搜档网
当前位置:搜档网 › 第三章系统硬件电路设计

第三章系统硬件电路设计

第三章系统硬件电路设计
第三章系统硬件电路设计

第三章系统硬件系统设计

在一只电脑鼠的架构完成前必须先进行硬件的整体规划,如果架构设计略过不做的话,在实际制作中会觉得不知道从何下手,所以一个好的规划是非常重要的,

图为系统硬件架构发展流程图。

一般来说一只完整的电脑鼠主要由机身、电源、传感器、微处理器,人机界面及电机五大部分所组成,在此依照先后制作顺序来一一规划,分别为机身、微处理器、电源、电机、传感器、人机界面。如错误!未找到引用源。所示。各部分概要:

①机身:支撑电脑鼠,以及安放电路板的平台;

②电源:给整个电路提供电压,是电脑鼠动力的来源;

③电机:受微处理器控制使电脑鼠动作;

④传感器:相当于电脑鼠的眼睛,用于感知四周的墙壁情况,以及电脑鼠是否走歪;

⑤人机界面:启动电脑鼠,调节相关参数,并反映电脑鼠当前情况;

⑥微处理器:即电脑鼠的头脑,接受传感器传来的信息,然后经过判断、思考控制电机,同时能够记忆迷宫,并计算最短路径,使电脑鼠能在最短的时间内到达终点。电脑鼠硬件系统设计中的机身部分设计完成后,主要的是硬件电路的设计,主要包括LPC2138最小系统电路设计,电源电路,传感器检测电路,步进电机驱动电路和人机交互的键盘显电路.以下将分别对各个模块电路的原理进行分析,电路中元器件的参数进行计算和电路的最终设计。

图3.1 系统硬件框图

图 3.2 系统硬件电路发展流程

3.1电脑鼠机身设计

机身是电脑鼠最基本的架构,它的设计在电脑鼠的整体规划中占有相当的地位,但却也是最关键的地方。以下将探讨机身设计时所应注意的地方。

有关于机身的设计,原则上整体结构要坚固耐用,材质要轻、重心要低,还有在设计不但要配合各零件的规格,也要符合迷宫的规格,根据规则的规定,比赛中迷宫的每一个单元格都是18cm×18cm的正方形,每一个单元格的墙壁都有1.2cm,也就是说电脑鼠的最大宽度应限定在18-1.2=16.8cm之内。但因为老鼠在迷宫中行走时要有一定的空间裕度,否则稍微有一点不稳定还没来得及调整就会撞在墙壁上,再者为了便于转弯灵活,电脑鼠应该做的尽可能的小,在本文的实际制作中,电脑鼠机身规格为:长12cm,宽8cm,高5cm,用轻制铝合金制作而成。

另外,轮子在整个机身的设计也占有相当的地位.一般来说,轮子分为主动轮和从动轮,主动轮即是电机所带动的轮子,主动轮要有两个,两主动轮之间的距离必须在16.8cm以下才能在迷宫中行走,在本设计中两轮之间的距离设定为11.2cm,安置在机身两侧的中心线上。兼于机身的高度,为了降低重心,保证电脑鼠行使的更稳,我们设计的轮子半径大小约为24mm。从动轮的选择也要注意配合,首先一定要灵活,否则会影响老鼠在行走过程中的姿态,致使控制起来很困难。其次,从动轮个数的选择要恰当,若用两个从动轮,设计精度比较高时则行走非常稳定,尤其是在转弯的时候比单个从动轮要稳定的多,但双从动轮对设计精度的要求非常高,而且不能走不平整的路,三点确定一个平面,若有两个主动轮和两个从动轮,则在设计精度不够的情况下或者是走在不平整的地面上时,会有一个轮子悬空,给控制带来不便;单个从动轮不存在这个问题,因为在任何情况下(除非老鼠飞起来)它都是三点接触地面的,但它在转弯的时候就容易造成误差。

表 3.1电脑鼠轮子设计的优劣对比

在选择方案时,选用的是双主动轮,单从动轮的方案,从动轮使用万向轮,转弯时是通过两个主动轮的差速来达到转弯效果,通过读取传感器来进行及时调整消除单从动轮转动时造成的误差。电脑鼠的机械架构的如图3.3所示:

图 3.3 电脑鼠机身框架图

3.2 LPC2138最小系统设计

微处理器是电脑鼠的大脑,是整个硬件电路设计的灵魂,负责整个硬件电路系统中各个周边电路、元件的协调。

在本设计中,选用了PHILIPS公司的基于ARM7TDMI-S核、单电源供电的LPC2138作为系统的微处理器。对于LPC2138芯片,最小系统需要两组电源、复位电路、晶振电路,P0.14脚接一个上拉电阻禁止ISP功能。LPC2138最小系统原理方框图如图所示。Array图 3.4 LPC2138最小系统原理框图

ARM内核采用精简指令集计算机(RISC)体系结构,具有大量的通用寄存器,指令格式使用统一和长度固定,寻址方式简单,内含2套指令系统(ARM指令集和Thumb指令集)。极低的功耗,适合对

功耗要求较高的应用,如便携式产品。能够提供0.9MIPS/MHz的三

级流水线结构。LPC2138一些主要特性:

(1)小型LQFP64封装的16/32ARM7TDMI-S微控制;

(2)8KB片内静态RAM;

(3)32KB片内Flash程序存储器。128位宽度接口/加速器实现高达60MHz的操作频率;

(4)片内Boot装载程序实现在系统编程(ISP)和在应用编程(IAP)。Flash编程时间:1ms可编程256字节,扇区擦除或整片擦除只需400ms;

(5)EmbeddedICE-RT和嵌入式跟踪接口,可实时调试和高速跟踪执行代码;

(6)2个8路10位A/D转换器共包含8个模拟输入,每个通道的转换时间短至2.44μs;

(7)2个32位定时器(带4路捕获和4路比较通道)、PWM单元(6路输出)和看门狗;

(8)多个串口行接口,包括2个16C550工来标准UART、2个高速I2C接口(400Kb/s)、SPI和具有缓冲作用和数据长度可变功能的SSP;

(9)向量中断控制器。可配置优先级和向量地址;

(10)多达47个可承受5V电压的通用I/O口;

(11)多达9个边沿或电平触发的外部中断引脚;

(12)通过片内PLL可实现最大为60MHz的CPU操作频率;

(13)片内晶体振荡电路支持频率:1~30MHz;

(14)2个低功耗模式:空闲和掉电;

(15)通过外部中断将处理器从掉电模式中唤醒;单电源供电,含有上电复位(POR)和掉电检测(BOD)电路。CPU操作电压为3.0~3.6V。

3.2.1电源电路

LPC2138微控制器的内核和I/O使用同一电源电压,只需单电源3.3V供电。从外部输入5V直流电源,经过C6、C7滤波,然后通过SPX1117M3-3.3将电源稳压至3.3V。当正确连接电源后,POWER灯点亮。LPC2138具有独立的模拟电源引脚V DDA、V SSA,为了降低噪声和出错几率,模拟电源与数字电源应该隔离。图3.5中的L1和L2就是用于电源隔离的元件(将数字电源的高频噪声隔离),一般取10uH。

U1

图 3.5 系统电源电路

SPX1117M3-3.3是Sipex 公司生产的LDO 芯片,其特点为输出电流大,输出电压精度高,稳定性高。SPX1117系列LDO 芯片输出电流可达

800mA ,输出电压的精度在±1%以内,还具有电流限制和热保护功能,可广泛应用在手持式仪表、数字家电和工业控制等领域。使用时,其输出端通常需要一个至少10μF 的钽电容来改善瞬态响应和稳定性。实际电路用了一个4.7μF 的钽电容。 3.2.2 复位电路

