搜档网
当前位置:搜档网 › 磁场部分老师必讲,学生必练的几道典型高考题

磁场部分老师必讲,学生必练的几道典型高考题

磁场部分老师必讲,学生必练的几道典型高考题
磁场部分老师必讲,学生必练的几道典型高考题

2016年磁场高考试题汇编

2016年磁场高考试题汇编 一、选择题 1.(全国新课标I 卷,15)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为( ) A. 11 B. 12 C. 121 D. 144 【答案】D 【解析】设质子的质量数和电荷数分别为1m 、1q ,一价正离子的质量数和电荷数为2m 、2q ,对于任意粒子,在加速电场中,由动能定理得: 21 02qU mv =- 得 2qU v m = ① 在磁场中应满足 2 v qvB m r = ② 由题意, 由于两种粒子从同一入口垂直进入磁场,从同一出口垂直离开磁场,故在磁场中做匀速圆周运动的半径应相同. 由①②式联立求解得 匀速圆周运动的半径12mU r B q =,由于加速电压不变, 故 1212212111 r B m q r B m q =??= 其中211212B B q q ==,,可得 121 144 m m = 故一价正离子与质子的质量比约为144 2.(全国新课标II 卷,18)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁 场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔.筒绕其中心轴以角速度ω顺时针转动.在该截面,一带电粒子从小孔M 射入筒,射入时的运动方向与MN 成30?角.当筒转过90?时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒未与筒壁发生碰撞,则带电粒子的比荷为

2015高中物理磁场经典计算题 (一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a = L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐) 一、单项选择题 1.下列说法中正确的是( ) A .在静电场中电场强度为零的位置,电势也一定为零 B .放在静电场中某点的检验电荷所带的电荷量q 发生变化时,该检验电荷所受电场力F 与其电荷量q 的比值保持不变 C .在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零 D .磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定 2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。如关系式U=IR ,既反映了电压、电流和电阻之间的关系,也确定了V (伏)与A (安)和Ω(欧)的乘积等效。现有物理量单位:m (米)、s (秒)、N (牛)、J (焦)、W (瓦)、C (库)、F (法)、A (安)、Ω(欧)和T (特) ,由他们组合成的单位都与电压单位V (伏)等效的是( ) A .J/C 和N/C B .C/F 和/s m T 2? C .W/A 和m/s T C ?? D .ΩW ?和m A T ?? 3.如图所示,重力均为G 的两条形磁铁分别用细线A 和B 悬挂在水平的天 花板上,静止时,A 线的张力为F 1,B 线的张力为F 2,则( ) A .F 1 =2G ,F 2=G B .F 1 =2G ,F 2>G C .F 1<2G ,F 2 >G D .F 1 >2G ,F 2 >G 4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1s 时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为( ) A .1/2 B .1 C .2 D .4 5.如图所示,矩形MNPQ 区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中a 、b 、c 处进入

高中物理磁场经典习题含答案

寒假磁场题组练习 题组一 1.如图所示,在xOy平面内,y ≥ 0的区域有垂直于xOy平面向里的匀强磁场,磁感应强度为B,一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以v0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 在着沿ad方向的匀强电场,场强大小为E,一粒子源不断地从a处的小孔沿 ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好 从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场, 磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。(带电粒子的重 力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E与磁感应强度B的比值为多大? 题组二 4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B1 = T的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = m的匀强磁场B2。某时刻一质量m = ×10-8 kg、电量q = +×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为( m,0)的P点以速度v = ×103 m/s沿y轴正方 向运动。试求: (1)微粒在y轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y轴时速度方向与y轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B0,

