搜档网
当前位置:搜档网 › 数码音频数模转换详解

数码音频数模转换详解

数码音频数模转换详解
数码音频数模转换详解

数码音频D/A转换

前言:

在一片人身攻击之声中,我微笑着开始提笔,为那些真正希望了解事物真相的朋友们揭开实质。

废话不说,直入正题。

文章的读者对象:我希望各位应该稍微具备一些数字电路的知识,当然没有的话也不打紧,我尽量做到用最简单的语言来描述。

文章的目的:我将一步一步的讲解,不放过一个细节,一步一步的讲清楚一个代表着1010的脉冲信号,如何真正转变为一个持续为4秒(假设此电路的时钟单位为1秒)的10V (10V==1×2的3次方+0X2的2次方+1X2的2次方+0X2的1次方,单位是1V)的平缓的模拟电流(-这句话你必须先理解,否则我真的没法讲下去)。

为了我画图方便,我就仅仅涉及到4位一组的数字脉冲信号,请理解!

文章的笔风说明:我写文章,不是让看的人越来越糊涂,而是越来越清晰。所以我尽量用最朴实的语言来描述,而不是拿一堆公式或者专业名词来吓唬人来装B,你们会爱上我的文风,I am sure.

好了,和我一起踏上这漫漫DA路!

DA是什么?DA用中文来说,就是数字(Digital)到模拟(Analogy)的转换。

DA干什么?DA就是把一组代表着一定模拟量的含义的数字脉冲,还原成那个原本的模拟量。举一个例子:一组脉冲为101000000001(每个0/1维持1秒,一共12个0或者1,一共维持12秒),那么DA把它首先解读为4位一组的模拟信号1010,0000,0001,然后把他们分别还原为4秒的10V,4秒的0V,4秒的1V。

也就是说,我将深入底层的讲解下面这张图是如何通过电路实现的:

有些眼尖的朋友,可能会跳出来问,你的时序图,DA后模拟输出流,是否画的不对?为何看起来要比数字脉冲流拖后4秒?这是有原因的:4秒是理论上的最低延迟,实际上还不止4秒!原因我会一步一步将给你听,而且画给你看!

进入第二天的课程,今天我为各位讲解的是:

1)DA的逻辑过程图。

2)DA电路组的分块设计图和解释。

3)讲解分块设计图里面的第一块:位移寄存器(先别怕这个名词,我会打开这块寄存器,把电路画出来让你看得一清二楚!)

DA电路,如果动用你的抽象思维,你可以把它极限的简化到如下这张图,输入到DA电路的是数码脉冲,从DA电路中输出的,则是模拟电流。(废话说开来,人身攻击响起来……)

不过,上面的废话并没说错。只是,说起来简单,做起来难!

仔细想想,然后你会体会到(实际上还不是我讲给你听的?!)

1)DA首先要把一个连续的数码脉冲101000000001 很“巧妙”的解读出第一组4位的二进制数字1010 (用专业一点的话来说,这叫做串行转并行—-- 应该很形象了—---好比你吃一串烤羊肉,一块肉一块肉的吃觉得不爽,按就把羊肉取下来,4块一组排好放在手上再一口吃掉。)执行这任务的是位移寄存器。

2)DA随后要把1010 这组数字运算还原成一个虚拟意义上的“10” (10==1×2的3次方+0X2的2次方+1X2的2次方+0X2的1次方)。

3)然后,这个虚拟意义上的“10”将除以16,再乘上一个参考电压(假设为16V),最终出来的结果是(10/16)*16=10V

4)同时DA必须巧妙的搞定下面这件事:因为位移寄存器读取连续的数码脉冲的时候会产生大量的无意义的输出(很惊讶吧,先别玩人身,我会讲给你听的,同时画给你看的),所以一个完善的DA 电路必须学会如何改正这个错误。

5)要如此巧妙地执行这些操作,必须有一只无形的手在控制着这一切,那只手叫做时钟脉冲。而且我会清清楚楚地让你们看到,这只手如何在控制。

放心,我何等人也,即使你目前可能不能完全理解上面这5步,在下面的5天里,我也会慢慢让你理解的!

根据上面的这5个步骤,现在你们应该可以很清楚的理解下面这张逻辑图。

累了,歇一下。几个名词也逐渐出来了,比如位移寄存器。(不懂不要紧,我慢慢讲)

记住:今天我会讲完第一步,讲完串行转并行和位移寄存器的电路原理。

在讲解串行转并行和位移寄存器之前,我必须引入另一个新的名词:“触发器”。我很讨厌那些装B的人,引入一个名词,然后不做任何解释的放在那里;当然,我也很讨厌那些新名词,我肯定要把它用你们能够理解的话解释一遍。

我尽量不引入名词,但是“触发器”这东西,对于位移寄存器来说,非常关键,所以我不得不引入它,然后做个解释。

触发器有很多种类,我现在要讲解的,是最基本的一种触发器:边沿触发器。

请看下图:

它有两个输入口(输入电压,控制脉冲)和一个输出口(输出电压)。它的工作原理相当于一个开关。当控制脉冲(也就是时钟脉冲)到达的时候,触发器就会把当时瞬间的输入电压直接传输到输出电压口上,并且,保持这个输出电压不变(一直等于当时瞬间的输入电压),一直等到下一次时钟脉冲的到来。从这个时钟脉冲到下个时钟脉冲之间的那个间隔1秒内,不管输入电压怎么变化,输出电压不变。

似乎说得乱七八糟而且看起来没什么作用,但是当你把4个触发器象我这样连接起来的时候----位移寄存器诞生了!

下面,我就要来讲解这个位移寄存器的工作原理。

很枯燥的过程,麻烦你别看错了。

还是以从最右边输入1010这组数字来解释:

第0秒钟:啥都没有,所以这个位移寄存器的输出位(第一位到第四位,看到没?在最上头啊,每个触发器出一个)都是0。

第1秒:哈哈,事情发生了。时钟脉冲来了,啪的一下,最右边那个触发器打通了了,刚好此时输入的数字脉冲1010的第一位1到达最右边那个触发器的输入口!于是最右边那个触发器的输出口也变成了高电压1。此时你去读第一位~第4位,哈哈,你可以读到了0001。

第2 秒:因为最右边那个触发器的输出口接到了右边倒数第二个触发器的输入口,所以第二个脉冲过来的时候,呵呵,输入到最右边那个触发器的是1010中的第二位0—因此此时最右边那个触发器的输出变成了0;输入到右边倒数第二个触发器的则是来自上一个时钟脉冲时刻的最右边那个触发器的输出1,所以此时右边倒数第二个触发器的输出为1。所以,此时你去读第一位~第4位,哈哈,你可以读到了0010。

第三秒:依次类推,否则还以为我在偏稿费哈。此时,你应该读到0101。

第四秒:欧米托佛,终于读到了完整的1010,哈哈哈哈,终于实现了第一位~第4位这4个输出位并排排成了1010—这就是一连串的1010变成一整排的1010的过程。

恍然大悟了么?