由于ARM 芯片的高速、低功耗和低工作电压导致其噪声容限低,对电源的纹波、瞬态响应性能、时钟源的稳定性和电源监控可靠性等诸多方面也提出了更高的要求。本系统中的复位电路使用带I 2C 存储器的电源监控芯片CAT1025JI-30,提高了系统的可靠性。其电路原理如图3.6所示。

图 3.6 系统复位电路

在图3.6中,信号nRST 连接到LPC2138芯片的复位RE SET ———————

,当

复位按键RST 按下时,CAT1025JI-30的RE SET ———————

引脚立即输出复位信号,使LPC2138芯片复位。使用CAT1025JI-30芯片时,其RESET 引脚上的下拉电阻和RE SET ———————

引脚上的上拉电阻都是不能省略的。 3.2.3系统时钟电路

LPC2138可使用外部晶振或外部时钟源,内部PLL 电路可调整系统时钟,使系统运行速度更快(CPU 最大操作时钟为60MHz )。若不使用片内PLL 功能及ISP 下载功能,则外部晶振频率为1~30MHz ,外部时钟频率为1~50MHz ;若使用片内PLL 功能或ISP 下载功能,则外部晶振频率为10~25MHz ,外部时钟频率为10~25MHz 。

在本设计中,使用11.0592MHz 晶振,电路如所示。用11.0592MHz 晶振的原因是使串口波特率更精确,同时能支持LPC2138微控制器芯片内部PLL 及ISP 功能。

C1

30PF C2

30PF

XTAL1

XTAL2

Y1

11.0592MHz

图 3.7 系统时钟电路

3.2.4 JTAG 接口电路

本设计中采用ARM 公司提出的标准20脚JTAG 仿真调试接口,JTAG 信号的定义及与LPC2138的连接如图 所示。

图 3.8 JTAG 接口电路

根据LPC2138的应用手册说明,在RTCK 引脚接一个4.7K 的下拉电阻,使系统复位后LPC2138内部JTAG 接口使能,这样就可以直接进行JTAG 仿真调试。如果用户需要使用P1.26~P1.31作I/O 口,不进行JTAG 仿真调试,则可以在用户程序中通过设置PINSEL2寄存器来使LPC2131内部JTAG 接口禁止。 3.3 电源电路

移动电源的地位在移动式机器人中历来十分重要,可以说是机器人的生命源。移动电源需要同时满足机器人的多种能源需要,如为移动机构提供动力、为控制电路提供稳定的电压和为服务执行模块提供能源等。在移动式机器人领域,一般采用化学电池作为移动电源。理想的电池应该具有十分高的能量密度、能够在放电过程中保持恒定的电压、内阻小以便具有快速放电能力、能够耐高温、可充电以及成本低等。但实际上没有一种电池可同时具备上述优点,这就要求设计人员根据实际任务的需要,选择一种合适的电池。

在该系统中,需要使用12V 、5V 、3.3V 的直流稳压电源,其中,驱动二个步进电机电机使用12V 左右的电源,而LPC2138微处理器及外围器件需要3.3V 电源,其他器件需5V 电源.为简化系统设计,系统配8节电池,通过三端稳压芯片L7805CV 供需要5V 的器件使用,再对5V 电源使用SPX1117M3-3.3降低到3.3V 供ARMLPC2138微处理器及其他部分使用。5V 电源电路加了工作指示灯,并且加了二极管对电路加以保护。通过绿色发光二极管LED1指示电源工作状态,R1为LED1的限流电阻。发光二极管的正常工作电压为1.5V~1.7V ,正常工作电流为10mA ,所以流过R1的电流应为10mA 左右。R1电阻值的计算公式:

Ω

=?-=

-35010

105.153

1R

在本电源电路中,R1选用1K 电阻,C1选用0.01μF 的电解电容滤低频,C2、C17分别选用0.01μF 和10μ的陶瓷电容滤除高频。

W7805是一个典型的三端固定输出正稳压器。三端是指电压输入端、电压输出端和公共接地端。它有稳定电压的作用,只要输入的电压在6V 以上,负载的变化在允许的范围内(输入电压范围+7V~+25V ),它的输出都能够维持稳定的5V 。需要注意的是,由于

流过它的电流很大(大约0.5~1A),元件在使用使温度会很高,所以在使用时需加散热片。

由于各个电源模块之间直接串联增加,使得整个系统的稳定性降低。为此,各个模块之间的通信用光耦隔离,减少串扰,提高稳定性。系统电源电路如图3.所示。

图3.9电源电路

3.4 传感器检测电路

在电脑鼠硬件设计过程中,传感器的选择有着至关重要的作用,电脑鼠通过传感器来认识迷宫这个未知的世界。其原理图如错误!未找到引用源。所示。

图3.10 红外传感器测距原理图

JY043W是收发一体的红外反射式光电管,其实物图和原理图如图所示。在本设计中使用了3个JY043W,分别安装在车身的两侧和前面,左右中间各1个。两侧的前后两端再分别放两个接收头主要用于检测车身是否偏了,需要修正,以及是否有墙;前面的那个用于感测前面的墙壁。

4

1

图 3.11 JY043W的实物图及原理图

该传感器电路参数的设置方法与直流电机测速装置的光电发射接受模块相同,本课题中该传感器使用+5V直流电源供电,R1取值方法如下:发光二极管LED0导通时压降约1.5V,一般发光二极管在电流为3mA的时候就可以起辉发亮,最高可以承受10~12mA甚至更高的电流,故

R1max=

35.1

5-=1.1kΩ,R1

min =

10

5.1

5-=350Ω

为了使发光管发出的红外线强度够大,R1的电阻取330Ω;R2的作用是保护光敏三极管,且保证在光敏三极管导通时,OUT端输出一个接近于0V的低电压,这一点要看三极管导通状况如何,若是深度饱和状态,则R2一般取5K左右即可,若饱和程度不深,则要约10K,而其饱和程度又取决于光敏三极管上接收的红外线的强度。又由于其是反射式的,接收到的红外线强弱与距离又有一定的关系,因此,在R2确定的情况下,OUT的输出电压是与距离成一定的正比例关系,总结如下:

在R1和R2 一定的情况下,距离越远→反射回的光强度越小→饱和程度越低→输出电压越大。为了保证在近距离的时候能够输出较低的电压,R2取值应尽量大,但R2过大时出现的问题是:光敏三极管刚刚进入导通状态,输出电压就马上被拉的很低,没有一个相对较缓的过程。这对于后面进行灵敏度的调节和电机的控制不利。因此,R2的取值要考虑两方面的因素,选用6.8K的电阻,效果还是可以的。

图3.12 传感器检测电路

JY043W输出信号经过LM324运算放大器组成的比较器后,送到LPC2138中进行相应的处理.LM324 是四运放集成电路。它的内部包

含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

每个运算放大器的工作原理一样,在此以第一个为例进行说明。在运算放大器的输入端口对红外传感器的输出值与设定值进行比较,电位器R18用于调节灵敏度,在不同环境、不同光源下必须通过此来调节,以减少误动作的产生。LM324是5V供电,输出端口用R2、R4分压,R3限流,以限制进入LPC2138的电压、电流,保证引脚的正常工作。

