搜档网
当前位置:搜档网 › 无负压设备计算书

无负压设备计算书

无负压设备计算书
无负压设备计算书

无负压设备计算书

一、实际情况:

·本项目为*****************,本项目的市政水压为0.30Mpa。

·本项目为商住综合楼,共5栋建筑,最高28层,5#楼顶有消防高位水箱由生活给水系统提供补充流量,泵房布置在地下室负一层负6.2米,供水高度97.6米。

·本项目1~4层商场使用市政管网供水,5~14层为低区共436户住宅;

15~28层为高区,共245户住宅。

二、根据贵单位提供供水技术参数,本公司做无负压供水方案如下:

使用一套1+2形式无负压供水设备,中高区共用一个稳流罐,稳流罐后按中区、高区将水泵、变频控制柜、高压气压罐、管路阀门分开。

三、设备的参数计算:按照GB50015-2003设计规范(3.6.4公式计算)

本项目需要加压的用户共436+245户,按每户4口人计算,共2724人,按GB50015-2003的设计规范小区3000人以下,按卫生洁具用水当量计算秒流量。

1、流量:按照GB50015-2003设计规范取值

低区:436户

用水当量按GB50015-2003表3.1.14以及计算公式3.6.5的注解3当量为:洗涤盆1只(N=1.0);大便器2具(N=0.5~6.0);洗脸盆2只(N=0.75×2=1.50);淋浴器2具(浴盆)(N=1.0×2=2.0);洗衣机水嘴1个(N=1.0)。

小计:户当量Ng=12

管段的当量总数:

∑N=12×436=5232

用水定额(q0):250L/人.d;户均人数(m):4人。

用水小时数(T):24h;时变化系数K h=2.5。

则:a)最大用水时卫生器具给水当量平均出流概率(U0):

U0= q0m K h÷(0.2×Ng×T×3600)

=250×4×2.5÷(0.2×12×24×3600)

=0.012

b)管段的当量总数:

查表附表C,加权平均法计算系数(αc):0.0035

c)管段的卫生器具给水当量同时出流概率(U):

U=[1+αc(∑N-1)0.49]÷√∑N

=[1+0.0035×(5232-1)0.49]÷√5232

=0.017

d)管段的设计秒流量(q g):

q a=0.2×U×∑N

=0.2×0.017×5232

=17.8(L/S)

住户的用水最高峰流量为:

17.8×3.6=64(m3/h)

考虑水泵并联的流量下降,无负压设备的总流量需要增加1.1~1.2的安全系数,因此无负压设备的总流量应为70.4m3/h。

平时小时用水量:

用水定额(q0):170~300L/人.d;户均人数(m):2~4人。

用水小时数(T):24h;时变化系数K h=2.3~2.8。

436×3×170×2.3÷24÷1000=21.3 m3/h

由于小区的入住是逐渐增多的过程,为了便于先入住的小部分住户用水,住户家庭装修用水及全部入住后夜间小流量用水,本设备中配套夜间供水辅泵1台,夜间辅泵流量应小于单台流量的1/4,即4m3/h,夜间运行辅泵,主泵处于休眠状态,更安全节能,并且减少夜间噪音污染。

高区:245户

用水当量按GB50015-2003表3.1.14以及计算公式3.6.5的注解3当量为:洗涤盆1只(N=1.0);大便器2具(N=0.5~6.0);洗脸盆2只(N=0.75×2=1.50);淋浴器2具(浴盆)(N=1.0×2=2.0);洗衣机水嘴1个(N=1.0)。

小计:户当量Ng=12

管段的当量总数:

∑N=12×245=2940

用水定额(q0):250L/人.d;户均人数(m):4人。

用水小时数(T):24h;时变化系数K h=2.5。

则:a)最大用水时卫生器具给水当量平均出流概率(U0):

U0= q0m K h÷(0.2×Ng×T×3600)

=250×4×2.5÷(0.2×12×24×3600)

=0.012

b)管段的当量总数:

查表附表C,加权平均法计算系数(αc):0.0035

c)管段的卫生器具给水当量同时出流概率(U):