时序图我就懒得画了,有兴趣的朋友自己去画出来,只是别骂我不会画即可。

我接下来要讨论的是一个比较深奥的东西:

第1,2,3,4秒,我们分别读了4次位移寄存器的输出位,分别是0001,0010,0101,1010,实际上前三秒读出来的都是错误的,仅仅第4秒读出来的是正确的。那怎么办?!那怎么办?!寄存器在3/4的时间里给出来的结果都是错误的啊!那核心DA运算电路根据寄存器提供给他的输入(4位一排的数字),肯定有三分之四的时间里只能得出错误的结果啊。

不错,你发现这个存在大量错误的现象,是因为你大脑牛B!电路不是你大脑,他根本不懂得什么0还是1,所以他根本不知道自己的错误。

但是!此刻,时间脉冲起到了作用(别告诉我时间脉冲发生器能这么牛B,能象你大脑那样能判断错误),人类设计了一类巧妙的电路,使得DA电路克服了这个错误----听起来很神奇,我当然会讲解的,只不过在比较后面的地方讲)。。

反正,现在已经解决了“DA首先要把一个连续的数码脉冲101000000001 很“巧妙”的解读出第一组4位的二进制数字1010 ”这个问题,虽然他还不是很完善,只会在25%的时间内正确。。

同意我么,朋友。??

今天的讲解到此结束,明天我继续讲解DA核心运算电路:“T网”,它是如何根据这个寄存器给他的一排的4位数字(先不管这4位数字是对还是错)来推算出一个模拟电流输出的。

算了,乘现在有空,继续讲讲吧(明天我休息下,处理下单位里的事情,后天最终给帖子结尾)。

DA运算电路很多种类,今天我就取X水一瓢讲讲吧,讲就讲现在应用范围最最广泛的T型DA电路吧(或者称他为倒T型电路)。赫赫,为什么称它为T型电路,我也不知道,只不过它的样子确实像T。(T型电路是高中物理奥赛的基本题目,真是太基本的…..只不过那时候老师没有告诉你他能做DA,哈哈):

还是严肃一点,这一部分涉及到基本的电路知识,懂的朋友可以一目了然,不懂的朋友,我就很难保证了。。U=I*R,这个总得懂吧?2个R电阻并联后变成R/2的等效电阻,这个总得懂吧?

下面我画的这张两张图,你,看懂了么?诚实点!大声点!看懂了么?别告诉我你不知道下图实际上是上图的等效图。。。(什么?看不明白?!喂!同学,哪儿毕业的?)

继续解说下去,从等效图上,我们可以非常清楚的看出来,16V的参考电压恒定的情况下,总路上的电流I也是恒定的(废话:I=16V / R)。

OK,那我现在再继续画下去,画出一个详细的带有电流I分流情况的图(这个有电路经验的朋友应该可以一眼看明白的。其他朋友实在看不明白的……… 那只能算了。)

现在,各位看好了。人类的思维就在于其创造性,T电路的精髓在于我可以非常巧妙的选择输出电流,而所要增加的就是另外一条地线。看下图红色的那条地线,从右向左数,第2和第4个2R的电阻搭在了这条红线上面,分流了5/16 的电流I,看到了么?

下面的事情,呵呵,很好办了,我们假设下面这个第一位到第四位刚好对应位移寄存器的第一位到第四位的输出端,而且能够做到如果来自每一位的电压为高(“1”),那么这个位置的2R电阻就接在红色的地线上;如果来自每一位的电压为低(“0”),那么这个位置的2R电阻就接在蓝色的地线上。像下图所示,就是第一位到第4位的分别是0101,所以第一位和第三位的2R电阻接在黑色地线上,第二位和第四位的2R电阻接在红色地上。

此时,红色线上的电流为(5/16)I!

呵呵,如果你还记得我上面所写的I=16V/R。

那么,只要这条红线接在等效阻值为R的反馈电阻上(而不是地线上),那么此时的输出电压= (5/16)I*R= (5/16)*(16V/R)*R= 5V

呵呵,请问0101代表的10进制是什么?是5V。

看到了么?各位朋友。看到一个电路是如何把0101还原成5V的输出了么?!

怎么,你还没有醒悟?!还需要我继续解说下去么?好吧,我把图画全了。(为了画图走线方便,我把寄存器的左右次序反过来画,别又说看不懂了)

现在理解了么?位移寄存器把0101发送到T电路的4个继电器上,继电器相当于一个开关,当1输入到继电器,那么继电器开关就偏向右,把2R电阻接在红线上。否则,继电器的开关一直在左边和黑线连着。

呵呵,这里面是有数学原理的,看看那些分流的电流,I/16, I/8,I/4,I/2,你们清楚了为什么这个T 电路能够很好的执行4位的DA任务了么?

我不是不想写一个证明,这对我来说太EASY了,只是,电脑打字不好打公式,hoho。。。。。

你也可以自己推算下来证明这个电路:

如果输入的时钟脉冲是1010 (换成10进制应该是10),那么红线上的电流是:I/2+I/8=(10/16)I,此时输出电压=(10/16)I*R=(10/16)*(16V/R)*R=10V。

如果输入的时钟脉冲式1011((换成10进制应该是11),那么红线上的电流是:I/2+I/8+I/16=(11/16)

I,此时输出电压=(11/16)I*R=(11/16)*(16V/R)*R=11V。

反正从0000到1111,最多也就16种输入的脉冲流,所以你有兴趣全部试一遍也没多少时间,

只不过,现在你们看到了吧,T电路准确无误的执行了DA任务!!