3.5 步进电机驱动电路

步进电机的驱动电路有很多种,可以用一片L298来驱动一个步进电机,也有专门的步进电机驱动模块,使用方便.由于步进电机控制本来就非常简单,若增加一个驱动模块势必增加成本和电路复杂度,因此,本课题中采用了最简单的用控制器I/O口来发出控制信号,通过达林顿管电压放大后来控制步进电机的控制电路。其电路图如图3.所示:

图 3.13步进电机驱动电路

ULN2003 是高耐压、大电流达林顿陈列,由七个硅NPN 达林顿管组成。ULN2003的特点如下:ULN2003 的每一对达林顿都串联一个2.7K 的基极电阻,在5V 的工作电压下它能与TTL 和CMOS 电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。ULN2003 工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受50V 的电压,输出还可以在高负载电流并行运行。ULN2003 采用DIP—16 或SOP—16 塑料封装。

为了防止控制紊乱造成电机的损坏,在步进电机和驱动芯片之间

连接了电阻,为了不影响驱动能力,电阻大小为10Ω,在本设计中运用了普通的10Ω电阻,在电机调试的过程中,发现该电阻发烫,说明电阻功率不够,ULN2003的最大输出电流为200mA,则在该电阻上消耗的功率为:P=I2R=0.2*0.2*10=0.4W.故应该至少选择0.5W的大功率电阻。

3.6 人机交互界面

人机交互界面即键盘和数码管显示电路,是人和电脑鼠交流的界面,使人对机器人的运行情况更好的了解,出现意外情况采取相应的对策。通过按键启动电脑鼠开始工作,在数码管上显示当前电脑鼠的速度值和其他参数的数值。

LPC2138拥有一个硬件SPI(Serial Peripheral Interface)接口。它是一个同步、全双工串行接口,最大数据位速率为时钟速率的1/8,可配置为主机或从机。在设计中使用LPC2138的SPI接口作为主机向JP1发送数据。,通过此端口将需要显示的数据的段码和位码信息在SCLK脉冲的控制下分别移入到两片74HC164和74HC595中(段码在74HC164中,位码在74HC595中),之后通过RCLK脉冲送出位码信息完成数据显示。MISO端口是键盘检测口。在该部分的软件设计中先从MOSI端口接收数据输出显示,显示后紧接着查询MISO端口是否为低电平(只有当按键按下,同时对应位码时才为低),如果为低电平则记录送出的位码信息;之后进行第二次循环,显示数据并查询MISO端口。当MISO端口为高电平或低电平时记录的位码信息与上次不相同,则放弃键处理;当两次读MISO端口与低电平记录下的位码信息相同时,进行相应的按键处理操作。人机交互电路图如图3.14所示。

TPIC6B595是8位移位寄存器,是专为需要相对高的负载功率的系统设计的。数据分别在移位寄存器时钟和寄存器时钟的上升沿传输到移位寄存器和存储寄存器。当移位寄存器清零端为高时,存储寄存器传输数据到输出缓冲器。当/SRCLK为低时,输入端的移位寄存器被清零。当输出使能保持为高时,在输出缓冲器中所有的数据保持低电平并且所有的漏极输出是关断的。当/G保持为低时,从存储寄存器到输出缓冲器的数据是透明的。当输出缓冲器中的数据为低电平时,DMOS晶体管的输出端是关断的。

图3.14 键盘显示电路

74HC164是种串行转并行的IC,采用DIP14封装。A、B为串行数据输入引脚,这两个引脚完全一样,通常将这两个引脚连接在一起,再接到串行数据源;也可将其中一脚连接到VCC,另一只引脚连接串行数据源;在此使用前者。Clear为清除引脚,当此引脚为低电平时,QA~QH并行输出引脚全部变为低电平。CLK为时钟脉冲引脚,74164为上升沿触发,当CLK的电平由低变高时输出引脚的状态发生变化。74HC164的状态转换表如表 3.1所示:

表 3.2 74HC164状态转换表

3.7 本章小结

在本章主要介绍了电脑鼠硬件系统的设计过程,首先提出了硬件系统设计的流程图,分别从机身,LPC21318最小系统,电源电路,红外检测电路,步进电机驱动电路,键盘显示电路一一介绍,分析了电路的原理,器件的选型和参数的计算,经过调试,达到设计要求,为后续的算法研究和软件设计提供的坚实的基础.

硬件电路设计过程经验分享 (1)

献给那些刚开始或即将开始设计硬件电路的人。时光飞逝,离俺最初画第一块电路已有3年。刚刚开始接触电路板的时候,与你一样,俺充满了疑惑同时又带着些兴奋。在网上许多关于硬件电路的经验、知识让人目不暇接。像信号完整性,EMI,PS设计准会把你搞晕。别急,一切要慢慢来。 1)总体思路。 设计硬件电路,大的框架和架构要搞清楚,但要做到这一点还真不容易。有些大框架也许自己的老板、老师已经想好,自己只是把思路具体实现;但也有些要自己设计框架的,那就要搞清楚要实现什么功能,然后找找有否能实现同样或相似功能的参考电路板(要懂得尽量利用他人的成果,越是有经验的工程师越会懂得借鉴他人的成果)。 2)理解电路。 如果你找到了的参考设计,那么恭喜你,你可以节约很多时间了(包括前期设计和后期调试)。马上就copy?NO,还是先看懂理解了再说,一方面能提高我们的电路理解能力,而且能避免设计中的错误。 3)没有找到参考设计? 没关系。先确定大IC芯片,找datasheet,看其关键参数是否符合自己的要求,哪些才是自己需要的关键参数,以及能否看懂这些关键参数,都是硬件工程师的能力的体现,这也需要长期地慢慢地积累。这期间,要善于提问,因为自己不懂的东西,别人往往一句话就能点醒你,尤其是硬件设计。 4)硬件电路设计主要是三个部分,原理图,pcb,物料清单(BOM)表。 原理图设计就是将前面的思路转化为电路原理图。它很像我们教科书上的电路图。

pcb涉及到实际的电路板,它根据原理图转化而来的网表(网表是沟通原理图和pcb之间的桥梁),而将具体的元器件的封装放置(布局)在电路板上,然后根据飞线(也叫预拉线)连接其电信号(布线)。完成了pcb布局布线后,要用到哪些元器件应该有所归纳,所以我们将用到BOM表。 5)用什么工具? Protel,也就是altimuml容易上手,在国内也比较流行,应付一般的工作已经足够,适合初入门的设计者使用。 6)to be continued...... 其实无论用简单的protel或者复杂的cadence工具,硬件设计大环节是一样的(protel上的操作类似windwos,是post-command型的;而cadence的产品concept&allegro是pre-command型的,用惯了protel,突然转向cadence的工具,会不习惯就是这个原因)。设计大环节都要有1)原理图设计。2)pcb设计。3)制作BOM 表。现在简要谈一下设计流程(步骤): 1)原理图库建立。要将一个新元件摆放在原理图上,我们必须得建立改元件的库。库中主要定义了该新元件的管脚定义及其属性,并且以具体的图形形式来代表(我们常常看到的是一个矩形(代表其IC BODY),周围许多短线(代表IC管脚))。protel创建库及其简单,而且因为用的人多,许多元件都能找到现成的库,这一点对使用者极为方便。应搞清楚ic body,ic pins,input pin,output pin,analog pin,digital pin,power pin等区别。 2)有了充足的库之后,就可以在原理图上画图了,按照datasheet和系统设计的要