U=[1+αc(∑N-1)0.49]÷√∑N

=[1+0.0035×(2940-1)0.49]÷√2940

=0.022

d)管段的设计秒流量(q g):

q a=0.2×U×∑N

=0.2×0.022×2940

=13(L/S)

住户的用水最高峰流量为:

13×3.6=46.8(m3/h)

考虑水泵并联的流量下降,无负压设备的总流量需要增加1.1~1.2的安

全系数,因此无负压设备的总流量应为52m3/h。

由于小区的入住是逐渐增多的过程,为了便于先入住的小部分住户用水,住户家庭装修用水及全部入住后夜间小流量用水,本设备中配套夜间供水辅泵1台,夜间辅泵流量应小于单台流量的1/4,即4m3/h,夜间运行辅泵,主泵处于休眠状态,更安全节能,并且减少夜间噪音污染。

2、水泵扬程的确定:

高区

·最高供水高度为97.6米;

·按设计规范(GB50015-2003)计高位水箱的富裕水头按6米计算;

·按设计规范(GB50015-2003)计算小区沿途损+直管损失=3.2米;

·设备套内局部损失:水泵的出水管口径为DN100,每台水泵出水管配有蝶阀2个,止回阀1个,橡胶接头2个,按阀及弯管折合直管长度计算管阻=个数*折合直管直径倍数*直径

合计无负压设备的套内局部损失=2.4m。

·市政管网的平均压力为0.30Mpa,在自来水公司的要求下无负压设备需要加装倒流防止器、Y型过滤器,以及原有的水表、总管闸阀,合计局部损失9米。

因此市政管网可叠压为30-9=21米≥10米(满足无负压设备的叠压要求)

参考广西绿城水务对无负压设备的叠压要求可利用压力按0.1~0.15Mpa计算,本项目按0.15Mpa计算叠压。

·水泵出水扬程=97.6+6+3.2+2.4-15=94米

低区

·最高供水高度为43.5米;

·按设计规范(GB50015-2003)计大便器的正常工作压力15米;

·按设计规范(GB50015-2003)计算小区沿途损+直管损失=2.1米;

·设备套内局部损失:水泵的出水管口径为DN100,每台水泵出水管配有蝶阀2个,

止回阀1个,橡胶接头2个,按阀及弯管折合直管长度计算管阻=个数*折合直管直径倍数*直径

合计无负压设备的套内局部损失=2.4m。

·市政管网的平均压力为0.30Mpa,在自来水公司的要求下无负压设备需要加装倒

流防止器、Y型过滤器,以及原有的水表、总管闸阀,合计局部损失9米。

因此市政管网可叠压为30-9=21米≥10米(满足无负压设备的叠压要求)

参考广西绿城水务对无负压设备的叠压要求可利用压力按0.1~0.15Mpa计算,本项目按0.15Mpa计算叠压。

·水泵出水扬程=43.5+15+2.1+2.4-15=48米

3、控制方式的选择,水泵型号的确定

根据《给水排水设计手册-第2册建筑给水排水》1.9.3中对变频控制设备的选择:本项目低区使用3+1台水泵、高区使用2+1台水泵工作,主泵互为备用,根据用水量变化自动增减泵.

中区水泵型号:65GDL24-12×4 5.5KW×3台 25GDL4-11×5 2.2KW×1台

高区水泵型号:65GDL24-12×8 11KW×2台 25GDL4-11×9 4KW×1台高区水泵运行说明:

1、夜间用水量小时:市政管网的压力较大,此时由气压罐提供补充压

力,供水量:0~57L,主泵处于休眠状态;

2、高压气压罐的水不能满足用水要求时,起动夜间辅泵,主泵处于休

眠状态;

3、平时用水:变频1#的主泵、供水量0~24 m3/h;

4、高峰时:将1#变频泵切为工频后,变频2#泵,供水量:24~48m3/h;

5、当紧急情况时,将1#、2#泵切换为工频,起动辅泵,流量范围48~

52m3/h。

6、当用户用水量减小时,系统将按先开先停顺序逐台关闭工频泵。当

另一供水周期到达时则又先开2#,而1#备用。如此周期循环工作,二台泵轮换互为备用。

4、稳流罐的选型

稳流罐的作用:市政管网与无负压设备之间的隔断,与真空消除器、无水保护系统同时作用,保护自来水管网不会形成负压,稳流罐的容积按行业标准选择:稳流罐的容积按行业标准计算:总容积=30秒过流量