方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3a /4,求离子乙的质量。 (3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。 题组三 7.如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布 在以直径A 2A 4为边界的两个半圆形区域I 、II 中,A 2A 4与A 1A 3的夹角为60°。一质量为m 、带电荷量为+q 的粒子以某一速度从I 区的边缘点A 1处沿与A 1A 3成30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入II 区,最 后再从A 4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t ,求I 区和II 区中磁感应强度的大小(忽略粒子重力)。 8.如图所示,在以O 为圆心,内外半径分别为R 1和R 2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,R 1=R 0,R 2=3R 0,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。 (1)已知粒子从外圆上以速度射出,求粒子在A 点的初速度的大小; (2)若撤去电场,如图(b ),已知粒子从OA 延长线与外圆的交点C 以速度射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间; (3)在图(b )中,若粒子从A 点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少? A 23

[高考试题]磁场(1995-2005年)

1995-2005年磁场高考试题 1. (95)两个粒子,带电量相等,在同一匀强磁场中只受磁场力而作匀速圆周运动.( ) A.若速率相等,则半径必相等; B.若质量相等,则周期必相等; C.若动量大小相等,则半径必相等; D.若动能相等,则周期必相等. 2. (96)如右图所示,一细导体杆弯成四个拐角均为直角的平面折线,其ab、cd段长度 均为l 1,bc段长度为l 2 。弯杆位于竖直平面内,Oa、dO′段由轴承支撑沿水平放置。整 个弯杆置于匀强磁场中,磁场方向竖直向上,磁感应强度为B。今在导体杆中沿abcd通以大小为I的电流,此时导体杆受到的安培力对OO′轴的力矩大小等于____。 3. (96)设在地面上方的真空室内存在匀强电场和匀强磁场。已知电场强度和磁感应强度的方向是相同的,电场强度的大小E= 4.0伏/米,磁感应强度的大小B=0.15特。今有一个带负电的质点以v=20米/秒的速度在此区域内沿垂直场强方向做匀速直线运动,求 此带电质点的电量与质量之比q/m以及磁场的所有可能方向(角度可用 反三角函数表示)。 4.(97)如图,在x轴的上方(y≥0)存在着垂直于纸面向外的匀强磁场, 磁感应强度为B。在原点O有一个离子源向x轴上方的各个方向发射出 质量为m、电量为q的正离子,速率都为v。对那些在xy平面内运动的 离子,在磁场中可能到达的最大x=________________,最大y=________________。5.(97)质量为m、电量为q的质点,在静电力作用下以恒定速率v沿圆弧从A点运动到 B点,其速度方向改变的角度为θ(弧度),AB弧长为s。则A,B两点间的电势差U A -U B =_______________,AB弧中点场强大小E=________________。6.(98上海)在同一平面上有a、b、c三根等间距平行放置的长直导线, 依次载有电流强度为1安、2安和3安的电流,各电流的方向如图所示。则导线b所受的合力方向向_____。 7、(98)通电矩形导线框abcd与无限长通电直导线MN在同一平面内,电流方向如图所示,ab边与NM平行。关于MN的磁场对线框的作用,下列叙述正确的是 (A)线框有两条边所受的安培力方向相同 (B)线框有两条边所受的安培力大小相同 (C)线框所受安培力的合力朝左 (D)cd所受安培力对ab边的力矩不为零

1.2磁场典型例题.

磁场典型例题 类型题■ 分析求解磁感强度 磁感强度B 是磁场中的重要概念,求解磁感强度的方法一般有:定义式法、矢量叠加法等。 【例题1】如图中所示,电流从 A 点分两路通过对称的环形分路汇合于 B 点,在环形分路的中心 0处的 磁感强度( ) A. 垂直环形分路所在平面,且指向“纸内”。 B. 垂直环形分路所在平面,且指向“纸外”。 C. 在环形分路所在平面内指向 B 。 D. 磁感强度为零。 【例题2】电视机显象管的偏转线圈示意图如图所示,某时刻电流方向如图所示。则环心 向为( ) A .向下 B .向上 C.垂直纸面向里 D .垂直纸面向外 【例题3】安培秤如图所示,它的一臂下面挂有一个矩形线圈,线圈共有 N 匝,它的下部悬在均匀磁场 B 内,下边一段长为 L ,它与B 垂直。当线圈的导线中通有电流 I 时,调节砝码使两臂达到平衡;然后使电 流反向,这时需要在一臂上加质量为 m 的砝码,才能使两臂再达到平衡。求磁感强度 B 的大小。 专业、专心、成就学生梦想 个性化辅导学案 0处的磁场方