超声波测距仪硬件电路的设计

超声波测距仪电路设计实验报告 轮机系楼宇071 周钰泉2007212117 实验目的:了解超声波测距仪的原理,掌握焊接方法,掌握电路串接方法,熟悉电路元件。 实验设备及器材:电烙铁,锡线,电路元件 实验步骤:1,学习keil软件编写程序2、焊接电路板3、运行调试 超声波测距程序: #include unsigned char code dispbitcode[]={0x31,0x32,0x34,0x38,0x30,0x30, 0x30,0x30}; unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x77,0x7c,0x 39}; unsigned char dispbuf[8]={10,10,10,10,10,10,0,0}; unsigned char dispcount; unsigned char getdata; unsigned int temp; unsigned int temp1;

unsigned char i; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^4; sbit CLK=P3^5; sbit M1=P3^6; sbit M2=P3^7; sbit SPK=P2^6; sbit LA=P3^3; sbit LB=P3^2; sbit LC=P2^7; sbit K1=P2^4; sbit K2=P2^5; bit wd; bit yw; bit shuid; bit shuig; unsigned int cnta; unsigned int cntb; bit alarmflag; void delay10ms(void) { unsigned char i,j; for(i=20;i>0;i--) for(j=248;j>0;j--); } void main(void) { M1=0; M2=0; yw=1; wd=0; SPK=0; ST=0; OE=0; TMOD=0x12; TH0=0x216; TL0=0x216; TH1=(65536-500)/256; TL1=(65536-500)%256; TR1=1; TR0=1; ET0=1; ET1=1; EA=1; ST=1; ST=0; while(1) { if(K1==0) { delay10ms(); if(K1==0) { yw=1; wd=0; } } else if(K2==0) { delay10ms(); if(K2==0) { wd=1; yw=0; } } else if(LC==1) { delay10ms(); if(LC==1) { M1=0; M2=1; temp1=13; shuid=0; shuig=1; LB=0; } } else if((LC==0) && (LB==1)) { delay10ms(); if((LC==0) && (LB==1)) { M1=0; M2=0; temp1=12; shuig=0; shuid=0; LB=0; }

硬件电路设计基础知识

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识 一、什么是半导体 半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物)

二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 ?掺杂──管子 ?温度──热敏元件 ?光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 ?自由电子──受束缚的电子(-) ?空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 ?N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷P──+5价使自由电子大大增加原理:Si──+4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 ?P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理:Si──+4价B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。 2、PN结的结构 分界面上的情况: P区:空穴多 N区:自由电子多 扩散运动: 多的往少的那去,并被复合掉。留下了正、负离子。 (正、负离子不能移动) 留下了一个正、负离子区──耗尽区。 由正、负离子区形成了一个内建电场(即势垒高度)。 方向:N--> P 大小:与材料和温度有关。(很小,约零点几伏)

硬件电路设计具体详解

2系统方案设计 2.1 数字示波器的工作原理 图2.1 数字示波器显示原理 数字示波器的工作原理可以用图2.1 来描述,当输入被测信号从无源探头进入到数字示波器,首先通过的是示波器的信号调理模块,由于后续的A/D模数转换器对其测量电压有一个规定的量程范围,所以,示波器的信号调理模块就是负责对输入信号的预先处理,通过放大器放大或者通过衰减网络衰减到一定合适的幅度,然后才进入A/D转换器。在这一阶段,微控制器可设置放大和衰减的倍数来让用户选择调整信号的幅度和位置范围。 在A/D采样模块阶段,信号实时在离散点采样,采样位置的信号电压转换为数字值,而这些数字值成为采样点。该处理过程称为信号数字化。A/D采样的采样时钟决定了ADC采样的频度。该速率被称为采样速率,表示为样值每秒(S/s)。A/D模数转换器最终将输入信号转换为二进制数据,传送给捕获存储区。 因为处理器的速度跟不上高速A/D模数转换器的转换速度,所以在两者之间需要添加一个高速缓存,明显,这里捕获存储区就是充当高速缓存的角色。来自ADC的采样点存储在捕获存储区,叫做波形点。几个采样点可以组成一个波形点,波形点共同组成一条波形记录,创建一条波形记录的波形点的数量称为记录长度。捕获存储区内部还应包括一个触发系统,触发系统决定记录的起始和终止点。 被测的模拟信号在显示之前要通过微处理器的处理,微处理器处理信号,包括获取信号的电压峰峰值、有效值、周期、频率、上升时间、相位、延迟、占空比、均方值等信息,然后调整显示运行。最后,信号通过显示器的显存显示在屏幕上。 2.2 数字示波器的重要技术指标 (1)频带宽度 当示波器输入不同频率的等幅正弦信号时,屏幕上显示的信号幅度下降3dB 所对应的输入信号上、下限频率之差,称为示波器的频带宽度,单位为MHz或GHz。

硬件电路设计基础知识

硬件电路设计基础知识 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

硬件电子电路基础

第一章半导体器件 §1-1 半导体基础知识一、什么是半导体

半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si 锗Ge等+4价元素以及化合物) 二、半导体的导电特性 本征半导体――纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略) 1、半导体的导电率会在外界因素作用下发生变化 掺杂──管子 温度──热敏元件 光照──光敏元件等 2、半导体中的两种载流子──自由电子和空穴 自由电子──受束缚的电子(-) 空穴──电子跳走以后留下的坑(+) 三、杂质半导体──N型、P型 (前讲)掺杂可以显着地改变半导体的导电特性,从而制造出杂质半导体。 N型半导体(自由电子多) 掺杂为+5价元素。如:磷;砷 P──+5价使自由电子大大增加 原理: Si──+4价 P与Si形成共价键后多余了一个电子。 载流子组成:

o本征激发的空穴和自由电子──数量少。 o掺杂后由P提供的自由电子──数量多。 o空穴──少子 o自由电子──多子 P型半导体(空穴多) 掺杂为+3价元素。如:硼;铝使空穴大大增加 原理: Si──+4价 B与Si形成共价键后多余了一个空穴。 B──+3价 载流子组成: o本征激发的空穴和自由电子──数量少。 o掺杂后由B提供的空穴──数量多。 o空穴──多子 o自由电子──少子 结论:N型半导体中的多数载流子为自由电子; P型半导体中的多数载流子为空穴。 §1-2 PN结 一、PN结的基本原理 1、什么是PN结 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。

电路硬件设计基础

1.1电路硬件设计基础 1.1.1电路设计 硬件电路设计原理 嵌入式系统的硬件设计主要分3个步骤:设计电路原理图、生成网络表、设计印制电路板,如下图所示。 图1-1硬件设计的3个步骤 进行硬件设计开发,首先要进行原理图设计,需要将一个个元器件按一定的逻辑关系连接起来。设计一个原理图的元件来源是“原理图库”,除了元件库外还可以由用户自己增加建立新的元件,用户可以用这些元件来实现所要设计产品的逻辑功能。例如利用Protel 中的画线、总线等工具,将电路中具有电气意义的导线、符号和标识根据设计要求连接起来,构成一个完整的原理图。 原理图设计完成后要进行网络表输出。网络表是电路原理设计和印制电路板设计中的一个桥梁,它是设计工具软件自动布线的灵魂,可以从原理图中生成,也可以从印制电路板图中提取。常见的原理图输入工具都具有Verilog/VHDL网络表生成功能,这些网络表包含所有的元件及元件之间的网络连接关系。 原理图设计完成后就可进行印制电路板设计。进行印制电路板设计时,可以利用Protel 提供的包括自动布线、各种设计规则的确定、叠层的设计、布线方式的设计、信号完整性设计等强大的布线功能,完成复杂的印制电路板设计,达到系统的准确性、功能性、可靠性设计。 电路设计方法(有效步骤) 电路原理图设计不仅是整个电路设计的第一步,也是电路设计的基础。由于以后的设计工作都是以此为基础,因此电路原理图的好坏直接影响到以后的设计工作。电路原理图的具体设计步骤,如图所示。