即30×(76+52)÷3.6=1066L

稳流罐选用DN1000mm的立式罐,型号:WL1000,总容积:1600L,满足要求。

5、高压气压罐的选择

高压气压罐布置在设备出水管道上,由泵组自动补压,根据出水压力值选择气压罐的压力等级,高压气压罐的有效水容积按总流量的3秒计算:

中区72÷3.6×3=60L,选择型号ML400-1.0Mpa,有效水容积11~60L。

高区52÷3.6×3=43L,选择型号ML400-1.6Mpa,有效水容积11~57L。

主要作用:

(1)吸收水泵出水超压部分压力;吸收回水压力;避免水锤;

(2)与辅泵组合提供夜间小流量供水;补充局部小流量;

(3)高压气压罐由泵组自动补压,可以在泵组切换时,平衡管路的压力值;

(4)由于高压气压罐有储能的作用,可以减少及防止水泵频繁启动,延长主泵使用寿命节约能源。

6、泵房管路附件的配置

1、进水管闸阀:用于成套设备检修、故障时停水。

2、进水管前压力表:检测自来水管网压力。

3、Y型过滤器:配套在DN200的进水段,用于过滤自来水因维修等原因进入小区给

水主管的沙石等杂质(建议安装)。

4、超高压保护装置:保护管网在水泵突然失效时不会爆管。

5、倒流防止器:保护无负压设备不会因为水流的改变损害水泵,柳州市区必须安装。

6、防负压模块:保护自来水管网不产生负压,同时水泵不会无水运行(建议安装)。

(四)设备的型号:(详细配置清单附后)

ZWL1.6L-(4.8/21-3+1GQ)+ (9.6/14-2+1GQ)

(五)无负压设备运行费用:

设备总电机功率:(5.5×3+2.2)+(11×2+4)=44.7KW

低区电费5.5KW×0.8元÷24m3=0.18元(将每立方水提升至14层所需要的电费)

高区电费11KW×0.8元÷24m3=0.37元(将每立方水提升至28层所需要的电费)

无负压供水设备节能原理及工作原理介绍.

无负压供水设备节能原理及工作原理介绍 无负压供水设备节能原理介绍: 无负压供水设备通过改变输入到交流电机的电源频率,从而达到调节交流电动机转速的目的。根据流体力学的基本定律可知:水泵类设备均属平方转矩负载,其转速N与流量Q、压力(扬程H以及轴功率P具有如下关系: --Q1/Q2=N1/N2;(1 --H1/H2=(N1/N22;(2 --P1/P2=(N1/N23 ;(3 - Q1、H1、P1----水泵在N1转速时的流量、压力(或扬程、轴功率; --Q2、H2、P2------水泵在N2转速时的相似工矿条件下的流量、压力(或扬程、轴功率。 --.将供电频率由50HZ降为45HZ, --则P45/P50=(45/503= 0.729,即P45=0.729 P50; 将供电频率由50HZ降为40HZ,则P40/P50=(40/503= 0.512,即P40=0.512 P50。无负压供水设备水泵一般是按供水系统在设计时的最大工况需求来考虑的,而用水系统在实际使用中有很多时间不一定能达到用水的最大量,一般用阀门调节增大系统的阻力来节流,造成电机用电损失,而采用变频器可使系统工作状态平缓稳定,通过改变转速来调节用水供应,并可通过降低转速节能收回投资。 无负压供水设备工作原理介绍: 一、无负压流量控制器

