角较正,没有进行子午收敛角校正,以致计算出的井眼轨迹在靶点处的误差将达到26.2 m ,将很难命中靶区。因此进行子午收敛角校正是非常必要的,该对水平位移越大的井,越是重要。

3.3. 磁干扰

磁性测斜仪器如果测斜环境磁场受到干扰,测出的方位角和磁性工具面不能够真实反映实钻轨迹。要想得到准确的测量数据,就必须要使得测量仪器处于一个没有磁场干扰的环境。施工现场磁干扰影响因素有:1) 仪器和套管距离太近,仪器探管距常规钻具太近;2) 地层含磁性矿物质,如钻遇含有磁铁矿地层时;3) 邻井套管的影响;4) 钻具在地磁场作用下发生磁化。

在定向钻井现场使用无磁钻铤或者钻杆来保证测量仪器处在无磁环境之中,减少来自外界磁场的干扰。磁干扰防范措施:1) 探管在无磁钻挺中处于合适位置;2) 对照行业标准SY/T5619-1999《定向井下部钻具组合设计方法》[5],根据测量井段的井斜角和方位角来选择无磁钻挺的长度,从而降低钻具产生的磁场环境对测量探管的磁干扰。

Table 1. MWD instrument accuracy comparison table 表1. 常用的几种仪器精度对比表

序号 仪器类型 测量精度

井斜精度 方位精度 工具面精度

1 电子单多点 ±0.

2 ±1 ±1.5 2 海蓝48R ±0.1 ±1 ±1

3 哈里伯顿FEWD ±0.2 ±1 ±1.5

4 恒泰MWD ±0.2 ±1 ±1.

5 5

GE-MWD

±0.1

±0.25

±0.25

张瑞平等3.4. 测量仪器不对中误差的影响

在井眼轨迹测量中,如果使用测井仪器在裸眼中测量,由于仪器外径比井眼的直径小很多,探管总是靠在井壁的一侧,而实钻的裸眼井壁是不规则,此时测量得到的井眼轨迹参数会出现较大的误差。

仪器轴线与井眼轴线不重合的相对位置呈现随机性,其所引起的轴线对中误差也就表现为随机误差[6]。这种随机误差相对其它轨迹测斜误差因素,仪器不居中产生的误差相对较小。

现场施工中通过安放稳定器增加钻具居中度,同时在仪器串中加入扶正器并且要胶翼完好,保证仪器在钻具中的居中,降低仪器不对中带来的误差。虽然仪器不对中带来的误差较小,在大井眼中施工仪器的不对中可能会产生较大的误差,所以在大井眼水平井的施工要重视此项误差对轨迹的影响。

3.5. 测深误差的影响

导致测深取值出现误差的主要原因为;钻柱或是电缆的伸缩造成的;也有可能是人为的操作不当造成的。例如在使用随钻测斜仪随钻跟踪测斜时,根据仪器零长值计算测深位置出现误差,该点测深误差引起的井眼轨迹不确定性,与井段的井眼曲率大小有关。井段内的井斜角和方位角的变化越大,测点井深误差引起的井眼轨迹误差也就越大。对于浅层定向井、水平井此项误差影响较小。

考虑钻具自身重量的影响,根据胡克定律

公式:

2

2

wL

EF δ=

式中:δ——钻具总伸长量,m;

L——钻具总长,m;

w——钻具每米产生的拉力,N/m;

E——钢材的弹性模量,N/cm;

F——钢材的截面积,cm。

根据资料表明,但对于一口完钻井深4500 m左右的直井,考虑上述因素,钻具伸长可高达10 m左右,相当于多打了一个单根长度。同时,测量误差对井眼轨迹不确定性的影响,是随着测点数量增多而叠加的过程,即存在误差的测斜点数量越多,由计算得到的井眼轨迹误差就越大,在井眼轨迹的末端误差最大。

4. 结论及认识

1) 进行磁偏角校正,重新测绘作业区域磁场强度和磁偏角,重新绘制作业区域磁偏角分布图。油田进入开发中后期,对磁偏角和子午线收敛角的校正必须引起足够重视。

2) 现场使用的测斜仪器探管必须进行定期校验,从而保证测量精度满足轨迹的要求,在仪器使用过程中随时关注仪器Gt值和磁场强度值的变化。

3) 在新疆油田风城重油SAGD井组施工中为了减小测量误差,施工中通过选用两根无磁钻杆并且合理选择高精度探管与常规钻具的位置来降低磁干扰增加测量精度。磁导向系统[7]用于SAGD水平井能够满足两井的井眼轨迹控制要求,实现上下两井水平段的水平度和平行度的精准控制。

4) 根据测量井段的井斜角和方位角,来合理选择无磁钻铤的长度以及仪器探管所在位置。

5) 仪器精度误差、人员操作水平、环境等影响因素是客观存在的,这就决定了测量计算轨迹与实际的井眼轨迹会有一定的误差,控制这些误差在允许的范围内,是定向井技术服务追求的目标。

6) 现场导致井眼轨迹位置出现误差的因素有很多,这些误差因素总是存在于井眼轨迹的测斜与计算

张瑞平等

过程中。事实上目前还没有办法去获取绝对准确的井眼轨迹。在水平井井眼轨迹的控制过程中,必须考虑到井眼轨迹的不确定性以及轨迹误差的范围,对于油田的高效开发至关重要。

参考文献(References)

[1]刘修善. 井眼轨道几何学[M]. 北京: 石油工业出版社, 2006.