后天继续了。。。。下面还有精彩的。。DA漫漫路走了快2/3了,呵呵。

后天我就要讲解,一个完整的4位DA电路是如何处理3/4时间里的错误输出的。

今天是扫尾阶段,我们将要讲述一个遗留的问题:一个完整的4位DA电路是如何处理3/4时间里的错误输出的。

为何把这个问题放到最后讲,实际上是因为我愚蠢的大脑固化思维所导致的一个错误。我一直认为这个由位移寄存器所带来的3/4时间内的错误如果放在最后的环节来解决是最方便的,没必要在电路初始阶段关注这个错误。

116楼的朋友曾提及了在开始阶段就可以消除这个错误(虽然他说得不对,他认为是1/8的时钟脉冲即可),可是我还是非常固执的否定了这个想法,实际上,是我错了。

今天中午吃饭的时候,我突然意识到要解决这个问题简直是易如反掌。

实际上,把位移寄存器的每个输出位和T电路输入位之间接一个触发器,再用4倍(或者称之为1/4频率)也就是4秒为单位的时钟脉冲来推动,即可解决这个问题了。加上如下图紫色部分的这4个触发器和一个4倍的时钟脉冲后,这个纠错电路的输出就能做到一直输出正确的4位数字,同时保持4秒钟。于是,到达T电路前的4位数字将会没有任何错误存在。

这个纠错电路的时序图我不想画了,想想也应该清楚。

4倍时钟脉冲电路(或者说是1/4变频电路)我也不去画了,一个类似与2位计数器的基本电路,时序如下第一秒00,第二秒01,第三秒10,第四秒11 ,第四秒的这个时刻,这两个“1”“1”做"与"运算,输出一个脉冲“1”。理解?

OK,废话不说了,最终图放上。

希望认真看完此文的朋友们,能够很清楚的知道一个最简单的4位的DA电路的原理所在。

感慨:有时候,思维的固化是最可怕的敌人。我就是这类人。

实际上,做硬件的工程师,是根本没有必要去解剖一个一个芯片的,文章的真正目的是,通过分析DA的电路:

1)让你真正体会到数电/模电的精神

2)让你欣赏到一个成熟电路所蕴含的人类的智慧的魅力。

模数与数模转换

3. 模数转换器 (1) 模/数(A/D )转换器 A/D 转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机或数字系统进行处理、存储、控制和显示。在工业控制和数据采集及其它领域中,A/D 转换器是不可缺少的重要组成部分。 1) 逐次逼近型A/D 转换器 逐次逼近型A/D 转换器又称逐次渐近型A/D 转换器,是一种反馈比较型A/D 转换器。逐次逼近型A/D 转换器进行转换的过程类似于天平称物体重量的过程。天平的一端放着被称的物体,另一端加砝码,各砝码的重量按二进制关系设置,一个比一个重量减半。称重时,把砝码从大到小依次放在天平上,与被称物体比较,如砝码不如物体重,则该砝码予以保留,反之去掉该砝码,多次试探,经天平比较加以取舍,直到天平基本平衡称出物体的重量为止。这样就以一系列二进制码的重量之和表示了被称物体的重量。例如设物体重11克,砝码的重量分别为1克、2克、4克和8克。称重时,物体天平的一端,在另一端先将8克的砝码放上,它比物体轻,该砝码予以保留(记为1),我们将被保留的砝码记为1,不被保留的砝码记为0。然后再将4克的砝码放上,现在砝码总和比物体重了,该砝码不予保留(记为0),依次类推,我们得到的物体重量用二进制数表示为1011。用下表7.1表示整个称重过程。 表7.1 逐次逼近法称重物体过程表 图7.7 逐次逼近型A/D 转换器方框图 利用上述天平称物体重量的原理可构成逐次逼近型A/D 转换器。 逐次逼近型A/D 转换器的结构框图如图7.7所示,包括四个部分:电压比较器、D/A 转换器、逐次逼近寄存器和顺序脉冲发生器及相应的控制逻辑。 逐次逼近型A/D 转换器是将大小不同的参考电压与输入模拟电压逐步进行比较,比较结果以相应的二进制代码表示。转换开始前先将寄存器清零,即送给D /A 转换器的数字量为0,三个输出门G 7、G 8、G 9被封锁,没有输出。转换控制信号有效后(为高电平)开始转换,在时钟脉冲作用下,顺序脉冲发生器发出一系列节拍脉冲,寄存器受顺序脉冲发生器及控制电路的控制,逐位改变其中的数码。首先控制逻辑将寄存器的最高位置为1,使其输出为100……00。这个数码被D/A 转换器转换成相应的模拟电压U o ,送到比较器与待转换的输入模拟电压U i 进行比较。若U o >U i ,说明寄存器输出数码过大,故将最高位的1变成0,同时将次高位置1;若U o ≤U i ,说明寄存器输出数码还不够大,则应将这一位的1 保留。数码的取舍通过电压比较器的输出经控制器来完成的。依次类推按上述方法将下一位置1进行比较确定该位的1是否保留,直到最低位为止。此时寄存器里保留下来的数码即为所求的输出数字量。 2) 并联比较型A/D 转换器 并联比较型A/D 转换器是一种高速A/D 转换器。图8-9所示是3位并联型A/D 转换器,

数模及模数转换器习题解答

数模及模数转换器习题解答

————————————————————————————————作者: ————————————————————————————————日期: ?

自我检测题 1.就实质而言,D/A转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A /D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D转换器两个最重要的指标是分辨率和转换速度。 6.8位D /A 转换器当输入数字量只有最低位为1时,输出电压为0.02V ,若输入数字量只有最高位为1时,则输出电压为 V 。 A.0.039 B .2.56 C .1.27 D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D.参考电压 8.图T7.8所示R-2R网络型D/A 转换器的转换公式为 。 R R R I V REF 2R 2R 2R 2R 2R S 3 S 2 S 1 S 0 D 3 D 2 D 1 D 0 R F =R A + -v O i ∑ 图T 7.8 A .∑ =?- =3 3 REF o 22 i i i D V v ??B .∑=?- =3 4 REF o 2 232i i i D V v ??C .∑=?- =3 4 REF o 2 2 i i i D V v ??D .∑=?= 3 4 REF o 2 2 i i i D V v 9.D/A 转换器可能存在哪几种转换误差?试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。 10.比较权电阻型、R -2R 网络型、权电流型等D/A 转换器的特点,结合制造工

什么是DAC(数模转换器)