采用专利技术的无负压控制器时刻监测控制市政管网及补偿罐中的压力,当自来水压力不足时,无负压控制器开始工作,保证市政管网的水压不受影响,自来水公司135号文件规定市政压力不能低于2KG,无负压流量控制器不仅保证了用户用水的安全稳定,同时确保了市政管网压力的稳定。 二、双向补偿装置 采用发明专利技术储能与释放调节装置双向补偿,可自动对自来水管网进行持续水量补偿,还可以对用户管网起到稳压补偿的作用,确保该设备对自来水管网不产生负压供水低峰双向补偿器工作,将水泵出口端的高压水引向低压腔,向低压腔补水,低压腔补满后,关闭,再向高压腔继续补水,当液面逐渐上升,带压得惰性气体被挤压回能量储存装置内,这样就完成了低峰期给罐内补水的过程,当高峰期供水或市政管网压力下降时,双向补偿装置将低压腔的水向恒压腔补水,同时能量存储装置释放能量,积挤压高压腔水向低压腔补水,汇同恒压腔的市政水一同给用水补水,这样就完成了高峰期向用户补水的过程。 三、能量储存器 采用专利技术的能量储存器,内置带压不浮于水的惰性气体,当高峰期供水时,释放能量挤压高压腔水向低压补水,充分利用能量守恒定律的原理,实现高峰期给用户补水,保证罐中的水能够最大程度的补偿到用户管网中,抑制负压产生,保证不对市政管网产生影响。 无负压供水设备节能原理与工作原理由长沙兴崛供水设备有限公司描述的比较专业。

无负压供水设备水泵的选型误区

无负压供水设备水泵的选型误区 合适的水泵是无负压供水设备稳定运行的前提条件。在选择水泵时,也存在许多误区。 1.无负压供水设备大口径水泵配小水管抽水 很多人认为这样可以提高实际扬程,其实水泵的实际扬程=总扬程~损失扬程。当水泵型号确定后,总扬程是一定的;损失扬程主要来自于管路阻力,管径越小显然阻力越大,因而损失扬程越大,所以减小管径后,水泵的实际扬程非但不能增加,反而会降低,导致水泵效率下降。同理,当小管径水泵用大水管抽水时,也不会降低水泵的实际扬程,反而会因管路的阻力减小而减小了损失扬程,使实际扬程有所提高。也有机手认为小管径水泵用大水管抽水时,必然会大大增加电机负荷,他们认为管径增大后,出水管里的水对水泵叶轮的压力就大,因而会大大增加电机负荷。殊不知,液体压强的大小只与扬程高低有关,而与水管截面积大小无关。只要扬程一定,水泵的叶轮尺寸不变,无论管径多大,作用在叶轮上的压力都是一定的。只是管径增大后,水流阻力会减小,而使流量有所增加,动力消耗也有适当增加。但只要在额定扬程范围内,无论管径如何增加水泵都是可以正常工作的,并且还可以减小管路损耗,提高水泵效率。 2.无负压供水设备高扬程水泵用于低扬程抽水 很多新手认为抽水扬程越低,电机负荷越小。在这种错误认识的误导下,选购水泵时,常将水泵的扬程选得很高。其实对于离心式水泵而言,当水泵型号确定后,其消耗功率的大小是与水泵的实际流量成正比的。而水泵的流量会随扬程的增加而减小,因而扬程越高,流量越小,消耗功率也就越小。反之,扬程越低,流量越大,消耗的功率也就越大。因此,为了防止电机过载,一般要求水泵的实际抽水使用扬程不得低于标定扬程的60%。所以当高扬程用于过低扬程抽水时,电机容易过载而发热,严重时可烧毁电机。若应急使用,则必须在出水管上装一个用于调节出水量的闸阀(或用木头等物堵小出水口),以减小流量,防止电机过载。注意电机温升,若发现电机过热,应及时关小出水口流量或关机。这一点也容易产生误解,有些机手认为堵塞出水口,强制减少流量,会增加电机负荷。其实正好相反,正规的大功率离心泵排灌机组的出水管上都装有闸阀,为了减小机组启动时的电机负荷,应先关闭闸阀,待电机启动后再逐渐开启闸阀就是这个道理。