[2]刘永旺, 管志川, 石玉才, 等. 井眼防碰技术存在的问题及主动防碰方法探讨[J]. 石油钻采工艺, 2011, 33(6): 14-

18.

[3]董本京, 高德利. 井眼轨迹不确定性分析方法的探讨[J]. 天然气工业, 1999, 19(4): 59-63.

[4]韩志勇. 关于子午线收敛角校正问题[J]. 石油钻探技术, 2006, 34(4): 1-4.

[5]国家石油和化学工业局. SY/T 5619-1999定向井下部钻具组合设计方法[S]. 北京: 石油工业出版社, 1999.

[6]陈炜卿, 管志川, 赵丽. 井眼轨迹随钻测量中的测斜仪器不对中随机误差分析[J]. 中国石油大学学报(自然科学

版), 2006, 30(2): 41-44.

[7]杨明合, 夏宏南, 屈胜元, 等. 磁导向技术在SAGD双水平井轨迹精细控制中的应用[J]. 钻采工艺, 2010, 33(3):

12-14.

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.sodocs.net/doc/a112691938.html,/Submission.aspx

期刊邮箱:me@https://www.sodocs.net/doc/a112691938.html,

三维多靶点井眼轨迹控制技术

三维多靶点深井轨迹控制技术 一、概况 QK18-2油田位于歧口区块,大大小小的断层很多,地层相当复杂。QK18-2油田分北块、南块、中块,主要钻探沙河街的油层,平台结构3X4,间距2.0X2.3m,结构北角358.9度,井身剖面全部为三维多靶点定向井,方位最大变化68度,井斜最大变化35.86度。平均井深3515.64米,最深井深3938.42米,靶区半径控制范围:50m。QK18-2平台分两次批钻方式,第一批钻5口井,第二批钻7口井。QK18-2平台全部钻三维定向井的第一个丛式井平台,是丛式井集束作业难度最大的一个平台之一。 二、井身设计 第一类定向井(P3、P4、P6):平均井深在3247米左右,目的层为沙河街。 井身结构:17-1/2”井眼+12-1/4”井眼+8-1/2”井眼 第二类定向井(P1、P8):平均井深在3919米左右,目的层为沙河街。 井身结构:26”井眼+17-1/2”井眼+12-1/4”井眼+8-1/2”井眼 四、平台槽口图和井位图

五、项目难点 1、深井作业安全问题。 2、克服摩阻,保证滑动钻进。 3、二次造斜,二次造斜点深,是否容易造斜,是否滑得动。 4、合理优化轨迹。 六、施工思路 大位移三维多靶点定向井最大的困难是如何克服摩阻,保证滑动钻进和井眼轨迹合理控制。在井眼轨迹需要调整时,能够及时的调整,如果各方面原因不能调整时,怎样合理的把困难有效的克服,顺利中靶,是我们工作的重点。 1、总结本地区各地层的漂移规律,合理利用地层的自然漂移规律,达到有效控制井眼轨迹的目的。 2、裸眼井段长,摩阻大,扶正器托压严重,不能滑动钻进时,在轨迹控制不失控的情况下,合理利用井身结构,把困难转移到下一个井段或改变钻具组合。 3、合理选择第二造斜点,合理选择造斜率。 4、从始至终,要准确的预测井眼轨迹。 5、合理选择马达弯角,使之能够满足井眼轨迹控制的需要。 6、优化井眼轨迹,降低作业难度。 七、井眼轨迹控制 下面以P8井为例介绍井眼轨迹控制技术,中间穿插其它井遇到特殊情况下的轨迹控制:1、26"井眼轨迹控制 26"井眼主要任务是防斜打直,做好防碰扫描。利用大钟摆钻具,轻压吊打,钻进至208米,投测多点起钻。钻井参数控制:钻压:0.5~2.5吨;排量:4200升/分;转速:80转/分;平均机械钻速:62.45米/小时。 2、17-1/2"井眼轨迹控制 钻具组合:17-1/2"PDC+9-5/8"AKO(1.5)+16-1/2"STB+8"F/V+8"NMDC1+8"MWD+8"NMDC1 +7-3/4"(F/J+JAR)+X/O+5"HWDP13 P8井17-1/2"井眼造斜,造斜点248米,按照设计轨迹开始造斜,平均机械钻速45米/小时,钻进至683米造斜结束。反扭角20~40度。17-1/2"井眼主要在平原组和明化段,可钻性好,钻进至1213米17-1/2"井眼结束。井眼轨迹控制较困难: 1)17-1/2"井眼的欠扶正器尺寸选择有限,只有16-5/8"和16-1/2"两种,几乎没有选择的余地。 2)降斜率0.5~1度/30米,漂移率0.4~1.5度/30米。 3)裸眼井段长,滑动困难。裸眼井段超过600米之后,摩阻大,钻具托压严重。 3、12-1/4"井眼轨迹控制 钻具组合: 12-1/4"PDC+9-5/8"AKO(1.15)+11-1/4"STB+8"F/V+8"NMDC1+8"MWD+8"NMDC+7-3/4"(F/J +JAR)+X/O+5"HWDP10 P8井三维多靶点定向井,12-1/4"井眼主要控制好井斜、方位,越靠近设计轨迹越好。轨迹控制原则是,12-1/4"井眼稳斜稳方位,把二次造斜点推迟到8-1/2"井眼,降低作业时间。轨迹控制原则从始而终贯穿12-1/4"井眼。12-1/4"井眼完钻原则是进入东营组50米下9-5/8"套管。明化镇地层的漂移规律:降斜率为0.2~0.5度/30米,漂移率-0.2~0.3度/30米;进入馆陶组,降斜率为0.1~0.3度/30米,馆陶底部井斜有微增斜趋势,增斜率0.1~0.5度/30米;方位较稳定。馆陶底部有微增斜趋势后,滑动钻进非常困难,这也是使用PDC钻头的缺点,采取划眼和降低钻压的方法控制井眼轨迹。12-1/4"井眼的困难是裸眼井段长,滑动困难,必