什么是DAC(数模转换器) 随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模 拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。将模拟信号转换 成数字信号的电路,称为模数转换器(简称A/D 转换器或ADC,Analog to DigitalConverter);将数字信号转换为模拟信号的电路称为数模转换器(简称 D/A 转换器或DAC,Digital toAnalog Converter);A/D 转换器和D/A 转换器已成为计算机系统中不可缺少的接口电路。为确保系统处理结果的精确度,A/D 转换器和D/A 转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D 与D/A 转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D 与D/A 转换器的重要技术指标。随着集成技术的发展,现 已研制和生产出许多单片的和混合集成型的A/D 和D/A 转换器,它们具有愈 来愈先进的技术指标。本章将介绍几种常用A/D 与D/A 转换器的电路结构、 工作原理及其应用。数模(D/A)转换器转换原理数字量是用代码按数位组合起来表示的,对于有权码,每位代码都有一定的位权。为了将数字量转换成模拟量,必须将每1 位的代码按其位权的大小转换成相应的模拟量,然后将这些模拟量相加,即可得到与数字量成正比的总模拟量,从而实现了数字—模拟转换。这就是组成D/A 转换器的基本指导思想。图11.1.1 表示了4 位二进制数字量与经过D/A 转换后输出的电压模拟量之间的对应关系。由图11.1.1 还可

7数模及模数转换器习题解答

7数模及模数转换器习题解答119 自我检测题 1.就实质而言,D/A转换器类似于译码器,A/D转换器类似于编码器。 2.电压比较器相当于1位A/D转换器。 3.A/D转换的过程可分为采样、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A/D转换器而言,双积分型的抗干扰能力强,逐次逼近型的转换速度快。 5.A/D 6.8位D/A转换器当输入数字量只有最低位为1时,输出电压为0.02V,若输入数字量只有最高位为1时,则输出电压为V。 A.0.039 B.2.56 C.1.27 D.都不是 7.D/A转换器的主要参数有、转换精度和转换速度。 A.分辨率B.输入电阻C.输出电阻D.参考电压 8.图T7.8所示R-2R网络型D/A转换器的转换公式为。 V REF v O 图T7.8 A.∑ = ? - = 3 3 REF o 2 2i i i D V v B.∑ = ? - = 3 4 REF o 2 2 3 2 i i i D V v D.∑ = ? = 3 4 REF o 2 2i i i D V v 9.D/A转换器可能存在哪几种转换误差?试分析误差的特点及其产生误差的原因。 解:D/A转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。 10.比较权电阻型、R-2R网络型、权电流型等D/A转换器的特点,结合制造工艺、转换的精度和转换的速度等方面比较。

第8章-数模和模数转换习题解答

思考题与习题 8-1 选择题 1)一输入为十位二进制(n=10)的倒T 型电阻网络DAC 电路中,基准电压REF V 提供电流为 b 。 A. R V 10REF 2 B. R V 10REF 22? C. R V REF D. R V i )2(REF ∑ 2)权电阻网络DAC 电路最小输出电压是 b 。 A. LSB 21V B. LSB V C. MSB V D. MSB 2 1V 3)在D/A 转换电路中,输出模拟电压数值与输入的数字量之间 a 关系。 A.成正比 B. 成反比 C. 无 4)ADC 的量化单位为S ,用舍尾取整法对采样值量化,则其量化误差m ax ε= b 。 A.0.5 S B. 1 S C. 1.5 S D. 2 S 5)在D/A 转换电路中,当输入全部为“0”时,输出电压等于 b 。 A.电源电压 B. 0 C. 基准电压 6)在D/A 转换电路中,数字量的位数越多,分辨输出最小电压的能力 c 。 A.越稳定 B. 越弱 C. 越强 7)在A/D 转换电路中,输出数字量与输入的模拟电压之间 a 关系。 A.成正比 B. 成反比 C. 无 8)集成ADC0809可以锁存 8 模拟信号。 A.4路 B. 8路 C. 10路 D. 16路 5)双积分型ADC 的缺点是 a 。 A.转换速度较慢 B. 转换时间不固定 C. 对元件稳定性要求较高 D. 电路较复杂 8-2 填空题 1)理想的DAC 转换特性应是使输出模拟量与输入数字量成__正比__。转换精度是指DAC 输出的实际值和理论值__之差_。 2)将模拟量转换为数字量,采用 __A/D__ 转换器,将数字量转换为模拟量,采用__D/A_____ 转换器。 3)A/D 转换器的转换过程,可分为采样、保持及 量化 和 编码 4个步骤。 4)A/D 转换电路的量化单位位S ,用四舍五入法对采样值量化,则其m ax ε= 0.5s 。 5)在D/A 转换器的分辨率越高,分辨 最小输出模拟量 的能力越强;A/D 转换器的分辨率越高,分辨 最小输入模拟量 的能力越强。 6)A/D 转换过程中,量化误差是指 1个LSB 的输出变所对应的模拟量的范围 ,量化误差是 不可 消除的。

数模转换原理及应用

数模(D/A)转换器及模数(A/D)转换器 一、实验目的 1.熟悉D / A转换器的基本工作原理。 2.掌握D / A转换集成芯片DAC0832的性能及其使用方法。 3.熟悉A / D转换器的工作原理。 4.掌握A / D转换集成芯片ADC0809的性能及其使用方法。 二、实验原理 1.数模(D / A)转换 所谓数模(D / A)转换,就是把数字量信号转换成模拟量信号,且输出电压与输入的数字量成一定的比例关系。图47为D / A 转换器的原理图,它是由恒流源(或恒压源)、模拟开关、以及数字量代码所控制的电阻网络、运放等组成的四位D/ A转换器。 四个开关S0 ~ S3由各位代码控制,若―S‖代码为1,则意味着接VREF ,代码―S‖= 0,则意味着接地。 由于运放的输出值为V0= -I∑?Rf ,而I∑为I0、I1、I2、I3的和,而I0 ~ I3的值分别为(―S‖代码全为1): I0 =,I1 =,I2 =,I3 = 若选 R0 =,R1 =,R2 =,R3 = 则I0 ==?20 ,I1 =?21 ,I2 =?22 ,I3 =?23 若开关S0 ~ S3不全合上,则―S‖代码有些为0,有些为1(设4位―S‖代码为D3D2DlD0),则I∑ =D3I3 + D2I2 + DlIl + D0I0 =(D3?23 + D2?22 + D1?21 + D0?20)= B? 所以,V0 = -Rf ? B,B为二进制数,即模拟电压输出正比于输入数字量B ,从而实现了数字量的转换。 随着集成技术的发展,中大规模的D / A转换集成块相继出现,它们将转换的电阻网络和受数码控制的电子开关都集成在同一芯片上,所以用起来很方便。目前,常用的芯片型号很多,有8位的、12位的转换器等,这里我们选用8位的D / A转换器DAC0832进行实验研究。 DAC0832是CMOS工艺,共20管引脚,其管脚排列如图48所示。