判别物体在安培力作用下的运动方向,常用方法有以下四种: 1、电流元受力分析法:即把整段电流等效为很多段直线电流元,先用左手定则判出每小段电流元受安 培力方向,从而判出整段电流所受合力方向,最后确定运动方向。 2、特殊值分析法:把电流或磁铁转到一个便于分析的特殊位置 从而确定运动方向。 3、等效分析法:环形电流可以等效成条形磁铁、条形磁铁也可等效成环形电流、通电螺线管可等效成 很多的环形电流来分析。 4、推论分析法: ⑴ 两电流相互平行时无转动趋势,方向相同相互吸引,方向相反相互排斥; (2)两 电 流不平行时有转动到相互平行且方向相同的趋势。 【例题1】如图所示,把一通电直导线放在蹄形磁铁磁极的正上方,导线可 以自由移动,当导线通过电流 I 时,导线的运动情况是( )(从上往下看) (如转过90° )后再判所受安培力方向 , A .顺时针方向转动,同时下降 B ?顺时针方向转动,同时上升 C.逆时针方向转动,同时下降 D .逆时针方向转动,同时上升 【例题2】如图所示,两平行光滑导轨相距为 L=20cm 金属棒MN 的质量为m=10g, 电阻R=8Q ,匀强磁场磁感应强度 B 方向竖直向下,大小为 B=0.8T ,电源电动势为 E=10V,内阻r=1 Q 。当电键S 闭合时,MN 处于平衡,求变阻器 R1的取值为多少?(设 0 =45°) 【例题3】长L=60cm 质量为m=6.0X 10-2 kg ,粗细均匀的金属棒,两端用完全相同的弹簧挂起,放在磁 感强度为B=0.4T ,方向垂直纸面向里的匀强磁场中, 如图8所示,若不计弹簧重力,问⑴ 要使弹簧不伸长, 金属棒中电流的大小和方向如何 ?(2)如在金属中通入自左向右、 大小为I=0.2A 的电流,金属棒下降X 1=1cm 若通入金属棒中的电流仍为 0.2A ,但方向相反,这时金属棒下降了多少 XS 分析导体在安培力作用下的运动 | N l S B

磁场典型例题

磁场典型例题 【内容和方法】 本单元内容包括磁感应强度、磁感线、磁通量、电流的磁场、安培力、洛仑兹力等基本概念,以及磁现象的电本质、安培定则、左手定则等规律。 本单元涉及到的基本方法有,运用空间想象力和磁感线将磁场的空间分布形象化是解决磁场问题的关键。运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况是将力学知识与磁场问题相结合的切入点。 【例题分析】 在本单元知识应用的过程中,初学者常犯的错误主要表现在:不能准确地再现题目中所叙述的磁场的空间分布和带电粒子的运动轨迹:运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况时出错;运用几何知识时出现错误;不善于分析多过程的物理问题。 例1 如图10-1,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是:[ ] A.磁铁对桌面的压力减小 B.磁铁对桌面的压力增大 C.磁铁对桌面的压力不变 D.以上说法都不可能 【错解分析】错解:磁铁吸引导线而使磁铁导线对桌面有压力,选B。 错解在选择研究对象做受力分析上出现问题,也没有用牛顿第三定律来分析导线对磁铁的反作用力作用到哪里。 【正确解答】 通电导线置于条形磁铁上方使通电导线置于磁场中如图10-2所示,由左手定则判断通电导线受到向下的安培力作用,同时由牛顿第三定律可知,力的作用是相互的,磁铁对通电导线有向下作用的同时,通电导线对磁铁有反作用力,作用在磁铁上,方向向上,如图10-3。对磁铁做受力分析,由于磁铁始终静止,无通电导线时,N = mg,有通电导线后N+F′=mg,N=mg-F′,磁铁对桌面压力减小,选A。 例2 如图10-4所示,水平放置的扁平条形磁铁,在磁铁的左端正上方有一线框,线框平面与磁铁垂直,当线框从左端正上方沿水平方向平移到右端正上方的过程中,穿过它的磁通量的变化是:[ ] A.先减小后增大 B.始终减小 C.始终增大 D.先增大后减小