水泥罐基础验算

水泥罐基础验算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

集料拌和站基础及立柱设计计算书 汉十铁路客运专线HSSG-6标段一工区砼拌和站设置两台HZS-180型拌合机,每台拌合机配备6个罐,共4个水泥罐,每个拌和站的两个水泥罐基础联体设置。 一、设计资料 (1)每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径。水泥罐基础采用C25钢筋砼条形承台基础满足两个水泥罐同时安装。6个罐放置在圆环形基础上,圆环内径7米,外径米,基础高,外露。基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 (2)水泥罐总高米,罐高米,罐径米,柱高5m,柱子为4根正方形布置,柱子间距为米,柱子材料为厚度8mm的钢管柱。 施工前先对地基进行处理,处理后现场检测,测得地基承载力超过350kpa。 二、水泥罐基础计算书 1、计算基本参数 水泥罐自重8t,装满水泥共重108t。 水泥罐总高米,罐高米,柱高5m。 2、地基承载力计算 水泥罐基础要求的承载力

1)砼基础面积:S=; 砼体积:V=×=; 底座自重:Gd=×2500×=(砼自重按2500kg/m3); 2)装满水泥的水泥罐自重:Gsz=6×108×=; 3)总自重为:Gz=Gd+Gsz=+=; 4)基底承载力:P=Gz/S==102kpa; 5) 基底经处理后检测的承载力P’≥140kpa; 6) P≤P’ 经验算,地基承载力满足要求。 水泥罐基础满足地基承载力要求,则主机也同时满足承载力要求。 3、抗倾覆计算 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 由于水泥搅拌机属于受风敏感且筒体高度较大,为确保筒体和施工人员的安全,根据《高耸结构设计规范》(GBJ135-2006以下简称高规),应考虑风荷载对结构的影响。 1)风荷载强度计算:跟全国风压表,枣阳地区最大风荷载取值为㎡。 2)风力计算: 平均作用高度为:H=2+5=; 单根水泥罐的风力大小为F=A×W=××=; 1个水泥罐的叠加倾覆力矩

无负压设备报价方案

无负压报价方案 (参考图片)项目名称: 设备型号:BF2/2-12/104 工程造价:(¥ 105000元) 报价单位:xxxxxxxx 设备厂家:广州水泵厂 联系人:

xxxxxxxxxxx 企业简介 xxxxxx是销售及安装、维护给排水系统设备的专业公司,是广西城镇供水协会会员单位,广西区水利厅推荐企业。我公司注册资金为200万元,下属4个分公司。我公司主要经营成套给排水设备、阀门、消防系列水泵阀门、污水处理设备、高、低压开关柜、电线电缆、发电机组、PE管等给排水配套设备,并专业从事水系统节能设计及改造工程、成套给排水设备设计及安装工程等。我公司秉承“以质量求生存、以信誉求发展、以管理求效益”的经营宗旨,“诚信、绿色、高效、双赢”的服务理念,自2009年成立以来,已在全区发展了众多的客户,并与众多企业保持良好的合作。我公司所供产品性能合理、质量安全可靠,并拥有一支高素质的员工队伍、完善的售后服务团队。 我公司多年服务于建筑和厂矿企业的供水、水利、消防领域,积累了丰富的给排水系统设备经验,并与众多的行业解决方案供应商建立了良好的合作伙伴关系,拥有较大的客户群。我们将本着真诚合作的原则,以我们在供水、水利、消防领域突出的技术实力、良好的声誉和灵活的合作方式为保证,为我公司所承建的所有工程提供优质的技术支持与售后服务。

广州水泵厂简介 广州水泵厂始建于1976年,位于广东省商业宝地亚运会举办地广州市,产品本着“以顾客为中心、服务真诚;从质量求发展,精益求精”的质量方针。主要产品有《长江牌》系列水泵、控制柜、无负压成套供水设备等。 广州水泵厂产品从七十年代已畅销海内外,为国家赢得良好的声誉。目前产品远销到欧洲、非洲、南美洲、中东、东南亚、香港、澳门等多个国家与地区,其中北京《亚运会》工程、广州《亚运会》工程、约旦河排灌工程、伊朗多家糖厂、港澳多家楼盘生活加压供水及消防设备等,长期定点采用本厂产品作主要产品或配套设备,深受用户的好评与信赖。 广州水泵厂产品领取了国家生产许可证,通过了质量体条ISO9001认证、消防认证、CCC认证,并获得了国家级、省级、国外团体用户颁发的多项殊荣。 广州水泵厂产品涵盖清水泵、排污泵、化工泵、消防泵、真空泵、成套给水设备、电控柜、Y及Y2电动机等.多达五十个系列三千多种规格,产品广泛应用于产品工业和城市给排水,高层建筑增压送水,园林喷灌,消防增压,远距离送水,饭店、浴室、宾馆采暖送水,家田排灌、泵站、水厂、纺织、造纸、排污、污水处理、石油与化工、医药食品工业以及其它工业增压配套等行业。 xxxx: 根据贵公司的实际情况及要求,经我公司关技术人员实地考察和详细研究,