数模及模数转换器习题解答

数模及模数转换器习题 解答 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

自我检测题 1.就实质而言,D/A 转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A/D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D 6.8位D/A 1时,输出电压为,若输入数字量只有最高位为1时,则输出电压为 V 。 A . B .2.56 C . D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D .参考电压 8.图所示R-2R 网络型D/A 转换器的转换公式为 。 V REF v O 图 A .∑=?- =3 3 REF o 2 2 i i i D V v B .∑=?- =3 4 REF o 2 232i i i D V v D .∑=?= 3 4 REF o 2 2i i i D V v 9.D/A 转换器可能存在哪几种转换误差试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A 转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。

数模模数转换实验报告材料

数模模数转换实验报告 一、实验目的 1、了解数模和模数转换电路的接口方法及相应程序设计方法。 2、了解数模和模数转换电路芯片的性能和工作时序。 二、实验条件 1、DOS操作系统平台 2、数模转换芯片DAC0832和模数转换器ADC0809芯片。 三、实验原理 1、数模转换: (1)微机处理的数据都是数字信号,而实际的执行电路很多都是模拟的。因此微机的处理结果又常常需要转换为模拟信号去驱动相应的执行单元,实现对被控对象的控制。这种把数字量转换为模拟量的设备称为数模转换器(DAC),简称D/A。 (2)实验中所用的数模转换芯片是DAC0832,它是由输入寄存器、DAC 寄存器和D/A 转换器组成的CMOS 器件。其特点是片包含两个独立的8 位寄存器,因而具有二次缓冲功能,可以将被转换的数据预先存在DAC 寄存器中,同时又采集下一组数据,这就可以根据需要快速修改DAC0832 的输出。 2、模数转换: (1)在工程实时控制中,经常要把检测到的连续变化的模拟信号,如温度、压力、速度等转换为离散的数字量,才能输入计算机进行处理。实现模拟量到数字量转换的设备就是模数转换器(ADC),简称A/D。

(2)模数转换芯片的工作过程大体分为三个阶段:首先要启动模数转换过程。其次,由于转换过程需要时间,不能立即得到结果,所以需要等待一段时间。一般模数转换芯片会有一条专门的信号线表示转换是否结束。微机可以将这条信号线作为中断请求信号,用中断的方式得到转换结束的消息,也可以对这条信号线进行查询,还可以采用固定延时进行等待(因为这类芯片转换时间是固定的,事先可以知道)。最后,当判断转换已经结束的时候,微机就可以从模数转换芯片中读出转换结果。 (3)实验采用的是8 路8 位模数转换器ADC0809 芯片。ADC0809 采用逐次比较的方式进行A/D 转换,其主要原理为:将一待转换的模拟信号与一个推测信号进行比较,根据推测信号是大于还是小于输入信号来决定增大还是减少该推测信号,以便向模拟输入逼近。推测信号由D/A 转换器的输出获得,当推测信号与模拟信号相等时,向D/A 转换器输入的数字就是对应模拟信号的数字量。ADC0809 的转换时间为64 个时钟周期(时钟频率500K 时为128S)。分辨率为 8 位,转换精度为±LSB/2,单电源+5V 供电时输入模拟电压围为04.98V。 四、实验容 1、把DAC0832 的片选接偏移为10H 的地址,使用debug 命令来测试 DAC0832 的输出,通过设置不同的输出值,使用万用表测量Ua 和Ub 的模拟电压,检验DAC0832 的功能。选取典型(最低、最高和半量程等)的二进制值进行检验,记录测得的结果。实验结果记录如下: 输入 00 0.001 4.959 08 0.145 4.636

数模转换器和模数转换器实验报告

实验报告 课程名称微机原理与接口技术 实验项目实验五 数/模转换器和模/数转换器实验实验仪器 TPC-USB通用微机接口实验系统 系别计算机系 专业网络工程 班级/学号 学生 _ 实验日期 成绩_______________________ 指导教师王欣

实验五数/模转换器和模/数转换器实验 一、实验目的 1. 了解数/模转换器的基本原理,掌握DAC0832芯片的使用方法。 2. 了解模/数转换器的基本原理,掌握ADC0809的使用方法。 二.实验设备 1.PC微机系统一套 2.TPC-USB通用微机接口实验系统一套 三.实验要求 1.实验前要作好充分准备,包括程序框图、源程序清单、调试步骤、测试方法、对运行结果的分析等。 2.熟悉与实验有关的系统软件(如编辑程序、汇编程序、连接程序和调试程序等)使用方法。在程序调试过程中,有意识地了解并掌握TPC-USB通用微机接口实验系统的软硬件环境及使用,掌握程序的调试及运行的方法技巧。 3.实验前仔细阅读理解教材相关章节的相关容,实验时必须携带教材及实验讲义。 四.实验容及步骤 (一)数/模转换器实验 1.实验电路原理如图1,DAC0832采用单缓冲方式,具有单双极性输入端(图中的Ua、Ub),编程产生以下锯齿波(从Ua和Ub输出,用示波器观察) 图1 实验连接参考电路图之一 编程提示: 1. 8位D/A转换器DAC0832的口地址为290H,输入数据与输出电压的关系为:

(UREF表示参考电压,N表示数数据),这里的参考电压为PC机的+5V电源。 2. 产生锯齿波只须将输出到DAC0832的数据由0循环递增。 3. 参考流程图(见图2): 图2 实验参考流程图之一 (二)模/数转换器 1. 实验电路原理图如图3。将实验(一)的DAC的输出Ua,送入ADC0809通道1(IN1)。 图3 实验连接参考电路图之二 2. 编程采集IN1输入的电压,在屏幕上显示出转换后的数据(用16进制数)。编程提示: 1. ADC0809的IN0口地址为298H,IN1口地址为299H。 2. IN0单极性输入电压与转换后数字的关系为:

数模与模数转换器 习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=-= 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 11-3 【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.151650101254 === )( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?