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

磁场典型题

磁场典型题 一、磁场的叠加 例1 已知长直通电导线在周围某点产生磁场的磁感应强度大小与电流大小成正比、与该点到导线的距离成反比。4根电流大小相同的长直通电导线a 、b 、c 、d 平行放置,它们的横截面的连线构成一个正方形,O 为正方形中心,a 、b 、c 中电流方向垂直纸面向里,d 中电流方向垂直纸面向外,则a 、b 、c 、d 长直通电导线在O 点产生的合磁场的磁感应强度 B ( ) A.大小为零 B.大小不为零,方向由O 指向d C.大小不为零,方向由O 指向c D.大小不为零,方向由O 指向a 例3[2017·湖南十三校联考] 如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒 定电流,方向如图所示,这时O 点的磁感应强度大小为B 1,若将N 处长直导线移至 P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( ) A.1∶1 B .1∶2 C.3∶1 D.3∶2 二、安培力的计算 例1 将长为l 的导线弯成16 圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示。若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( ) A.IlB ,水平向左 B .IlB ,水平向右 C.3IlB π,水平向左 D.3IlB π ,水平向右 例2. 两条直导线相互垂直,如图所示,但相隔一小段距离,其中一条AB 是固定的,另一条CD 能自由转动,当电流按如图所示的方向通入两条导线时,CD 导线将( )

高考物理电磁学知识点之磁场经典测试题及解析

高考物理电磁学知识点之磁场经典测试题及解析 一、选择题 1.如图所示,地面附近某真空环境中存在着水平方向的匀强电场和匀强磁场,已知磁场方向垂直纸面向里,一个带正电的油滴,沿着一条与竖直方向成α角的直线MN运动,由此可以判断 A.匀强电场方向一定是水平向左 B.油滴沿直线一定做匀加速运动 C.油滴可能是从N点运动到M点 D.油滴一定是从N点运动到M点 2.科学实验证明,足够长通电直导线周围某点的磁感应强度大小 I B k l ,式中常量 k>0,I为电流强度,l为该点与导线的距离。如图所示,两根足够长平行直导线分别通有电流3I和I(方向已在图中标出),其中a、b为两根足够长直导线连线的三等分点,O为两根足够长直导线连线的中点,下列说法正确的是( ) A.a点和b点的磁感应强度方向相同 B.a点的磁感应强度比O点的磁感应强度小 C.b点的磁感应强度比O点的磁感应强度大 D.a点和b点的磁感应强度大小之比为5:7 3.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( ) A.轨迹为pb,至屏幕的时间将小于t B.轨迹为pc,至屏幕的时间将大于t C.轨迹为pa,至屏幕的时间将大于t

D.轨迹为pb,至屏幕的时间将等于t 4.如图所示,一块长方体金属板材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B。当通以从左到右的恒定电流I时,金属材料上、下表面电势分别为φ1、 φ2。该金属材料垂直电流方向的截面为长方形,其与磁场垂直的边长为a、与磁场平行的边长为b,金属材料单位体积内自由电子数为n,元电荷为e。那么 A. 12IB enb ?? -=B. 12IB enb ?? -=- C. 12 IB ena ?? -=D. 12 IB ena ?? -=- 5.笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为υ.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的() A.前表面的电势比后表面的低 B.前、后表面间的电压U与υ无关 C.前、后表面间的电压U与c成正比 D.自由电子受到的洛伦兹力大小为eU a 6.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平 面(未画出)。一群比荷为q m 的负离子以相同速率v0(较大),由P点在纸平面内向不同 方向射入磁场中发生偏转后,又飞出磁场,最终打在磁场区域右侧足够大荧光屏上,离子重力不计。则下列说法正确的是()