图1-2原理图设计流程图 (1)建立元件库中没有的库元件 元件库中保存的元件只有常用元件。设计者在设计时首先碰到的问题往往就是库中没有原理图中的部分元件。这时设计者只有利用设计软件提供的元件编辑功能建立新的库元件,然后才能进行原理图设计。 当采用片上系统的设计方法时,系统电路是针对封装的引脚关系图,与传统的设计方法中采用逻辑关系的库元件不同。 (2)设置图纸属性 设计者根据实际电路的复杂程度设置图纸大小和类型。图纸属性的设置过程实际上是建立设计平台的过程。设计者只有设置好这个工作平台,才能够在上面设计符合要求的电路图。 (3)放置元件 在这个阶段,设计者根据原理图的需要,将元件从元件库中取出放置到图纸上,并根据原理图的需要进行调整,修改位置,对元件的编号、封装进行设置等,为下一步的工作打下基础。 (4)原理图布线 在这个阶段,设计者根据原理图的需要,利用设计软件提供的各种工具和指令进行布线,将工作平面上的元件用具有电气意义的导线、符号连接起来,构成一个完整的原理图。 (5)检查与校对 在该阶段,设计者利用设计软件提供的各种检测功能对所绘制的原理图进行检查与校对,以保证原理图符合电气规则,同时还应力求做到布局美观。这个过程包括校对元件、导线位置调整以及更改元件的属性等。 (6)电路分析与仿真 这一步,设计者利用原理图仿真软件或设计软件提供的强大的电路仿真功能,对原理图的性能指标进行仿真,使设计者在原理图中就能对自己设计的电路性能指标进行观察、测试,从而避免前期问题后移,造成不必要的返工。

硬件电路设计流程系列--方案设计

平台的选择很多时候和系统选择的算法是相关的,所以如果要提高架构,平台的设计能力,得不断提高自身的算法设计,复杂度评估能力,带宽分析能力。 常用的主处理器芯片有:单片机,ASIC,RISC(DEC Alpha、ARC、ARM、MIPS、PowerPC、SPARC和SuperH ),DSP和FPGA等,这些处理器的比较在网上有很多的文章,在这里不老生常谈了,这里只提1个典型的主处理器选型案例。 比如市场上现在有很多高清网络摄像机(HD-IPNC)的设计需求,而IPNC的解决方案也层出不穷,TI的解决方案有DM355、DM365、DM368等,海思提供的方案则有Hi3512、Hi3515、Hi3520等,NXP提供的方案有PNX1700、PNX1005等。 对于HD-IPNC的主处理芯片,有几个主要的技术指标:视频分辨率,视频编码器算法,最高支持的图像抓拍分辨率,CMOS的图像预处理能力,以及网络协议栈的开发平台。 Hi3512单芯片实现720P30 编解码能力,满足高清IP Camera应用, Hi3515可实现1080P30的编解码能力,持续提升高清IP Camera的性能。 DM355单芯片实现720P30 MPEG4编解码能力,DM365单芯片实现720P30 编解码能力, DM368单芯片实现1080P30 编解码能力。 DM355是2007 Q3推出的,DM365是2009 Q1推出的,DM368是2010 Q2推出的。海思的同档次解决方案也基本上与之同时出现。 海思和TI的解决方案都是基于linux,对于网络协议栈的开发而言,开源社区的资源是没有区别的,区别的只在于芯片供应商提供的SDK开发包,两家公司的SDK离产品都有一定的距离,但是linux的网络开发并不是一个技术难点,所以并不影响产品的推广。 作为IPNC的解决方案,在720P时代,海思的解决方案相对于TI的解决方案,其优势是支持了编解码算法,而TI只支持了MPEG4的编解码算法。虽然在2008年初,MPEG4的劣势在市场上已经开始体现出来,但在当时这似乎并不影响DM355的推广。 对于最高支持的图像抓拍分辨率,海思的解决方案可以支持支持JPEG抓拍3M Pixels@5fps,DM355最高可以支持5M Pixels,虽然当时没有成功的开发成5M Pixel的抓拍(内存分配得有点儿问题,后来就不折腾了),但是至少4M Pixel 的抓拍是实现了的,而且有几个朋友已经实现了2560x1920这个接近5M Pixel 的抓拍,所以在这一点上DM355稍微胜出。 因为在高清分辨率下,CCD传感器非常昂贵,而CMOS传感器像原尺寸又做不大,导致本身在低照度下就性能欠佳的CMOS传感器的成像质量在高分辨率时变差,

硬件电路板设计规范

硬件电路板设计规范(总36 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

0目录 0目录............................................... 错误!未定义书签。

1概述............................................... 错误!未定义书签。 适用范围............................................ 错误!未定义书签。 参考标准或资料 ...................................... 错误!未定义书签。 目的................................................ 错误!未定义书签。2PCB设计任务的受理和计划............................ 错误!未定义书签。 PCB设计任务的受理................................... 错误!未定义书签。 理解设计要求并制定设计计划 .......................... 错误!未定义书签。3规范内容........................................... 错误!未定义书签。 基本术语定义........................................ 错误!未定义书签。 PCB板材要求: ....................................... 错误!未定义书签。 元件库制作要求 ...................................... 错误!未定义书签。 原理图元件库管理规范:......................... 错误!未定义书签。 PCB封装库管理规范............................. 错误!未定义书签。 原理图绘制规范 ...................................... 错误!未定义书签。 PCB设计前的准备..................................... 错误!未定义书签。 创建网络表..................................... 错误!未定义书签。 创建PCB板..................................... 错误!未定义书签。 布局规范............................................ 错误!未定义书签。 布局操作的基本原则............................. 错误!未定义书签。 热设计要求..................................... 错误!未定义书签。 基本布局具体要求............................... 错误!未定义书签。 布线要求............................................ 错误!未定义书签。 布线基本要求................................... 错误!未定义书签。 安规要求....................................... 错误!未定义书签。 丝印要求............................................ 错误!未定义书签。 可测试性要求........................................ 错误!未定义书签。 PCB成板要求......................................... 错误!未定义书签。

硬件基础知识

第三章硬件基础知识学习 通过上一课的学习,我们貌似成功的点亮了一个LED小灯,但是还有一些知识大家还没有 彻底明白。单片机是根据硬件电路图的设计来写代码的,所以我们不仅仅要学习编程知识,还有硬件知识,也要进一步的学习,这节课我们就要来穿插介绍电路硬件知识。 3.1 电磁干扰EMI 第一个知识点,去耦电容的应用,那首先要介绍一下去耦电容的应用背景,这个背景就是电磁干扰,也就是传说中的EMI。 1、冬天的时候,尤其是空气比较干燥的内陆城市,很多朋友都有这样的经历,手触碰到电脑外壳、铁柜子等物品的时候会被电击,实际上这就是“静电放电”现象,也称之为ESD。 2、不知道有没有同学有这样的经历,早期我们使用电钻这种电机设备,并且同时在听收音机或者看电视的时候,收音机或者电视会出现杂音,这就是“快速瞬间群脉冲”的效果,也称之为EFT。 3、以前的老电脑,有的性能不是很好,带电热插拔优盘、移动硬盘等外围设备的时候,内部会产生一个百万分之一秒的电源切换,直接导致电脑出现蓝屏或者重启现象,就是热插拔的“浪涌”效果,称之为Surge... ... 电磁干扰的内容有很多,我们这里不能一一列举,但是有些内容非常重要,后边我们要一点点的了解。这些问题大家不要认为是小问题,比如一个简单的静电放电,我们用手能感觉到的静电,可能已经达到3KV以上,如果用眼睛能看得到的,至少是5KV了,只是因为 这个电压虽然很高,电量却很小,因此不会对人体造成伤害。但是我们应用的这些半导体元器件就不一样了,一旦瞬间电压过高,就有可能造成器件的损坏。而且,即使不损坏,在2、3里边介绍的两种现象,也严重干扰到我们正常使用电子设备了。 基于以上的这些问题,就诞生了电磁兼容(EMC)这个名词。这节课我们仅仅讲一下去耦