解:V V V V O 988.21532565100110012 58≈== )( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~240==-=-=)()( 【题11-7】 试分析图题11-7所示电路的工作原理。若是输入电压V IN =,D 3~D 0是多少? 图题11-7 解:D3=1时,V V V O 6221234== ,D3=0时,V O =0。 D2=1时,V V V O 3221224== ,D2=0时,V O =0。 D1=1时,V V V O 5.1221214== ,D1=0时,V O =0。 D0=1时,V V V O 75.0221204 ==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。 【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少?分辨率是多少? 解:台阶电压为mV mV V STEP 5.192/50008== 分辨率为:%39.00039.05000/5.195000/===mV V STEP

数模转换与模数转换

第六章数模转换与模数转换 授课题目: 6.1 D/A转换器 教学目标: 1、掌握数模、模数转换的概念。 2、理解数模转换的原理。 3、熟悉D/A转换器集成芯片的性能,学习其使用方法。 教学内容(包括重点、难点): 教学重点:1、数模转换的基本原理。 2、D/A转换器集成芯片的使用。 教学难点:1、转换电路的分析计算。 2、知识的综合复习应用。 教学过程设计 ●复习并导入新课 问题:回忆二进制转换为十进制的加权和公式和电阻的串联、并联。 ●就新课内容提出问题 1、什么是模拟量? 2、什么是电模拟量? ●讲授新课 计算机对生产进行实时控制的过程如下: 模拟量:温度、压力、湿度、流量、速度等 电模拟量:电压、电流 6.1 D/A转换器

D/A 转换—从数字信号到模拟信号的转换。 D/A 转换器(简称DAC )—完成D/A 转换的电路。 一、D/A 转换电路原理图 数据锁存器:暂时存放输入的数字量; 模拟电子开关:这些数字量控制模拟电子开关,将参考电压源UREF 按位切换到电阻译码网络中变成加权电流。 集成运放:加权电流经运放求和,输出相应的模拟电压,完成D/A 转换过程。 二、倒 T 形电阻网络DAC 1、电路图 2、工作原理—电流分流形成加权值。 3、转换公式 4、特点 电阻值一致。倒T 形电阻网络支路电流恒定,电路转换速度高。 举例1:若U R=10V ,求对应D3D2D1D0分别为1010、0110和1100时输出电压值。 三、主要性能指标 1、分辨率 分辨率:说明DAC 输出最小电压的能力。它是指最小输出电压(对应的输入数字量仅最低位为1)与最大输出电压(对应的输入数字量各有效位全为1)之比: 分辨率= n :表示输入数字量的位数。n 越大,分辨最小输出电压的能力也越强。 举例2:n=8, DAC 的分辨率为 分辨率= =0.0039 数据锁存器 … D 0D 1 D n -1 … 模拟电子开关 … 电阻译码网络 … 求和运放 参考电压源 模拟输出 U )2...22(2 0022101?++?+?- =----D D D U U n n n n REF n 1 21-n 1 21 -n

数模和模数转换器

第九章:数模和模数转换器 一、单选题 1:想选一个中等速度,价格低廉的A/D转换器,下面符合条件的是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 2:下面抑制电网公频干扰能力强的A/D转换器是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 3:不适合对高频信号进行A/D转换的是()。 A 并联比较型B逐次逼近型 C双积分型D不能确定 4:四位DAC和八位DAC的输出最小电压一样大,那么他们的最大输出电压()。 A一样大B前者大于后者C后者大于前者D不确定 5:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下最大输出电压()。A一样大B前者大于后者C后者大于前者 D 不确定 6:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下分辨率()。 A一样大B前者大于后者C后者大于前者 D 不确定 7:下列A/D转换器类型中,相同转换位数转换速度最高的是()。 A并联比较型B逐次逼近型 C双积分型D不能确定 8.一个无符号8位数字量输入的DAC,其分辨率为位。 A.1 B.3 C.4 D.8 9.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。 A.采样 B.量化 C.保持 D.编码 10.以下四种转换器,是A/D转换器且转换速度最高。 A.并联比较型 B.逐次逼近型 C.双积分型 D.施密特触发器 二、判断题 1:D/A转换器的建立时间等于数字信号由全零变全1或由全1变全0所需要的时间。()2:D/A转换器的转换精度等于D/A转换器的分辨率。() 3:采用四舍五入量化误差分析时,A/D转换过程中最小量化单位与量化误差是相等的。() 4:在A/D转换过程中量化误差是可以避免的。() 5:由于R-2R 倒T 型D/A转换器自身的优点,其应用比权电阻DAC广泛。() 6:倒T型网络D/A转换器由于支路电流不变,所以不需要建立时间。() 7:A/D转换的分辨率是指输出数字量中只有最低有效位为1时所需的模拟电压输入值。() 8.权电阻网络D/A转换器的电路简单且便于集成工艺制造,因此被广泛使用。()

数模和模数转换习题解答

8-1 选择题 1)一输入为十位二进制(n=10)的倒T 型电阻网络DAC 电路中,基准电压REF V 提供电流为 b 。 A. R V 10REF 2 B. R V 10REF 22? C. R V REF D. R V i )2(REF ∑ 2)权电阻网络DAC 电路最小输出电压是 b 。 A. LSB 21V B. LSB V C. MSB V D. MSB 2 1V 3)在D/A 转换电路中,输出模拟电压数值与输入的数字量之间 a 关系。 A.成正比 B. 成反比 C. 无 4)ADC 的量化单位为S ,用舍尾取整法对采样值量化,则其量化误差m ax ε= b 。 A.0.5 S B. 1 S C. S D. 2 S 5)在D/A 转换电路中,当输入全部为“0”时,输出电压等于 b 。 A.电源电压 B. 0 C. 基准电压 6)在D/A 转换电路中,数字量的位数越多,分辨输出最小电压的能力 c 。 A.越稳定 B. 越弱 C. 越强 7)在A/D 转换电路中,输出数字量与输入的模拟电压之间 a 关系。 A.成正比 B. 成反比 C. 无 8)集成ADC0809可以锁存 8 模拟信号。 路 B. 8路 C. 10路 D. 16路 5)双积分型ADC 的缺点是 a 。 A.转换速度较慢 B. 转换时间不固定 C. 对元件稳定性要求较高 D. 电路较复杂 8-2 填空题 1)理想的DAC 转换特性应是使输出模拟量与输入数字量成__正比__。转换精度是指DAC 输出的实际值和理论值__之差_。 2)将模拟量转换为数字量,采用 __A/D__ 转换器,将数字量转换为模拟量,采用__D/A_____ 转换器。 3)A/D 转换器的转换过程,可分为采样、保持及 量化 和 编码 4个步骤。 4)A/D 转换电路的量化单位位S ,用四舍五入法对采样值量化,则其m ax ε= 。 5)在D/A 转换器的分辨率越高,分辨 最小输出模拟量 的能力越强;A/D 转换器的分辨率越高,分辨 最小输入模拟量 的能力越强。 6)A/D 转换过程中,量化误差是指 1个LSB 的输出变所对应的模拟量的范围 ,量化误差是 不可 消除的。 8-3 要求某DAC 电路输出的最小分辨电压LSB V 约为5m V,最大满度输出电压m U =10V,试求该电路输入二进制数字量的位数N应是多少?