高考物理电磁学知识点之磁场真题汇编附解析

高考物理电磁学知识点之磁场真题汇编附解析一、选择题 1.我国探月工程的重要项目之一是探测月球3 2He含量。如图所示,3 2 He(2个质子和1个 中子组成)和4 2 He(2个质子和2个中子组成)组成的粒子束经电场加速后,进入速度选择器,再经过狭缝P进入平板S下方的匀强磁场,沿半圆弧轨迹抵达照相底片,并留下痕迹M、N。下列说法正确的是() A.速度选择器内部的磁场垂直纸面向外B.平板S下方的磁场垂直纸面向里 C.经过狭缝P时,两种粒子的速度不同D.痕迹N是3 2 He抵达照相底片上时留下的2.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是() A.M带正电,N带负电 B.M的速率大于N的速率 C.洛伦磁力对M、N做正功 D.M的运行时间大于N的运行时间 3.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( ) A.轨迹为pb,至屏幕的时间将小于t B.轨迹为pc,至屏幕的时间将大于t C.轨迹为pa,至屏幕的时间将大于t

D.轨迹为pb,至屏幕的时间将等于t 4.对磁感应强度的理解,下列说法错误的是() A.磁感应强度与磁场力F成正比,与检验电流元IL成反比 B.磁感应强度的方向也就是该处磁感线的切线方向 C.磁场中各点磁感应强度的大小和方向是一定的,与检验电流I无关 D.磁感线越密,磁感应强度越大 5.下列关于教材中四幅插图的说法正确的是() A.图甲是通电导线周围存在磁场的实验。这一现象是物理学家法拉第通过实验首先发现B.图乙是真空冶炼炉,当炉外线圈通入高频交流电时,线圈产生大量热量,从而冶炼金属C.图丙是李辉用多用电表的欧姆挡测量变压器线圈的电阻刘伟手握线圈裸露的两端协助测量,李辉把表笔与线圈断开瞬间,刘伟觉得有电击说明欧姆挡内电池电动势很高 D.图丁是微安表的表头,在运输时要把两个接线柱连在一起,这是为了保护电表指针,利用了电磁阻尼原理 6.如图所示,两平行直导线cd和ef竖直放置,通以方向相反大小相等的电流,a、b两点位于两导线所在的平面内.则 A.b点的磁感应强度为零 B.ef导线在a点产生的磁场方向垂直纸面向里 C.cd导线受到的安培力方向向右 D.同时改变了导线的电流方向,cd导线受到的安培力方向不变 7.如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射人水平放置,电势差为U2的两导体板间的匀强电场中,带电粒子沿平行于两板方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子入磁场和射出磁场的M、N两点间的距离d随着U1和U2的变化情况为(不计重力,不考虑边缘效应)()