无负压供水机组

无负压供水机组详细介绍: 充分利用自来水管网的原有压力能源,在同样供水需求的情况下,可以选用功率相对较小的水泵及控制设备,同时在夜间小流量用水的情况下利用自来水水压直接供水而无需起动水泵。相比较于传统的带水池的供水设备可节约大量的电能运行成本及成本。 无负压增压供水设备采用水泵与自来水管网直接相连,用压力调节罐作为水泵进水储水装置,采用真空消除器消除管网内所产生的负压,在充分利用自来水管网的原有压力的基础上实现了供水的二次增压,该设备既实现了增加的目的(且丝毫不会影响管网其它用户水),又节省建水池,水箱的投次,在保证管网水质的同时(无二次污染),又可充分利用管网的原有水压,其节能效果极其显著,可达50%以上。全自动智能控制,具有多种保护和控制功能,可实现真正无人值守。 概述 节能减排是中国目前热门趋势,公司在变频恒压供水设备的基础上开发了无负压供水设备,无负压供水设备充分利用自来水管网的原有压力能源,在同样供水需求的情况下,可以选用功率相对较小的水泵及控制设备,同时在夜间小流量用水的情况下利用自来水水压直接供水而无需起动水泵。相比较于传统的带水池的供水设备可节约大量的电能运行成本及成本。 无负压供水设备无需建造水池、水箱,占有空间相对较少,节省设备的初期和节省了冲洗水池,给水池消毒的费用。无负压供水设备为全封闭式结构,真正消除供水二次污染,为绿色环保新型供水设备。目前通用的变频恒压供水,取消了地面水池,减少了水质的二次污染,但兴建和使用地下水池的费用和地下水池对水质的污染也是一个问题。因此,无负压供水设备将是变频恒压供水设备的发展与延伸。 无负压增压供水设备采用水泵与自来水管网直接相连,用压力调节罐作为水泵进水储水装置,采用真空消除器消除管网内所产生的负压,在充分利用自来水管网直接相连,用压力调节罐作为水泵进水储水装置,采用真空消除器消除管网内所产生的负压,在充分利用自来水管网的原有压力的基础上实现了供水的二次增压,该设备既实现了增加的目的(且丝毫不会影响管网其它用户水),又节省建水池,水箱的投次,在保证管网水质的同时(无二次污染),又可充分利用管网的原有水压,其节能效果极其显著,可达50%以上。无负压供水设备全自动智能控制,具有多种保护和控制功能,可实现真正无人值守。 水泵,应符合下列规定: 1应采用低噪声、节能型离心泵; 2宜设两台或两台以上; 3水泵过流部分宜采用不锈钢材质。 安装方式:

无负压供水设备选型计算方案

无负压供水设备选型计算 工程概况: 本项目为某小高层住宅楼工程,建筑物高度约38、6米,工程中生活给水水源为市政自来水管网,水质符合国家《生活饮用水卫生标准》要求。需二次加压户数为40户,按单卫一厨考虑;工程中生活给水采用分区供水方式;一至七层为市政管网直供;八层以上有设备加压,用水高峰期时自来水压力为0。4MPA,自来水进出水管径为 DN100,配一块DN100的总水表。 青岛三利: 一、设计原则 公司技术人员根据本工程特点,市政管网的供水状况以及工程的拟用水情况,结合我公司多年从事无负压技术研究的经验以及我公司无负压产品的独特技术,本着技术先进合理、运行安全可靠、卫生环保健康的原则,同时考虑一次性投资、占地面积、运行费用、日常维护管理、供水安全的情况,为本工程选用一套WWG无负压(无吸程)增压稳流供水设备保证整个系统的供水。 二、设计依据 1、本工程的基本资料 2、《建筑给水排水设计规范》GB 50015-2003 3、《泵站设计规范》GB/T50256-97 4、《给水排水设计手册》第2册(核工业第二研究设计院主编,