数模与模数转换

第8章数模与模数转换 随着科学技术的迅速发展,尤其是在自动控制、自动检测通信等领域中,广泛采用数字电子计算机处理各种模拟信号,这样,必须先把这些模拟信号转换成相应的数字信号,计算机系统才能进行分析、处理,处理后的数字信号还需再转换为模拟信号才能实现对执行机构的控制。从模拟信号到数字信号的转换称为模—数转换,简写为A/D。把能完成A/D转换功能的电路称为模数转换器,简称为ADC(Analog to Digital Converter)。从数字信号到模拟信号的转换称为数—模转换,简写为D/A,把能完成D/A转换功能的电路称为数模转换器,简称DAC(Digital to Analog Converter)。模拟信号和数字信号之间的转换可用图8-1所示,由此可见,ADC和DAC就是连接模拟系统和数字系统的“桥梁”—接口电路。 图8-1 模拟信号与数字信号的转换过程 8.1 数模转换 数模转换的基本思想是,把数字量中的每一位代码按对应权的大小转换成相应的模拟量,这些模拟量之和与数字量成正比。 数模转换器由输入寄存器、电子模拟开关、解码网络、基准电压源和求和电路组成,其组成的方框图如图8-2所示。 图8-2 DAC构成框图 DAC电路的工作过程为:数字量以并行或串行方式输入并存储在输入寄存器中,寄存器输出的每位数码驱动对应数位上的电子模拟开关,解码网络就能获得相应的模拟量,再将这些模拟量送到求和电路相加即得到与数字量相对应的模拟量。 数模转换器按解码网络结构分为T形及倒T形电阻网络D/A转换器,权电阻网络D/A 转换器,权电流D/A转换器等。按模拟开关电路的不同可分为CMOS开关型和双极开关型D/A转换器,下面介绍常见的两种即倒T形电阻网络型和权电流型D/A转换器。 8.1.1 倒T形电阻网络D/A转换器

模数转换器基本原理及应用

Σ-Δ模数转换器基本原理及应用 一、Σ-Δ ADC基本原理 Σ-Δ ADC以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化, 通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率, 然后对ADC输出进行采样抽取处理以降低有效采样速率。Σ-ΔADC的电路结构是由非常简单的模拟电路(一个比较器、一个开关、一个或几个积分器及模拟求和电路)和十分复杂的数字信号处理电路构成。要了解Σ-ΔADC的工作原理, 必须熟悉过采样、噪声整形、数字滤波和采样抽 取等基本概念 1.过采样 ADC是一种数字输出与模拟输入成正比的电路, 图1给出了理想3位单极性ADC的转换特性, 横坐标是输入电压U IN 的相对值, 纵坐标是经过采样量化的数字输出量, 以二进制000~111表示。理想ADC第一位的变迁发生在相当于1/2LSB的模拟电压值上, 以后每隔1LSB都发生一次变迁, 直至距离满度的1 1/2 LSB。因为ADC的模拟量输入可以是任何值, 但数字输出是量化的, 所以实际的模拟输入与数字输出之间存在±1/2LSB的量化误差。在交流采样应用中, 这种量化误差会产生量化噪声。 图1 理想3位ADC转换特性 如果对理想ADC加一恒定直流输入电压, 那么多次采样得到的数字输出值总是相同的, 而且分辨率受量化误差的限制。如果在这个直流输入信号上叠加一个交流信号, 并用比这交流信号频率高得多的采样频率进行采样, 此时得到的数字输出值将是变化的, 用这些采样结果的平均值表示ADC的转换结果便能得到比用同样ADC高得多的采样分辨率, 这种方法称作过采样(oversampling)。如果模拟输入电压本身就是交流信号, 则不必另叠加一个交流信号。采用过采样方法(采样频率远高于输入信号频率)也同样可提高ADC的分辨率。 由于过采样的采样速率高于输入信号最高频率的许多倍, 这有利于简化抗混叠滤波器的设计, 提高信噪比并改善动态范围。可以用频域分析方法来讨论过采样问题。由于直流信号转换具有的量化误差达1/2LSB, 所以数据采样系统具有量化噪声。一个理想的常规N位ADC的采样量化噪声有效值为q/12,均匀分布在奈奎斯特频带直流至fs/2范围内, 如图2所示。其中q为LSB的权重, fs为采样速率, 模拟低通滤波器将滤除fs/2以上的噪声。如果用Kfs的采样速率对输入信号进行采样(K

数模转换电路

数模转换电路 一、概述 数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器DAC。 二、D/A转换器的基本原理 基本原理:将输入的每一位二进制代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。这就是构成D/A转换器的基本思路。D/A转换器由数码寄存器、模拟电子开关电路、解码网络、求和电路及基准电压几部分组成。数字量以串行或并行方式输入、存储于数码寄存器中,数字寄存器输出的各位数码,分别控制对应位的模拟电子开关,使数码为1的位在位权网络上产生与其权值成正比的电流值,再由求和电路将各种权值相加,即得到数字量对应的模拟量。 1、数模转换器的转换方式 (1)并行数模转换 通过一个模拟量参考电压和一个电阻梯形网络产生以参考量为基准的分数值的权电流或权电压;而用由数码输入量控制的一组开关决定哪一些电流或电压相加起来形成输出量。所谓“权”,就是二进制数的每一位所代表的值。例如三位二进制数“111“,右边第1位的“权”是 20/23=1/8;第2位是21/23=1/4;第3位是22/23=1/2。位数多的依次类推。图2为这种三位数模转换器的基本电路,参考电压VREF在R1、R2、R3中产生二进制权电流,电流通过开关。当该位的值是“0”时,与地接通;当该位的值是“1”时,与输出相加母线接通。几路电流之和经过反馈电阻Rf产生输出电压。电压极性与参考量相反。输入端的数字量每变化1,仅引起输出相对量变化1/23=1/8,此值称为数模转换器的分辨率。位数越多分辨率就越高,转换的精度也越高。工业自动控制系统采用的数模转换器大多是10位、12位,转换精度达0.5~0.1%。 (2)串行数模转换 将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。 三、D/A转换器的分类 1、电压输出型 电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。此外,大部分CMOS D/A转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了运算放大器的延迟,使响应变慢。此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。 2、乘算型 D/A转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。 四、D/A转换器的主要性能指标 1、分辨率 指最小输出电压(对应的输入数字量只有最低有效位为“1”)与最大输出电压(对应的输入数字量所有有效位全为“1”)之比。如N位D/A转换器,其分辨率为1/(2N-1)。 2、转换精度 D/A转换器的转换精度与D/A转换器的集成芯片的结构和接口电路配置有关。如果不考虑其他D/A 转换误差时,D/A的转换精度就是分辨率的大小,因此要获得高精度的D/A转换结果,首先要保证选择有足够分辨率的D/A转换器。同时D/A转换精度还与外接电路的配置有关,当外部电路器件或电源误差较大时,会造成较大的D/A转换误差,当这些误差超过一定程度时,D/A转换就产生错误。在D/A 转换过程中,影响转换精度的主要因素有失调误差、增益误差、非线性误差和微分非线性误差。 3、编辑本段温度系数 在满刻度输出的条件下,温度每升高1℃,输出变化的百分数定义为温度系数。 4、失调误差(或称零点误差)