高二物理 磁场 磁感线 典型例题解析

磁场磁感线典型例题解析 【例1】在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知 [ ] A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针 B.一定是小磁针正东方向有一条形磁铁的S极靠近小磁针 C.可能是小磁针正上方有电子流自南向北通过 D.可能是小磁针正上方有电子流自北向南水平通过 解答:正确的应选C. 点拨:掌握小磁针的N极受力方向与磁场方向相同,S极受力方向与磁场方向相反是解决此类问题的关键. 【例2】下列关于磁感线的说法正确的是 [ ] A.磁感线上各点的切线方向就是该点的磁场方向 B.磁场中任意两条磁感线均不可相交 C.铁屑在磁场中的分布所形成的曲线就是磁感线 D.磁感线总是从磁体的N极出发指向磁体的S极 解答:正确的应选AB. 点拨:对磁感线概念的理解和磁感线特点的掌握是关键. 【例3】如图16-2所示为通电螺线管的纵剖面图,试画出a、b、c、d四个位置上小磁针静止时N极的指向. 点拨:通电螺线管周围的磁感线分布是小磁针静止时N极指向的根据.【例4】如图16-3所示,当铁心AB上绕有一定阻值的线圈后,在AB间的小磁针静止时N极水平向左,试在图中铁心上的A、B两侧绕上线圈,并与电源连接成正确的电路.

点拨:根据小磁针静止时N极指向确定铁心的N极、S极,再定绕线方向. 跟踪反馈 1.下列说法正确的是 [ ] A.磁感线从磁体的N极出发,终止于磁体的S极 B.磁感线可以表示磁场的方向和强弱 C.磁铁能产生磁场,电流也能产生磁场 D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N 极一定指向通电螺线管的S极 2.首先发现电流磁效应的科学家是 [ ] A.安培 B.奥斯特 C.库仑 D.麦克斯韦 3.如图16-4所示,若一束电子沿y轴正方向运动,则在z轴上某点A 的磁场方向应是 [ ] A.沿x轴的正向 B.沿x轴的负向 C.沿z轴的正向

第五章 稳恒磁场典型例题

第五章 稳恒磁场 设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。 解:如图所示 令 110A I H e r = 220A I H e r = 由稳恒磁场的边界条件知, 12t t H H = 12n n B B = 又 B μ= 且 n H H = 所以 1122H H μμ= (1) 再根据安培环路定律 H dl I ?=? 得 12I H H r π+= (2) 联立(1),(2)两式便解得 ,

2112 0I I H r r μμμμπμμπ=? =?++ 01212 0I I H r r μμμμπμμπ= ? =?++ 故, 01110I B H e r θμμμμμπ==?+ 02220I B H e r θμμμμμπ== ?+ 212()M a n M M n M =?-=? 2 20 ( )B n H μ=?- 00()0I n e r θμμμμπ-= ???=+ 222()M M M J M H H χχ=??=??=?? 00 00(0,0,)z J Ie z μμμμδμμμμ--=?=?++ 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势 A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。 ? 解: 由电流分布的对称性可知,导体内矢势1A 和导体外矢势2A 均只有z e 分 量,而与φ,z 无关。由2A ?的柱坐标系中的表达式可知,只有一个分量,即 210A J μ?=- 220A ?= 此即 1 01()A r J r r r μ??=-?? 2 1()0A r r r r ??=?? 通解为 21121 ln 4 A Jr b r b μ=-++

电磁感应高考试题

2006年高考 电磁感应 1.[重庆卷.21] 两根相距为L 的足够长的金属直角导轨如题21图所示放置,它们各有一 边在同一水平面内,另一边垂直于水平面。质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数为μ,导轨电阻不计,回路总电阻为2R 。整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用下以速度V 1沿导轨匀速运动时,cd 杆也正好以速率向下V 2匀速运动。重力加速度为g 。以下说法正确的是 A .ab 杆所受拉力F 的大小为μmg +221 2B L V R B .cd 杆所受摩擦力为零 C. 回路中的电流强度为12() 2BL V V R D .μ与大小的关系为μ=221 2Rmg B L V 2.[全国卷II.20] 如图所示,位于同一水平面内的、两根平行的光滑金属导轨,处在匀 强磁场中,磁场方向垂直于导轨所在平面,导轨的一端与一电阻相连;具有一定质量的金属杆ab 放在导轨上并与导轨垂直。现用一平行于导轨的恒力F 拉杆ab ,使它由静止开始向右运动。杆和导轨的电阻、感应电流产生的磁场均可不计。用E 表示回路中的感应电动势,i 表示回路中的感应电流,在i 随时间增大的过程中,电阻消耗的功率等于 A .F 的功率 B .安培力的功率的绝对值 C .F 与安培力的合力的功率 D .iE 3.[上海物理卷.12] 如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2 相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体 棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .此时 (A )电阻R 1消耗的热功率为Fv /3. (B )电阻 R 。消耗的热功率为 Fv /6. (C )整个装置因摩擦而消耗的热功率为μmgvcos θ. (D )整个装置消耗的机械功率为(F +μmgcos θ)v· 4、[天津卷.20] 在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所 示,当磁场的磁感应强度B 随时间t 如图2变化时,图3中正确表示线圈 感应电动势E 变化的是 图1 图2