硬件课程设计简易计算器设计

中国矿业大学徐海学院 单片机课程设计 姓名:XXX学号: 22090XXX 专业:计算机09-4班 题目:硬件课程设计 专题:简易计算器设计 指导教师: XXX 设计地点:嘉园时间: 2011-12-23 20011年12月

单片机课程设计任务书 专业年级计算机09-4 学号22090XXX 学生姓名XXX 任务下达日期:2011年12 月15日 设计日期:2011 年12 月15 日至2011 年12 月23日 设计题目:硬件课程设计 设计专题题目:简易计算器设计 设计主要内容和要求: 摘要: 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个计算器。 主要能实现 1.加法:能够计算四位以内的数的加法。 2减法:能计算四位数以内的减法。 3乘法:能够计算两位数以内的乘法。 4除法:能够计算四位数的乘法 5有清零功能,能随时对运算结果和数字输入进行清零。 关键词:单片机; 计算器 ; 加减乘除 指导教师签字:

目录 1 系统概述 (1) 1.1硬件知识概述 (1) 1.1.1 单片机 (1) 1.1.2 C语言 (1) 1.1.3 ISP (1) 1.2设计基本思想 (1) 2硬件电路设计 (2) 2.1 单片机最小系统 (2) 2.2键盘接口电路 (2) 2.3数码管显示电路 (3) 3 软件设计 (4) 3.1 复位电路 (4) 4.系统调试 (5) 4.1 软件流程图 (5) 4.1.1系统软件系统流程图 (5) 5.结束语 (6) 参考文献 (7) 附录 (8)

1 系统概述 1.1硬件知识概述 1.1.1 单片机 单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。 1.1.2 C语言 C语言是一种计算机程序设计语言。它既具有高级语言的特点,又具有汇编语言的特点。它由美国贝尔研究所的D.M.Ritchie于1972年推出。1978后,C语言已先后被移植到大、中、小及微型机上。它可以作为工作系统设计语言,编写系统应用程序,也可以作为应用程序设计语言,编写不依赖计算机硬件的应用程序。它的应用范围广泛,具备很强的数据处理能力,不仅仅是在软件开发上,而且各类科研都需要用到C语言,适于编写系统软件,三维,二维图形和动画。具体应用比如单片机以及嵌入式系统开发。 1.1.3 ISP ISP(In-System Programming)在系统可编程,指电路板上的空白器件可以编程写入最终用户代码,而不需要从电路板上取下器件,已经编程的器件也可以用ISP 方式擦除或再编程。本次课程设计便使用ISP 方式,直接将编写好的程序下载到连接好的单片机中进行调试 1.2设计基本思想 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个计算器,用四位一体数码管显示计算数值及结果。要求用Protel 画出系统的电路原理图,绘出程序流程图,并给出程序清单。 主要能实现 1.加法:能够计算四位以内的数的加法。 2减法:能计算四位数以内的减法。 3乘法:能够计算两位数以内的乘法。 4除法:能够计算四位数的乘法 5有清零功能,能随时对运算结果和数字输入进行清零。

模拟电路设计 基础知识(笔试时候容易遇到的题目)

模拟电路设计基础知识(笔试时候容易遇到的 题目) 1、最基本的如三极管曲线特性(太低极了点) 2、基本放大电路,种类,优缺点,特别是广泛采用差分结构的原因 3、反馈之类,如:负反馈的优点(带宽变大) 4、频率响应,如:怎么才算是稳定的,如何改变频响曲线的几个方法 5、锁相环电路组成,振荡器(比如用D触发器如何搭) 6、A/D电路组成,工作原理如果公司做高频电子的,可能还要RF知识,调频,鉴频鉴相之类,不一一列举太底层的MOS管物理特性感觉一般不大会作为笔试面试题,因为全是微电子物理,公式推导太罗索,除非面试出题的是个老学究 ic设计的话需要熟悉的软件adence, Synopsys, Advant,UNIX当然也要大概会操作实际工作所需要的一些技术知识(面试容易问到) 如电路的低功耗,稳定,高速如何做到,调运放,布版图注意的地方等等,一般会针对简历上你所写做过的东西具体问,肯定会问得很细(所以别把什么都写上,精通之类的词也别用太多了),这个东西各个人就不一样了,不好说什么了。 2、数字电路设计当然必问Verilog/VHDL,如设计计数器逻辑方面数字电路的卡诺图化简,时序(同步异步差异),触发器有几种(区别,优点),全加器等等比如:设计一个自动售货

机系统,卖soda水的,只能投进三种硬币,要正确的找回钱数1、画出fsm(有限状态机)2、用verilog编程,语法要符合fpga设计的要求系统方面:如果简历上还说做过cpu之类,就会问到诸如cpu如何工作,流水线之类的问题3、单片机、DSP、FPG A、嵌入式方面(从没碰过,就大概知道几个名字胡扯几句,欢迎拍砖,也欢迎牛人帮忙补充)如单片机中断几个/类型,编中断程序注意什么问题 DSP的结构(冯、诺伊曼结构吗?)嵌入式处理器类型(如ARM),操作系统种类 (Vxworks,ucos,winCE,linux),操作系统方面偏CS方向了,在CS篇里面讲了4、信号系统基础拉氏变换与Z变换公式等类似东西,随便翻翻书把如、h(n)=-a*h(n-1)+b*δ(n) a、求h(n)的z变换 b、问该系统是否为稳定系统 c、写出F IR数字滤波器的差分方程以往各种笔试题举例利用4选1实现F(x,y,z)=xz+yz 用mos管搭出一个二输入与非门。 用传输门和倒向器搭一个边沿触发器用运算放大器组成一个10倍的放大器微波电路的匹配电阻。 名词解释,无聊的外文缩写罢了,比如PCI、EC C、DDR、interrupt、pipeline IRQ,BIOS,USB,VHDL,VLSI VCO(压控振荡器) RAM (动态随机存储器),FIR IIR DFT(离散傅立叶变换) 或者是中文的,比如 a量化误差 b、直方图 c、白平衡共同的注

硬件电路设计基础知识.docx

硬件电子电路基础关于本课程 § 4—2乙类功率放大电路 § 4—3丙类功率放大电路 § 4—4丙类谐振倍频电路 第五章正弦波振荡器 § 5—1反馈型正弦波振荡器的工作原理 § 5— 2 LC正弦波振荡电路 § 5— 3 LC振荡器的频率稳定度 § 5—4石英晶体振荡器 § 5— 5 RC正弦波振荡器