中国建筑工业出版社出版) 5、《高程建筑给水排水设计手册》(第二版,湖南科学技术出版社 出版) 6、《给水排水设计手册》第1册。常用资料(中国市政工程西南 设计院主编,中国建筑工业出版社出版) 7、《三利产品设计手册》 三、方案选型计算 1、设计生活给水流量 根据《建筑给水排水设计规范》(GB 50015-2003)第3.6.4条款计算设计流量: 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数,按下式计算出住宅共40户,每户按单卫一厨设计的最大用水时卫生器具的给水当量 平均出流概率: U0=q0.m.k h/0.2.Ng.T.3600(%) 其中: U0--生活给水管道最大用水时卫生器具给水当量平均出流概率 q0--最高用水日的用水定额,取250L/(人/D) m --每户用水人数,取3.5人 kh --小时变化系数,取3.0 Ng --每户设置的卫生器具给水当量数,取Ng=4.0 T—用水时间,T=24H

水泥罐稳定性计算书.docx

水泥罐稳定性计算书 一、编制说明 本验算编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥储藏量,保证工程顺利进行,工程计划投入50t,100t两种水泥罐进行施工作业。 二、编制依据 1、施工现场平面布置; 2、水泥罐平面示意图及基础参数(华新水泥鄂州分厂提供); 3、工程周边建筑情况。 三、水泥罐定位 水泥罐定位布置见下图: 四、水泥罐基础及承台设计 1、本水泥罐基础根据现场实际情况,采用强夯处理过后地基,且经静力触探检测承载力大于150Kpa; 2、基础承载设计为:承载砼为C25等级,承台尺寸为4500*4500*500mm,承台采取开挖半米浇筑混凝土布置。 五、水泥罐基础,承载验算,抗倾覆验算: 1、基础竖向承载力验算,根据现场地基处理后土体检测,该层土的承载力特征值为150KN/㎡。 水泥罐自重根据水泥厂提供数据,50t罐取10t计算,100t罐取15t计算; 分两种情况进行验算 (1)50t水泥罐 V=600KN G=4.5*4.5*0.5*25=254KN =(G+V)/A=(600+254)/(4.5*4.5)=42.12KN/㎡<〔〕=150KN/㎡ (2)100t水泥罐 V=1150KN

G=4.5*4.5*0.5*25=254KN =(G+V)/A=(1150+254)/(4.5*4.5)=69.33KN/㎡<〔〕=150KN/㎡ 即承载能力满足要求; 其中式中: V——为水泥罐满载时总重量,取水泥罐说明书; G——为基础承载重量; A——为基础承载接触面积。 2、基础抗倾覆验算: 分两种情况进行验算 按照抗倾覆验算公式 0.95-S>0即满足要求 其中式中: ——自重及压重产生的稳定力矩KNm; ——风荷载标准值,此处为平原地带,根据设计图纸总说明,历史最大风速17m/s,根据风速与风压通用公式取=/1600,计算得0.18; H ——风荷载计算力矩高度; S ——水泥罐侧面受力面积。 (1)50t水泥罐 空罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+100)*(4.5/2)-0.18*3*4.35*(3.714+4.35/2)=742.84KNm>0 满罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+600)*(4.5/2)-0.18*3*4.35*(3.714+4.35/2)=1811.59KNm>0 (2)100t水泥罐 空罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+150)*(4.5/2)-0.18*3*8.7*(3.714+8.7/2)=2963.16KNm>0 满罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+1150)*(4.5/2)-0.18*3*8.7*(3.714+8.7/2)=825.66KNm>0 抗倾覆均能满足要求,现场为防止突发情况,在罐体四周沿三个方向拉设缆风绳,保证稳定,且在罐体周围布置护栏防撞。知识改变命运