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

高中物理磁场经典计算题训练(有答案)

高中物理磁场经典计算题训练(有答案) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q , 质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小. a b c d A C F D (a ) (b )

高中物理磁场经典例题.doc

1.【辽宁省丹东市四校协作体2011 届高三第二次联合考试】 如图所示,质量为 ,带电荷量 m 为+ q 的 P 环套在固定的水平长直绝缘杆上,整个装置处在垂直于杆的水平匀强磁场中, mg ,则 ( ) 磁感应强度大小 B .现给环一向右的初速度 v 0 v 0> qB A .环将向右减速,最后匀速 B .环将向右减速,最后停止运动 C .从环开始运动到最后达到稳定状态,损失的机械能是 1 2 2mv D .从环开始运动到最后达到稳定状态,损失的机械能是 1 2 - 1 mg 2 2mv 2 m qB 1.[ 答案 ] AD [ 解析] 环在向右运动过程中受重力 mg ,洛伦兹力 F ,杆对环的支持力、摩擦力作用, mg 由于 v 0>qB ,∴ qv 0B >mg ,在竖直方向有 qvB =mg + F N ,在水平方向存在向左的摩擦力作用, 所以环的速度越来越小,当 N =0 时, f = 0,环将作速度 v mg 1 =的匀速直线运动, A 对 B F F qB 错,从环开始运动到最后达到稳定状态,损失的机械能为动能的减少,即 1 2 1 mg 2 , 2mv - 2m qB 故 D 对 C 错,正确答案为 A D . 2. 【重庆市万州区 2011 届高三第一次诊断】 如图所示,半径为 R 的光滑圆弧轨道处在匀强 磁场中,磁场方向垂直纸面(纸面为竖直平面)向里。两个质量为 m 、带电量均为 q 的正电荷 小球,分别从距圆弧最低点 A 高度为 h 处,同时静止释放后沿轨道运动。下列说法正确的是 A :两球可能在轨道最低点 A 点左侧相遇 B :两球可能在轨道最低点 A 点相遇 C :两球可能在轨道最低点 A 点右侧相遇 D :两球一定在轨道最低点 A 点左侧相遇 2. [答案]B [解析] 先对左球进行受力分析 , 如图所示 , 取小球运动的任一位置,小球在沿着轨道运动 的过程中始终受到竖直向下的重力 mg 和指向圆心的洛伦磁力 F 作用 , 而 mg 又可分解为指向圆 心方向和切线方向的 F1,F2。可知, F 和 F1 始终垂直小球的运动方向,在小球运动过程中不 改变小球的速度大小,而小球的速度的大小只与 F2 有关,对右球同样进行受力分析,它沿着 切线方向的力的变化与 F2 是相同的,所以两个小球运动到 A 所需的时间相同。在左球运动到 A 的过程中, F 不断增大,如果 F 始终小于 F1,那么两球便会在最低点 A 相遇,如果 F 在某点 大于 F1,那么小球便会被拉离轨道不能与右球在 A 点相遇,故答案是 B 。 3.【武昌区 2010 届高三年级元月调研测试】 如图所示,有一垂直于纸面向外的磁感应强度为 B 的有界匀强磁场(边界上有磁场) ,其边界为一边长为 L 的三角形, A 、 B 、 C 为三角形 的 顶点。 今有一质量为 、电荷量为+ q 的粒子(不计重 C 力 ), m