第一章半导体器件 §1半导体基础知识 §1PN 结 §-1二极管 §1晶体三极管 §1场效应管 §1半导体基础知识 、什么是半导体半导体就是导电能力介于导体和绝缘体之间的物质。(导电能力即电导率)(如:硅Si锗Ge等+ 4价元素以及化合物) 、半导体的导电特性本征半导体一一纯净、晶体结构完整的半导体称为本征半导体。 硅和锗的共价键结构。(略)

1、半导体的导电率会在外界因素作用下发生变化 ?掺杂一一管子 *温度--- 热敏元件 ?光照——光敏元件等 2、半导体中的两种载流子一一自由电子和空穴 ?自由电子——受束缚的电子(一) ?空穴——电子跳走以后留下的坑(+ ) 三、杂质半导体——N型、P型 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。 *N型半导体(自由电子多) 掺杂为+ 5价元素。女口:磷;砷P—+ 5价使自由电子大大增加原理:Si—+ 4价P与Si形成共价键后多余了一个电子。 载流子组成: o本征激发的空穴和自由电子——数量少。 o掺杂后由P提供的自由电子——数量多。 o 空穴——少子 o 自由电子------ 多子 ?P型半导体(空穴多) 掺杂为+ 3价元素。女口:硼;铝使空穴大大增加 原理:Si—+ 4价B与Si形成共价键后多余了一个空穴。 B——+ 3价 载流子组成: o本征激发的空穴和自由电子数量少。 o掺杂后由B提供的空穴——数量多。 o 空穴——多子 o 自由电子——少子

硬件电路设计规范

硬件电路板设计规范 制定此《规范》的目的和出发点是为了培养硬件开发人员严谨、务实的工作作风和严肃、认真的工作态度,增强硬件开发人员的责任感和使命感,提高工作效率和开发成功率,保证产品质量。 1、深入理解设计需求,从需求中整理出电路功能模块和性能指标要求; 2、根据功能和性能需求制定总体设计方案,对CPU等主芯片进行选型,CPU 选型有以下几点要求: 1)容易采购,性价比高; 2)容易开发:体现在硬件调试工具种类多,参考设计多,软件资源丰富,成功案例多; 3)可扩展性好; 3、针对已经选定的CPU芯片,选择一个与我们需求比较接近的成功参考设计。 一般CPU生产商或他们的合作方都会对每款CPU芯片做若干开发板进行验证,厂家最后公开给用户的参考设计图虽说不是产品级的东西,也应该是经过严格验证的,否则也会影响到他们的芯片推广应用,纵然参考设计的外围电路有可推敲的地方,CPU本身的管脚连接使用方法也绝对是值得我们信赖的,当然如果万一出现多个参考设计某些管脚连接方式不同,可以细读CPU芯片手册和勘误表,或者找厂商确认;另外在设计之前,最好我们能外借或者购买一块选定的参考板进

行软件验证,如果没问题那么硬件参考设计也是可以信赖的;但要注意一点,现在很多CPU都有若干种启动模式,我们要选一种最适合的启动模式,或者做成兼容设计; 4、根据需求对外设功能模块进行元器件选型,元器件选型应该遵守以下原则: 1)普遍性原则:所选的元器件要被广泛使用验证过的尽量少使用冷、偏芯片,减少风险; 2)高性价比原则:在功能、性能、使用率都相近的情况下,尽量选择价格比较好的元器件,减少成本; 3)采购方便原则:尽量选择容易买到,供货周期短的元器件; 4)持续发展原则:尽量选择在可预见的时间内不会停产的元器件; 5)可替代原则:尽量选择pin to pin兼容种类比较多的元器件; 6)向上兼容原则:尽量选择以前老产品用过的元器件; 7)资源节约原则:尽量用上元器件的全部功能和管脚; 5、对选定的CPU参考设计原理图外围电路进行修改,修改时对于每个功能模块都要找至少3个相同外围芯片的成功参考设计,如果找到的参考设计连接方法都是完全一样的,那么基本可以放心参照设计,但即使只有一个参考设计与其他的不一样,也不能简单地少数服从多数,而是要细读芯片数据手册,深入理解那些管脚含义,多方讨论,联系芯片厂技术支持,最终确定科学、正确的连接方式,如果仍有疑义,可以做兼容设计;当然,如果所采用的成功参考设计已经是

硬件电子琴电路设计

江西理工大学应用科学学院

目录 一、设计任务与要求 (1) 二、总体框图 (2) 三、选择器件 (5) 四、功能模块 (6) 1.Songer模块 (6) 1.1NoteTabs模块 (6) 1.2ToneTaba模块 (11) 1.3Speakera模块 (13) 2.div模块 (16) 3.七段译码器模块 (18) 五、总体设计电路图 (21) 1.顶层设计的电路原理图 (21) 2.顶层设计的仿真结果 (23) 3.电路的管脚图 (23) 六、结束语 (24) 七、心得体会 (25)

硬件电子琴电路设计 一、设计任务与要求 使用FPGA设计一模拟电子琴键,实现电子琴按键的DO,Re,Mi,Fa,Sol,La,Si等中音以及相应的高音。 二、总体框图 系统设计方案: 方案一: 采用单个的逻辑器件组合实现。这样虽然比较直观,逻辑器件分工鲜明,思路也比清晰,一目了然。但是由于元器件种类、个数繁多,而过于复杂的硬件电路也容易引起系统的精度不高、体积过大等不利因素。例如八个不同的音符是由八个不同的频率来控制发出的,而采用方案一就需要运用不同的分频器来对信号进行不同程度的分频。所用仪器之多显而易见。 方案二: 采用VHDL语言编程来实现电子琴的各项功能。系统主要由电子琴发声模块、选择控制模块和储存器模块组成。和 方案一相比较,方案二就显得比较笼统,只是把整个系统分 为了若干个模块,而不牵涉到具体的硬件电路。但是我们必 须看到用超高速硬件描述语言VHDL的优势,它不仅具有良 好的电路行为描述和系统描述的能力而且通俗易懂。经过对

以上两种方案的分析、比较和总结,我们选用方案二来进行八音符电子琴的设计。 (2).ToneTaba模块:是乐曲简谱码对应的分频预置数查找表电路,其中设置了乐曲的全部音符所对应的分频置数,每一音符的停留时间由音乐节拍和音调发生器模块NoteTabs 的CLK的输入频率决定,这些值由对应于ToneTaba的4

单片机硬件电路设计

单片机应用设计

概述 单片机是一种大规模的具有计算机基本功能的单片 单片机是一种大规模的具有计算机基本功能的单片集成电路。可以与少量外围电路构成一个小而完善的计算机系统。芯片内置和外围的电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 单片机具有体积小、功耗低、控制功能强、扩 单片机具有体积小、功耗低、控制功能强、扩展灵活、使用方便等优点,广泛应用于仪器仪表、家用电器、医用设备、航空航天、通信产品、智能玩具、汽车电子、专用设备的智能化管理及过程控制等领域。 制等领域。

单片机类型 集中指令集(CISC)和精简指令集(RISC)–采用CISC结构的单片机数据线和指令线分时复 用,即所谓冯.诺伊曼结构。它的指令丰富,功 能较强,但取指令和取数据不能同时进行,速度 受限,价格亦高。 –采用RISC结构的单片机,数据线和指令线分离 ,即所谓哈佛结构。这使得取指令和取数据可同 时进行,且由于一般指令线宽于数据线,使其指 令较同类CISC单片机指令包含更多的处理信息 ,执行效率更高,速度亦更快。同时,这种单片 机指令多为单字节,程序存储器的空间利用率大 大提高,有利于实现超小型化。