井眼轨道设计与轨迹控制培训教材习题集

井眼轨道设计与轨迹控制培训教材习题集 四、简答题 1. 井眼轨迹的基本参数有哪些?为什么将它们称为基本参数? 答:井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置。 2. 方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二 者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 3. 水平投影长度与水平位移有何区别?视平移与水平位 移有何区别?答:水平投影长度是指井眼轨迹上某点至井口的长度在水平

面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。 视平移是水平位移在设计方位上的投影长度。 4. 狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹 角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 5. 垂直投影图与垂直剖面图有何区别? 答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6. 为什么要规定一个测段内方位角变化的绝对值不得超 过180 实际资料中如果超过了怎么办? 答:因为假设一个测段内方位角沿顺时针变化超过180° 时,沿逆时针其变化则小于180°,所以一个测段内方位角变化的绝对值不得 超过180°。实际资料中超过了,则可用如下方法计算: 当4- 4-1 > 180°时, △①i =O i -①i-1 -360 当①i-①i-i v -180 o时, △①i=O i-①i-i +360 o 7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要

水平井

水平井 无论是定向井,还是水平井,控制井眼轨迹的最终目的都是要按设计要求中靶。但因水平井的井身剖面特点、目的层靶区的要求等与普通定向井和多目标井不同,在井眼轨迹控制方面具有许多与定向井、多目标井不同的新概念,需要建立一套新的概念和理论体系来作为水平井井眼轨迹控制的理论依据和指导思想。在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。 地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是: 井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。 对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中、或滞后。 实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是:①实钻轨迹点的位置超前,?相当于缩短了靶前位移。此时若井斜角偏大,会使稳斜钻至目的层所产生的位移接近甚至超过目标窗口平面的位置,必将延迟入靶,且往往在窗口处脱靶。②轨迹点位置适中,?若此时井斜角大小也适中,是实钻轨迹与设计轨道符合的理想状态。但若井斜角大小超前过多,往往需要加长稳斜段,可能造成延迟入靶,或在窗口处脱靶。③轨迹点的位置滞后,?相当于加长靶前位移。此时若井斜角偏低,就需要提高造斜率以改变待钻井眼垂深和位移增量之间的关系,往往要采用较高的造斜率而提前入靶。 实践表明,控制轨迹点的位置接近或少量滞后于设计轨道,并保持合适的井斜角,有利于井眼轨迹的控制。点的井斜角偏大可能导致脱靶或入靶前所需要的造斜率偏高。实际上,水平井造斜段井眼轨迹控制也是轨迹点的位置和矢量方向的综合控制,这对于没有设计稳斜调整段的井身剖面更是如此。在实际井眼轨迹控制过程中,我们根据造斜段井眼轨迹控制的新概念和实钻轨迹点的位置、点的井斜角大小对待钻井眼轨迹中靶的影响规律,将造斜井段井眼轨迹的控制程度限定在有利于入靶点矢量中靶的范围内。也就是说,在轨迹预测计算结果表明有余地、并有后备工具条件时,应当充分发挥动力钻具的一次造斜能力,以提高工作效率,减少起下钻次数。

井眼轨道设计及监控软件的开发_王慕玮

第24卷 第12期2008年6月 甘肃科技 Gansu S cience and Technolo gy Vol.24 N o.12 J un. 2008井眼轨道设计及监控软件的开发 王慕玮1,范海燕2 (1.新疆油田公司井下作业公司,新疆克拉玛依834000;2.新疆油田公司装备处,新疆克拉玛依834000) 摘 要:W PM S井眼轨道设计及监控软件实现了井眼二维轨道和三维轨道设计模型的统一,轨道设计参数关系明确,剖面类型任意组合,采用解析法对设计参数精确求解,且能任意求解轨道设计参数,克服了以往在三维井眼轨道设计中利用数值法等难以求解的缺点,能在极短时间之内设计出合理的井眼轨道。满足定向井、水平井、侧钻井、分支井及多目标井等各种类型的井眼轨道设计和随钻轨道设计的需要。 关键词:水平井;井眼;轨迹;设计;监控 中图分类号:T E242 1 井眼轨道的设计 1.1 二维井眼轨道模型 典型的二维井眼轨道形式如图1,二维井眼轨道设计一般模型如图2所示。(所有图进单栏,排版时将此句删掉) 设计模型不仅包含了常规的三段制(J型),五段制(S型)和双增型轨道,而且还可令直线段长度为零,由此组成多种轨道剖面型式。具有8个轨道设计变量,任意给定6个参数,即可判定方程是否含有解。在有解的情况下,可唯一确定另外2个设计参数。对8个变量,任选2个进行求解组合,可得到28种求解方式。 应用所建立的二维经验轨道设计模型和求解公式,开发了井眼轨道设计软件。在设计时,可作到灵活,快速,精确的设计,能满足用户多种设计需求,在实践中得到了很好的应用,同时也验证了模型的正确性和有效性。 1.2 三维井眼轨道模型 三维井眼轨道设计模型如图3。