数模转换器(DAC)原理研究

数字-模拟转换器(DAC)原理研究 电子0801班 08214014 08214013

一题目简述 随着科学技术的发展, 我们常常要用模拟系统来处理数字信号. 这就需要数字-模拟的转换. DAC的作用是将计算机或控制器产生的二进制数字转换成与之成比例的模拟电压. 其意义相当于一种译码电路. 本次的数模原理研究主要介绍全电阻网络D/A转换器和倒T型电阻网络D/A转换器, 利用等效方法和叠加原理推导输出电压, 比较两种转换器的特点. 并用EWB 软件来验证电路的工作原理. 二DAC原理 1. D/A数模转换器的设计思想 D/A数模转换器在某种意义上说相当于一种译码电路,将给定的二进制码的量译成相应的模拟量的数值。 数字量是由二进制数位组合起来,而每位数字符号都有一定的权。例如,四位二进制数1101每位的权对应十进制数值从高位到底为排列依次为8,4,2,1(必须位置上是一才有效)。所以二进制数1101代表十三。为了将数字量转换成模拟的量,可以将每一位数字量按权的大小装换成模拟量。然后将这些模拟量相加,所得到的总的模拟量就是数字量所必须转换成

的模拟量。 2.权电阻网络D/A 转换器 (1) 数模转换的一种方法是使用电阻网络,网络中阻值表示数字码输入位的二进制权值。输入的电平决定电流的有无,开关接入相应电压V s 时,输入电压为V s ,二进制数位“1”。开关接地时输入电压为0V ,二进制数为“0”. 如下图给出了一个三位的DAC 。 上面已经提及开关1 -n K , 2-n K ,……, 1K ,0K 分别受输入代码1-n D ,2-n D ,……,1D ,0D 的状态控制,由于虚地点的存在,其中某个开关i K 接到“1”或“0”在电阻i R 支路产生的电流为 i R i k Ri V I = 即 i R i D Ri V I = 000D R V I R = 11 1D R V I R = 222D R V I R = 支路电流总和 I=∑=20i i I =00D R V R +11D R V R +22 D R V R = 022D R V R +112D R V R +202D R V R =R V R 22[001122222?+?+?D D D ]

数模和模数转换

一、选择题 1.一个无符号8位数字量输入的DAC,其分辨率为位。 A.1 B.3 C.4 D.8 2.一个无符号10位数字输入的DAC,其输出电平的级数为。 10 A.4 B.10 C.1024 D.2 3.一个无符号4位权电阻DAC,最低位处的电阻为40KΩ,则最高位处电阻为。 A.4KΩ B.5KΩ C.10KΩ D.20KΩ 4.4位倒T型电阻网络DAC的电阻网络的电阻取值有种。 A.1 B.2 C.4 D.8 5.为使采样输出信号不失真地代表输入模拟信号,采样频率≥ B. ≤ C. ≥2 D. ≤2 和输入模拟信号的最高频率的关系是。 A. 6.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。 A.采样 B.量化 C.保持 D.编码 7.用二进制码表示指定离散电平的过程称为。 A.采样 B.量化 C.保持 D.编码 8.将幅值上、时间上离散的阶梯电平统一归并到最邻近的指定电平的过程称为。 A.采样 B.量化 C.保持 D.编码 9.若某ADC取量化单位△=,并规定对于输入电压,在0≤<时,认为输入的模拟电压为0V,输出的二进制数为000,则≤<时,输出的二进制数为。 A.001 B.101 C.110 D.111 10.以下四种转换器,是A/D转换器且转换速度最高。 A.并联比较型 B.逐次逼近型 C.双积分型 D.施密特触发器 二、判断题(正确打√,错误的打×)

1.权电阻网络D/A转换器的电路简单且便于集成工艺制造,因此被广泛使用。() 2.D/A转换器的最大输出电压的绝对值可达到基准电压V REF。() 3.D/A转换器的位数越多,能够分辨的最小输出电压变化量就越小。() 4.D/A转换器的位数越多,转换精度越高。() 5.A/D转换器的二进制数的位数越多,量化单位△越小。()6.A/D转换过程中,必然会出现量化误差。() 7.A/D转换器的二进制数的位数越多,量化级分得越多,量化误差就可以减小到0。() 8.一个N位逐次逼近型A/D转换器完成一次转换要进行N次比较,需要N+2个时钟脉冲。() 9.双积分型A/D转换器的转换精度高、抗干扰能力强,因此常用于数字式仪表中。() 10.采样定理的规定,是为了能不失真地恢复原模拟信号,而又不使电路过于复杂。() 三、填空题 1.将模拟信号转换为数字信号,需要经过、、、四个过程。 答案: 一、选择题 1. D 2. CD 3. B 4. B 5. C 6. A 7. D 8. B

数模转换器的选用

数模转换器的选用

————————————————————————————————作者:————————————————————————————————日期:

数模转换器的选用 随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。

为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。 如果CCD的质量能够满足一定色彩位数的要求,为了获得相应的输出效果,就要求有相应位数的数模转换实现数据采样,才能获得满意的效果,如果CCD可以实现36位精度,却使用了三个8位的数模转换器,结果输出出来就只剩下24位的数据精度了,这对于CCD是一种浪费,而如果使用三个16位的数模转换器,是实现了48位的数据输出,但效果与36位比较并无改善,对数模转换器就是一种浪费了。 1. 数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。

相关主题