常用的几个系列单片机 MCS-51及其兼容系列: –英特尔公司的MCS-51系列单片机是目前应 用最广泛的8位单片机之一,并且ATMEL、 PHILIPS、ADI、MAXIM、LG、 SIEMENS等公司都有其兼容型号的芯片。 这个系列的单片机具有运算与寻址能力强, 存储空间大,片内集成外设丰富,功耗低等 优点,其中大部分兼容芯片都含有片内 FLASH程序存储器,价格便宜。适合应用于 仪器仪表、测控系统、嵌入系统等开发。

电路设计的基本原理和方法

电路设计的基本原理和方法 本人经过整理得出如下的电路设计方法,希望对广大电子爱好者及热衷于硬件研发的朋友有所帮助。 电子电路的设计方法 设计一个电子电路系统时,首先必须明确系统的设计任务,根据任务进行方案选择,然后对方案中的各个部分进行单元的设计,参数计算和器件选择,最后将各个部分连接在一起,画出一个符合设计要求的完整的系统电路图。 一.明确系统的设计任务要求 对系统的设计任务进行具体分析,充分了解系统的性能,指标,内容及要求,以明确系统应完成的任务。 二.方案选择 这一步的工作要求是把系统要完成的任务分配给若干个单元电路,并画出一个能表示各单元功能的整机原理框图。 方案选择的重要任务是根据掌握的知识和资料,针对系统提出的任务,要求和条件,完成系统的功能设计。在这个过程中要敢于探索,勇于创新,力争做到设计方案合理,可靠,经济,功能齐全,技术先进。并且对方案要不断进行可行性和有缺点的分析,最后设计出一个完整框图。框图必须正确反映应完成的任务和各组成部分的功能,清楚表示系统的基本组成和相互关系。 三.单元电路的设计,参数计算和期间选择 根据系统的指标和功能框图,明确各部分任务,进行各单元电路的设计,参数计算和器件选择。 1.单元电路设计 单元电路是整机的一部分,只有把各单元电路设计好才能提高整机设计水平。 每个单元电路设计前都需明确各单元电路的任务,详细拟定出单元电路的性能指标,与前后级之间的关系,分析电路的组成形式。具体设计时,可以模仿传输的先进的电路,也可以进行创新或改进,但都必须保证性能要求。而且,不仅单元电路本身要设计合理,各单元电路间也要互相配合,注意各部分的输入信号,输出信号和控制信号的关系。 2.参数计算 为保证单元电路达到功能指标要求,就需要用电子技术知识对参数进行计算。例如,放大电路中各电阻值,放大倍数的计算;振荡器中电阻,电容,振荡频率等参数的计算。只有很好的理解电路的工作原理,正确利用计算公式,计算的参数才能满足设计要求。 参数计算时,同一个电路可能有几组数据,注意选择一组能完成电路设计要求的功能,在实践中能真正可行的参数。 计算电路参数时应注意下列问题: (1)元器件的工作电流,电压,频率和功耗等参数应能满足电路指标的要求; (2)元器件的极限参数必须留有足够充裕量,一般应大于额定值的1.5倍; (3)电阻和电容的参数应选计算值附近的标称值。 3.器件选择 (1)元件的选择 阻容电阻和电容种类很多,正确选择电阻和电容是很重要的。不同的电路对电阻和电容性能要求也不同,有解电路对电容的漏电要求很严,还有些电路对电阻,电容的性能和容量要求很高。例如滤波电路中常用大容量(100uF~3000uF)铝电解电容,为滤掉高频通常

硬件工程师必用20个电子线路图

这20个电子线路图,硬件工程师一定用得上! 电子技术、无线电维修及电子制造工艺技术绝不是一门容易学好、短时间内就能够掌握的学科。这门学科所涉及的方方面面很多,各方面又相互联系,作为初学者,首先要在整体上了解、初步掌握它。 无论是无线电爱好者还是维修技术人员,你能够说出电路板上那些小元件叫做什么,又有什么作用吗?如果想成为元件(芯片)级高手的话,掌握一些相关的电子知识是必不可少的。 普及与电子基础知识,拓宽思路交流,知识的积累是基础的基础,基础和基本功扎实了才能奠定攀登高峰阶梯!这就是基本功。 电子技术的历史背景: 早在两千多年前,人们就发现了电现象和磁现象。我国早在战国时期(公元前475一211年)就发明了司南。而人类对电和磁的真正认识和广泛应用、迄今还只有一百多年历史。在第一次产业革命浪潮的推动下,许多科学家对电和磁现象进行了深入细致的研究,从而取得了重大进展。人们发现带电的物体同性相斥、异性相吸,与磁学现象有类似之处。 1785年,法国物理学家库仑在总结前人对电磁现象认识的基础上,提出了后人所称的“库仑定律”,使电学与磁学现象得到了统一。 1800年,意大利物理学家伏特研制出化学电池,用人工办法获得了连续电池,为后人对电和磁关系的研究创造了首要条件。 1822年,英国的法拉第在前人所做大量工作的基础上,提出了电磁感应定律,证明了“磁”能够产生“电”,这就为发电机和电动机的原理奠定了基础。 1837年美国画家莫尔斯在前人的基础上设计出比较实用的、用电码传送信息的电报机,之后,又在华盛顿与巴尔的摩城之间建立了世界上第一条电报线路。 1876 年,美国的贝尔发明了电话,实现了人类最早的模拟通信。英国的麦克斯韦在总结前人工作基础上,提出了一套完整的“电磁理论”,表现为四个微分方程。这那就后人所称的“麦克斯韦方程组”.麦克斯韦得出结论:运动着的电荷能产生电磁辐射,形成逐渐向外传播的、看不见的电磁波。他虽然并未提出“无线电”这个名词,但他的电磁理论却已经告诉人们,“电”是能够“无线”传播的。 对模拟电路的掌握分为三个层次:

硬件电路设计流程系列

硬件电路设计流程系列--方案设计 一、硬件电路设计流程系列--硬件电路设计规范 二、硬件电路设计流程系列--方案设计(1) :主芯片选型三、 硬件电路设计流程系列--方案设计(2) :芯片选购 四、硬件电路设计流程系列--方案设计(3) :功耗分析与电源设计五、 硬件电路设计流程系列--方案设计(4):设计一个合适的系统电源 一 硬件电路设计规范 1、详细理解设计需求,从需求中整理出电路功能模块和性能指标要求; 2、根据功能和性能需求制定总体设计方案,对CPU进行选型, CPU选型有以下几点要求: a)性价比高; b)容易开发:体现在硬件调试工具种类多,参考设计多,软件资源丰富,成功案例多; c)可扩展性好; 3、针对已经选定的 CPU芯片,选择一个与我们需求比较接近的成功参考设计,一般 CPU生产商或他们的合作方都会对每款 CPU 芯片做若干开发板进行验证,比如440EP 就有yosemite 开发板和 bamboo 开发板,我们参考得是yosemite 开发板,厂家最后公开给用户的参考设计图虽说不是产品级的东西,也应该是经过严格验证的,否则也会影响到他们的芯片推广应用,纵然参考设计的外围电路有可推敲的地方,CPU 本身的管脚连接使用方法也绝对是值得我们信赖的,当然如果万一出现多个参考设计某些管脚连接方式不同,可以细读 CPU 芯片手册和勘误表,或者找厂商确认;另外在设计之前,最好我们能外借或者购买一块选定的参考板进行软件验证,如果没问题那么硬件参考设计也是可以信赖的;但要注意一点,现在很多 CPU 都有若干种启动模式,我们要选一种最适合的启动模式,或者做成兼容设计。

相关主题