钻井工程:第五章井眼轨道设计与轨迹控制.

第五章井眼轨道设计与轨迹控制 1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08 答: 井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。 2.方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 3.水平投影长度与水平位移有何区别?视平移与水平位移有何区别? 答: 水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。 视平移是水平位移在设计方位上的投影长度。 4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同? 答: 狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 5.垂直投影图与垂直剖面图有何区别? 答: 垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6.为什么要规定一个测段内方位角变化的绝对值不得超过180 ?实际资料中如果超过了怎么办? 答: 7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测点计算有什么关系? 答: 测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E坐标增量和井眼曲率;对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、N坐标、E坐标、视平移)和两个极坐标(水平位移、平移方位角)。

水平井井眼轨迹控制

水平井井眼轨迹控制 第一章水平井的分类及特点 (2) 第二章水平井设计 (4) 第三章水平井井眼轨迹控制基础 (8) 第四章水平井井眼轨迹控制要点 (13) 第五章水平井井眼轨迹施工步骤 (21)

第一章水平井的分类及特点 水平井的概念:是最大井斜角保持在90°左右(大于86°),并在目的层中维持一定长度的水平井段的特殊井(通常大于油层厚度的6倍)。 一、水平井分类 二、各类水平井工艺特点及优缺点

三、水平井的优点和应用 1、开发薄油藏油田,提高单井产量。

2、开发低渗透油藏,提高采收率。 3、开发重油稠油油藏,有利于热线均匀推进。 4、开发以垂直裂缝为主的油藏,钻遇垂直裂缝多。 5、开发底水和气顶活跃油藏,减缓水锥、气锥推进速度。 6、利用老井侧钻采出残余油,节约费用。 7、用丛式井扩大控制面积。 8、用水平井注水注气有利于水线气线的均匀推进。 9、可钻穿多层陡峭的产层。 10、有利于更好的了解目的层性质。 11、有利于环境保护。 第二章水平井设计 一、设计思路和基本方法: 简而言之,就是“先地下后地面,自下而上,综合考虑,反复寻优”的过程。

二、水平井靶区参数设计 与定向井不同,水平井的靶区一般是一个包含水平段井眼轨道的长方体或拟柱体。靶区参数主要包括水平段的井径、方位、长度、水平段井斜角、水平段在油藏中的垂向位置、靶区形状和尺寸。 1、水平段长度设计 设计方法:根据油井产量要求,按照所期望的产量比值(即水平井日产量是临近直井日产量的几倍),来求解满足钻井工艺方面的约束条件的最佳水平段长度值。约束条件主要有钻柱摩阻、扭矩,钻机提升能力,井眼稳定周期,油层污染状况等。 2、水平段井斜角的确定 应综合考虑地层倾角、地层走向、油层厚度以及具体的勘探开发要求。 βα±?=90H ,β为地层真倾角 当地层倾角较大而水平段斜穿油层时,则应考虑地层视倾角的影响,[])cos(90H H d tg arctg Φ-Φ-?=βα, d Φ为地层下倾方位角,H Φ为 水平段设计方位角 3、水平段垂向位置确定 油藏性质决定了水平段的设计位置。对于无底水、无气顶的油藏,水平段宜置于油层中部;对于有底水或气顶的油藏,水平段应尽量远离油水或气水边界;对于既有底水又有气顶的油藏,

水平井轨迹控制技术汇总

SY/T6332 –1997 水平井轨迹控制技术 Bit tyajectory control technology for horizontal well 1 范围 本标准规定了水平井井眼轨迹控制技术的准备、施工、相关安全措施及资料的要求. 本标准适用于长、中半径水平井的施工。其它类型的特殊定向井亦可参照使用。 2 应用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效.所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 SY 5272-91 常规钻进安全技术规程 SY/T 5416-1997 随钻测斜仪测量规程 SY/T 5435-92 两维常规定向井轨道设计与轨迹绘图方法 SY 5472-92 电子陀螺测斜仪测量规程 SY 5547-92 井底动力钻具使用维修和管理 SY/T 5619-93 定向井下部钻具组合设计作法 3 定义 本标准采用下列定义。 3.1 广义调整井段generalized adjusting section