各地高考磁场试题

06[重庆卷]24.(19分)有人设想用题24图所示的装置来选择密度相同、大小不同的球状纳米粒子。粒子在电离 室中电离后带正电,电量与其表面积成正比。电离后,粒子缓慢通过小孔O 1进入极板间电压为U 的水平加速电场区域I,再通过小孔O 2射入相互正交的恒定匀强电场、磁场区域II,其中磁场的磁感应强度大小为B ,方向如图。收集室的小孔O 3与O 1、O 2在同一条水平线上。半径为r 0的粒子,其质量为m 0、电量为q 0,刚好能沿O 1O 3直线射入收集室。不计纳米粒子重力。 (234,3 4r S r V ππ==球球) (1) 试求图中区域 II 的电场强度; (2) 试求半径为r 的粒子通过O 2时的速率; (3) 讨论半径r ≠r 2的粒子刚进入区域II 时向哪个 极板偏转。 答案:(1)E =B 00/2m U q ,方向竖直向上 (2)v =r r /0v 0 (3) r >r 0时,v <v 0,F 总>0,粒子会向上极板偏转;

r <r 0时,v >v 0,F 总<0,粒子会向下极板偏转; 06[全国卷II]25(20分)如图所示,在x <0与x >0的区域中,存在磁感应强度大小分别为B 1与B 2的匀强磁场, 磁场方向均垂直于纸面向里 ,且B 1>B 2。一个带负电荷的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间 后又经过O 点,B 1与B 2 的比值应满足什么条件 答案:粒子在整个过程中的速度大小恒为V ,交替地在xy 平面内B 1与B 2磁场区域中做匀速圆周运动,轨道都是半个圆周。设粒子的质量和电荷量的大小分别为m 和q ,圆周运动的半径分别为r 1和r 2,有 r 1=m V q B 1, ① r 2=m V q B 2 。 ② 现分析粒子运动的轨迹。如图所示,在xy 平面内,粒子先沿半径为r 1的半圆C 1运动至y 轴上离O 点距离为2 r 1的A 点,接着沿半径为r 2的半圆D 1运动至O 1点,OO 1的距离 d =2(r 2-r 1)。 ③ 此后,粒子每经历一次“回旋”(即从y 轴出发沿半径为r 1的半圆和半径为r 2的半圆回到原点下方的y 轴),粒子的y 坐标就减小d 。设粒子经过n 次回旋后与y 轴交于O n 点,若OO n 即nd 满足

高中物理磁场经典习题(题型分类)含答案

磁场补充练习题 题组一 1.如图所示,在xOy 平面内,y ≥ 0的区域有垂直于xOy 平面向里的匀强磁场,磁感应强度为B ,一质量为m 、带电量大小为q 的粒子从原点O 沿与x 轴正方向成60°角方向以v 0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 2.如图所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E ,一粒子源不断地从a 处的小孔沿ab 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出。(带电粒子的重力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E 与磁感应强度B 的比值为多大? 题组二 3.长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为L ,极板不带电。现有质量为m ,电荷量为q 的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v 水平射入,如图所示。为了使粒子不能飞出磁场,求粒子的速度应满足的条件。 4.如图所示的坐标平面内,在y 轴的左侧存在垂直纸面向外、磁感应强度大小B 1 = 0.20 T 的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = 0.125 m 的匀强磁场B 2。某时刻一质量m = 2.0×10-8 kg 、电量q = +4.0×10-4 C 的带电微粒(重力可忽略不计),从x 轴上坐标为(-0.25 m ,0)的P 点以速度v = 2.0×103 m/s 沿y 轴正方向运动。试求: (1)微粒在y 轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y 轴时速度方向与y 轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B 2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d ,电压为U ;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。

相关主题