用于调整井眼轨迹的井段。可以是稳斜井段,也可以是曲率较小的增斜井段。 3.2 倒装钻具组合invert BHA 在钻大斜度井段和水平段时,为了给钻头加压,将部分重量较轻的钻具放到钻具组合下部,把钻铤、加重钻杆等较重的钻具放到直井段或较小井斜段的钻具组合。 3.3 中靶预测target prediction 根据实钻井眼轨迹到达的位置及方位,对中靶前待钻井眼的长度、位移、造斜率及方位调整量进行预测。 3.4 有线测量方式wireline survey method 特指在水平井施工中,采用有线测量仪分段测取大斜度或水平段已钻井段的轨迹所需的井斜、方位数据的测量方式。 4 井眼轨迹控制要求 4.1 直井段控制符合井身质量要求。 4.2 实际井眼轨迹到达靶窗时,在规定的靶窗内,其井斜、方位值还要满足在现有轨迹控制能力范围内确保轨迹在靶体中延伸的要求。 4.3 水平段轨迹应在设计要求的靶区范围之内。 5 准备 5.1 工具 5.1.1根据不同类型的水平井分别按附录A(标准的附录)和附录B (标准的附录)的要求准备。 5.1.2井底动力钻具的准备除符合SY 5547 的相关规定外,还应检

井眼轨迹的三维显示

中文摘要 井眼轨迹的三维显示 摘要 本文介绍了国内外井眼轨迹三维显示技术的研究现状,归纳了常规二维定向井轨道设计原则和几种轨道类型的计算方法,以及井眼轨迹测斜计算的相关规定、计算模型假设和轨迹计算方法。从井位、井下测量和计算三个方面对井眼轨迹误差进行了讨论并简要说明了不同的井眼轨迹控制。在此基础之上,利用VB和MATLAB软件编制了井眼轨迹的三维显示软件,并简要介绍了该软件的设计流程、主要功能和难点处理,指出了软件的不足之处,展示了井眼轨迹三维绘图的所有运行界面,并附上软件说明书。最后,对井眼轨迹三维显示开发的研究方向进行了展望。 关键字井眼轨迹三维显示 MATLAB Visual Basic 轨迹计算轨道设计误差分析

重庆科技学院本科生毕业设计英文摘要 Abstract In this paper, at home and abroad well trajectory 3-D display technology of the status quo,Summarized the conventional two-dimensional directional well the track design principles and track several types of calculation method,And the well trajectory inclinometer terms of the relevant provisions, the model assumptions and trajectory calculation. From the wells, underground measurement and calculation of the three aspects of the well trajectory error was discussed and a brief description of the different well trajectory control. On this basis, using VB and MATLAB software produced a hole trajectory of the three-dimensional display software, and gave a briefing on the software design process, and difficulties in dealing with the main function, pointed out the inadequacy of the software, demonstrated the well trajectory 3-D graphics interface all the running, along with software manuals. Finally, the well trajectory 3-D display development direction of the prospect. Keyword:Well trajectory;3-D display;MATLAB ;Visual Basic;trajectory calculation ;trajectory design ;Error Analysis

第六章井眼轨迹设计与控制第一次作业答案

第六章井眼轨迹设计与控制 第一次作业 1、已知某井的几个测段数据如下表所示(测段长均为30m),试计算每个测段的井眼曲率。分别用最小曲率法和空间曲线法计算,并加以对比。 解: 此处前二个测段采用的是最小曲率法,后二个测段的是采用空间曲线法。因此解题并不完整. (1)采用最小曲率法计算前二个测段井眼曲率 由公式:K=cos-1[cosαA cos B+sinαA sinαB cos(φB-φA)]*30/(L B-L A)(°/30m) 并注意到测段长均为30m,可得: 对于第一个测段:K=cos-1[cos35cos38+sin35sin38cos8]*30/30=5.62(°/30m)对于第二个测段:K=cos-1[cos25cos30+sin25sin30cos0]*30/30=5.00(°/30m) (2)采用空间曲线法计算后二个测段井眼曲率 由公式:Δα=αB-αA(°) αV=(αA+αB)/2(°) K=[Δα2+Δφ2sin2αV]1/2/ΔL*30(°/30m) 并注意到测段长均为30m,可得: 对于第三个测段: Δα=15-10=5(°) Δφ=80(°) αV=(10+15)/2=12.5(°) K=[52+802sin212.5]1/2/30*30=18.02(°/30m) 对于第四个测段: Δα=56-60=-4(°) Δφ=79(°) αV=(60+56)/2=58(°) K=[(-4)2+792sin258]1/2/30*30=67.12(°/30m) 答:该四个测段的井眼曲率依次为5.62°/30m、5.00°/30m、18.02°/30m、67.12°/30m。

水平井井眼轨迹

水平井井眼轨迹控制技术 水平井井眼轨迹控制工艺技术是水平井钻井中的关键,是将水平井钻井理论、钻井工具仪器和施工作业紧密结合在一起的综合技术,是水平井钻井技术中的难点,原因是影响井眼轨迹因素很多,水平井井眼轨迹的主要难点是: 1.工具造斜能力的不确定性,不同的区块、不同的地层,工具造斜能力相差较大 2.江苏油田为小断块油藏,油层薄,区块小,一方面对靶区要求高,另一方面增加了目的层垂深的不确定性。 3.测量系统信息滞后,井底预测困难。 根据以上技术难点,需要解决三个技术关键: 1、提高工具造斜率的预测精度。 2、必须准确探明油层顶层深度,为入窗和轨迹控制提供可靠依据。 3、做好已钻井眼和待钻井眼的预测,提高井眼轨迹预测精度。 动力钻具选择 一、影响弯壳体动力钻具造斜能力的主要因素 影响弯壳体动力钻具的造斜能力的主要因素有造斜能力钻具结构因素和地层因素及操作因素三大类。其中主要的是结构因素,其次是地层因素。 (一)动力钻具结构因素影响 1.弯壳体角度对工具造斜率的影响 单双弯体弯角是影响造斜工具造斜能力的主要因素。 在井径一定情况下,弯壳体的弯角对造斜率的影响很大,随着弯壳体角度的增大,造斜率呈非线性急剧增大。 2.弯壳体近钻头稳定器对工具造斜率的影响。 弯壳体近钻头稳定器的有无,对工具造斜率影响很大。如Φ165mm1°15′有近钻头稳定器平均造斜率达到30°/100米,无近钻头稳定器平均造斜率仅为20°/100米左右,相差近50%。 如陈3平3井使1°30′Φ172mm不带稳定器单弯螺杆平均造斜率为25°/100米,井身轨迹控制要求,复合钻进后,滑动钻进,造斜率仅为16-20°/100米。 3.改变近钻头稳定器到下弯肘点之距离对工具造斜率的影响 通过移动下稳定器位置可以改变近钻头稳定器至下肘点之距离。上移近钻头稳定器可大大提高工具的造斜能力,并且在井径扩大程度较大的情况下,造斜能力的上升幅度比井径扩大较小时要大。 (二)松散地层对工具造斜率的影响 据分析可知,下部钻具组合的造斜能力主要取决于钻头侧向力,而钻头侧向力来源于近

水平井轨迹控制技术

–1997 水平井轨迹控制技术 Bit tyajectory control technology for horizontal well 1 范围 本标准规定了水平井井眼轨迹控制技术的准备、施工、相关安全措施及资料的要求. 本标准适用于长、中半径水平井的施工。其它类型的特殊定向井亦可参照使用。 2 应用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效.所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 SY 5272-91 常规钻进安全技术规程 SY/T 5416-1997 随钻测斜仪测量规程 SY/T 5435-92 两维常规定向井轨道设计与轨迹绘图方法 SY 5472-92 电子陀螺测斜仪测量规程 SY 5547-92 井底动力钻具使用维修和管理 SY/T 5619-93 定向井下部钻具组合设计作法 3 定义 本标准采用下列定义。 3.1 广义调整井段 generalized adjusting section 用于调整井眼轨迹的井段。可以是稳斜井段,也可以是曲率较小的增斜井段。 3.2 倒装钻具组合 invert BHA 在钻大斜度井段和水平段时,为了给钻头加压,将部分重量较轻的钻具放到钻具组合下部,把钻铤、加重钻杆等较重的钻具放到直井段或较小井斜段的钻具组合。 3.3 中靶预测 target prediction 根据实钻井眼轨迹到达的位置及方位,对中靶前待钻井眼的长度、位移、造斜率及方位调整量进行预测。 3.4 有线测量方式 wireline survey method

特指在水平井施工中,采用有线测量仪分段测取大斜度或水平段已钻井段的轨迹所需的井斜、方位数据的测量方式。 4 井眼轨迹控制要求 4.1 直井段控制符合井身质量要求。 4.2 实际井眼轨迹到达靶窗时,在规定的靶窗内,其井斜、方位值还要满足在现有轨迹控制能力范围内确保轨迹在靶体中延伸的要求。 4.3 水平段轨迹应在设计要求的靶区范围之内。 5 准备 5.1 工具 5.1.1根据不同类型的水平井分别按附录A(标准的附录)和附录B(标准的附录)的要求准备。 5.1.2井底动力钻具的准备除符合SY 5547 的相关规定外,还应检测弯外壳体井下马达的弯曲角度。 5.1.3除反向双弯外壳体井下马达外,其它弯外壳体井下马达的下稳定器推荐采用偏心稳定器。 5.2 测斜仪器 斜测仪器应符合SY/T 5416 和 SY 5472 相关的规定。 5.3 资料 5.3.1 水平井钻井设计。 5.3.2 收集同地区完钻井的有关资料。 6 施工 6.1 直井段 6.1.1 配钻井液开钻。 6.1.2 采用防斜钻具组合钻进。 6.1.3 不允许使用刮刀钻头。 6.1.4 钻进中用单点测斜仪监测井斜、方位,钻完后测量全井段的多点数据。 6.1.5 有磁干扰的井段应使用陀螺测斜仪进行测量。 6.1.6 丛式井直井段作水平局部放大图,及时采取防碰措施。 6.2 定向增斜段 6.2.1 要点 6.2.1.1 定向时,合理确定装置角。 6.2.1.2 参照同地区方位漂移规律合理确定方位提前量。 6.2.1.3 使用随钻测斜仪。在有磁干扰的情况下,采用陀螺测斜仪。6.2.1.4 施工中,根据测量数据及时作出实钻轨迹图,与设计轨道进行对比,指导井眼轨迹控制。

钻井工程井眼轨道设计与轨迹控制

. 第五章井眼轨道设计与轨迹控制 1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08 答: 井眼轨迹基本参数包括:井深、井斜角、井斜方位角。这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。 2.方位与方向的区别何在?请举例说明。井斜方位角有哪两种表示方法?二者之间如何换算? 答: 方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上)。 方位角表示方法:真方位角、象限角。 方位线位置真方位角与象限角关系 真方位角=象限角第一象限 真方位角=180°第二象限-象限角 真方位角=180°+象限角第三象限 -象限角360°真方位角=第四象限 水平投影长度与水平位移有何区别?视平移与水平位移有何区别.?3 答:水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段。视平移是水平位移在设计方位上的投影长度。 4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率。 .5 垂直投影图与垂直剖面图有何区别?答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。 6.?实际资料中如果超过了怎么办?180 为什么要规定一个测段内方位角变化的绝对值不得超过答: 测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测7.点计算有什么关系?答:坐标增量和井眼曲率;测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E 坐标、视平移)对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、E坐标、N 和两个极坐标(水平位移、平移方位角)。. .

水平井井眼轨迹控制

水平井井眼轨道控制 班级:采油60901 学号:200962276 序号:4 姓名:蒋凯 指导老师:卢林祝

在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。 一、水平井的中靶概念 地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是: 井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。 二、水平井增斜井段井眼轨迹控制的特点及影响因素 对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。 水平井钻井工程设计中所给定的钻具组合是在一定的理论计算

和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中或滞后。 实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是: ①实钻轨迹点的位置超前,相当于缩短了靶前位移。此时若井斜角偏大,会使稳斜钻至目的层所产生的位移接近甚至超过目标窗口平面的位置,必将延迟入靶,且往往在窗口处脱靶。 ②轨迹点位置适中,若此时井斜角大小也适中,是实钻轨迹与设计轨道符合的理想状态。但若井斜角大小超前过多,往往需要加长稳斜段,可能造成延迟入靶,或在窗口处脱靶。 ③轨迹点的位置滞后,相当于加长靶前位移。此时若井斜角偏低,就需要提高造斜率以改变待钻井眼垂深和位移增量之间的关系,往往要采用较高的造斜率而提前入靶。 实践表明,控制轨迹点的位置接近或少量滞后于设计轨道,并保持合适的井斜角,有利于井眼轨迹的控制。点的井斜角偏大可能导致脱靶或入靶前所需要的造斜率偏高。实际上,水平井造斜段井眼轨迹控制也是轨迹点的位置和矢量方向的综合控制,这对于没有设计稳斜调整段的井身剖面更是如此。 在实际井眼轨迹控制过程中,我们根据造斜段井眼轨迹控制的新

浅析复杂地层钻井井眼轨迹控制技术

云南化工Yunnan Chemical Technology Mar.2018 Vol.45,No.3 2018年3月第45卷第3期 1 井眼轨迹控制技术 我们主要根据某一台井,其中5口定向井以及1口水平井。1)对这6口井来说,其造斜点是比较高的,而且地层比较软,在进行下钻的过程中,倾斜的地方就会非常容易出现由于发生阻碍二采区划眼手段,这样就容易形成新的井眼;2)对于底层的深度大于1000m的井而言,其成岩的性质是比较差的,这时候需要注意防止坍塌现象的出现,并且避免粘附性卡钻;当钻进等操作遇到不是非常平整的面的时候,这时候必须要注意防止倾斜以及防止泄露;3)对于下部地层来说,其地质情况是相对比较复杂的,而且可钻性是非常差的,这样就会容易出现坍塌以及泄露的情况。4)对于目的层而言,其中靶的半径大概是30m,因此对中靶的质量要求还是比较高的,这时候应该对井眼的轨迹进行严格的控制,如果有必要可以对作业的方位进行调整,如果井是比较深的,就必然会将施工难度增加。 2 对钻具组合进行设计 对于从式井钻井的钻具来说,通常采取的就是井下动力钻具,并且根据MWD将钻测量以及动力钻具组合起来提供导向。 对于钻井系统,通常采取的技术就是滑动导向复合钻井技术,不仅可以非常轻松的实现定向以及增斜的目的,还可以轻松的实现稳斜以及降斜的目的。在对井眼轨迹的实际情况进行参考之后可以对轨迹进行必要的调整,这样不仅可以将井的倾斜角降低,将定向速度提升上去,还可以将扭方位的次数降低下去。 3 井眼轨迹控制技术 3.1 直井段 对于定向井以及水平井直井来说,在对井身的轨迹进行控制的主要原则就是防止斜打直。当直井段并不是非常直得时候,钻井过程中钻到造斜点时,在这个地方会存在一定的井斜角,这对定向造斜是不是可以顺利的完成具有直接影响,而且位于上面部分的井斜所产生的位移也会对下一步井身轨迹控制造成一定的影响。如果在造斜点的位移小于零,为了能够满足实际的设计需求,在进行实际的施工过程中应该进行更大的造斜率以及更大的井斜角度;但是如果位移大于零,需要操作的与上述情况相反。如果在造斜点的位移是朝着所设计的方向两侧有所偏移,就会由原来的二维定向井变成三位定向井,而且在接下来的井身轨迹过程中也会产生一定的困难。对于丛式井而言,如果在直井段发生一定的井斜,会非常容易产生由于从式井里面的两口定向井的直井段的井眼发生相互碰撞而产生一定的安全事故,不仅会让新的井眼报废,也会让原来的井眼破坏。如果在直井段防斜打直已经与钻好的井发生相互碰撞时,为了在这种情况也可以顺利进行,通常采取的措施就是通过利用井下动力钻具,MWD随着钻侧斜仪与动力钻具的导向钻井技术相互配合。 3.2 造斜段 对于造斜段而言,其主要的特点就是造斜点比较高,而且地层也是比较软的,在向下钻进的过程中在造斜段会非常容易发生由于遭遇阻碍而采取划眼手段,这时候就会非常容易出现重新钻出来的井眼。因此在进行下钻或者是通井的过程中,如果遭遇阻碍,应该马上采取划眼的方式从而避免出现新的井眼。在进行造斜的过程中通常会采取滑动钻进同旋转钻进相互结合的方式并且缓慢的进行增斜,并且在已经规定好的造斜率进行造斜。为了确保井眼的轨迹是非常平滑的,对造斜率而言所遵循的方式应该是先低后高,对井眼的轨迹进行严格的控制,这样可以减少过大的不平衡情况。 4 结语 当从式井组的井槽位置已经确定以后,相关工作人员可以将位移大的井放在外围,位移小的井放置于内部。对于定向井而言,通常可采用井下动力钻具完成多种滑动导向符合钻井工序,通过上提造斜点、降低井斜角以及提升定向速度等措施延长稳斜段、缩短降斜断。 参考文献: [1] 蒋维.石油钻井工艺技术优化[J].云南化工,2017,44(12):77-78. [2] 党文辉,张文波,刘颖彪,等.金龙2井区复杂地层水平井井眼方 位优化探讨[J].钻采工艺,2015(5):99-101. [3] 何秋延.塔里木油田钻井过程中的安全管理措施[J].云南化 工,2017,44(12):84+86. 收稿日期:2018-1-22 作者简介:边跃龙,中石化中原石油工程有限公司技术公司。 doi:10.3969/j.issn.1004-275X.2018.03.131 浅析复杂地层钻井井眼轨迹控制技术 边跃龙 (中石化中原石油工程有限公司技术公司,河南 郑州 450000) 摘 要:主要针对钻井过程中遇到的一些比较复杂的地层特点以及轨迹控制的难点进行了介绍,对不同井段轨迹数据以及轨迹控制的难点进行了分析、对不同井眼轨迹控制技术进行了研究,还对各项钻井参数进行优化、对井深的轨迹进行了合理的控制,这样可以很好的达到施工标准。因为选择了比较好合适的井眼轨迹控制技术,所以可以很好的将轨迹的控制能力提升上去。 关键词:大位移钻井;底部钻具组合;轨迹控制 中图分类号:TE242 文献标识码:B 文章编号:1004-275X(2018)03-169-01 ·169·

水平井井眼轨迹控制误差分析

Mine Engineering 矿山工程, 2016, 4(4), 144-148 Published Online October 2016 in Hans. https://www.sodocs.net/doc/a112691938.html,/journal/me https://www.sodocs.net/doc/a112691938.html,/10.12677/me.2016.44022 文章引用: 张瑞平, 高飞, 许倩, 郑红军, 蒋天涯, 苗青. 水平井井眼轨迹控制误差分析[J]. 矿山工程, 2016, 4(4): Error Analysis of Horizontal Well Path Control Ruiping Zhang 1, Fei Gao 2, Qian Xu 1, Hongjun Zheng 1, Tianya Jiang 1, Qing Miao 1 1CNPC Xibu Drilling Directional Drilling Technology Services Company, Urumqi Xinjiang 2 Xinjiang Oil Field Co. Development Corporation, Karamay Xinjiang Received: Sep. 30th , 2016; accepted: Oct. 14th , 2016; published: Oct. 19th , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.sodocs.net/doc/a112691938.html,/licenses/by/4.0/ Abstract With many new directional wells and horizontal wells (such as Multilateral wells, Cluster wells, ERW, SAGD, Fire Flooding wells) application, the geological environment is becoming more com-plex. The accuracy requirement of monitoring and controlling the trajectory of horizontal well in drilling is higher and higher, especially in the old wells and ultra dense marginal reservoirs wells. Due to the environment, the precision of the instrument, the change of the magnetic field, and so on, the influence of the factors on the measuring instrument in the measuring process is measured. So there is deviation between the real drilling trajectory and design trajectory. By recognizing the importance of measuring instrument error on trajectory control, this error can be reduced in slim hole trajectory control, and it also can improve the control precision of the well trajectory. It can reduce the risk of well drilling and improve the accuracy of the target. It has great realistic signi-ficance to field operation. Keywords Trajectory Control, Horizontal Well, Measurement Error, SAGD 水平井井眼轨迹控制误差分析 张瑞平1,高 飞2,许 倩1,郑红军1,蒋天涯1,苗 青1 1中国石油西部钻探定向井技术服务公司,新疆 乌鲁木齐 2 新疆油田公司开发公司,新疆 克拉玛依 Open Access

相关主题