无负压供水设备十大品牌

无负压供水设备十大品牌 无负压供水设备十大品牌发展历程 随着经济社会的快速发展和城市化进程的加速,城市建设也走上更高的台阶,高层建筑随之而来拔地而起。商务办公楼、高层写字楼、居民住宅楼也越来越高,鳞次栉比的高层建筑时尚着人们的生活,满足了人们对生活对工作的需要。但是高层建筑在日常使用中,不免会遇到各种问题。各个城市市政管网的压力一般是2公斤左右,供水高度一般是6层楼高。如果建筑超过6层高,市政管网的水压是无法满足要求的。所以,超过6层的建筑必须要配备供水设备对市政管网的水进行加压。所以就有了无负压供水设备的应用需要,无负压供水设备的市场应运而生。 无负压供水设备十大品牌产品概述 无负压供水设备水泵一般是按供水系统在设计时的最大工况需求来考虑的,而用水系统在实际使用中有很多时间不一定能达到用水的最大量,一般用阀门调节增大系统的阻力来节流,造成电机用电损失,而采用变频器可使系统工作状态平缓稳定,通过改变转速来调节用水供应,并可通过降低转速节能收回投资。 无负压供水设备十大品牌设备的特点 1. 无负压供水设备节能,可以实现节电20%-40%,能实现绿色用电。 2. 无负压供水设备占地面积小,投入少,效率高。

3. 无负压供水设备配置灵活,自动化程度高,功能齐全,灵活可靠。 4. 无负压供水设备运行合理,由于是软起和软停,不但可以消除水锤效应,而且电机轴上的平均扭矩和磨损减小,减少了维修量和维修费用,并且水泵的寿命大大提高。 5. 无负压供水设备由于ZBH变频恒压调速直接从水源供水,减少了原有供水方式的二次污染,防止了很多传染疾病的传染源头。 6. 无负压供水设备通过通信控制,可以实现无人值守,节约了人力物力。 无负压供水设备十大品牌设备安装注意事项: 1、安装时管路理量不允许加在泵上,以免使泵变形,影响正常运行。 2、安装前应仔细检查泵体流产内有无硬质物,以免运行时损坏叶轮和泵体。 3、拧紧地脚螺栓,以免起动时振动对泵性能产生影响。 4、在泵的进、出口管路上安装调节阀,在泵出口附近安装压力表,以控制泵在额定工况内运行,确保泵的正常使用。 5、排出管路如装逆止阀应装在闸阀的外面。 6、泵的安装方式分为硬性联接安装和柔性联接安装。

船舶稳性校核计算书

一、概述 本船为航行于内河B级航区的一条旅游船。现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。 二、主要参数 总长L OA13.40 m 垂线间长L PP13.00 m 型宽 B 3.10 m 型深 D 1.40 m 吃水 d 0.900 m 排水量?17.460 t 航区内河B航区 三、典型计算工况 1、空载出港 2、满载到港

五、受风面积A及中心高度Z 六、旅客集中一弦倾侧力矩L K L K=1 ? 1? n 5lb =0.030 m n lb =1.400<2.5,取 n lb =1.400 式中:C—系数,C=0.013lb N =0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数 n=N S bl=28.000 S—全船供乘客活动的总面积,m2,按下式计算: S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m; l—乘客可移动的横向最大距离,b=2.000 m。 七、全速回航倾侧力矩L V L V=0.045V m2 S KG?a2+a3F r d KN?m 式中:Fr—船边付氏数,F r=m 9.81L ; Ls—所核算状态下的船舶水线长,m; d—所核算状态下的船舶型吃水,m; ?—所核算状态下的船舶型排水量,m2; KG—所核算状态下的船舶重心至基线的垂向高,m; Vm—船舶最大航速,m/s;

a3—修正系数,按下式计算; a3=25F r?9 当a3<0,取a3=0;当a3>1时,取a3=1; a2—修正系数,按下式计算; a2=0.9(4.0?Bs/d) 当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;

150吨水泥罐基础设计计算书(20200908125122)

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距 2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距 2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双 排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 具体布置见下图: . 二、水泥罐基础计算书 1、计算基本参数水泥罐自重约20t ,水泥满装150t ,共重170t 。 水泥罐支腿高3m ,罐身高18m ,共高21m 。 单支基础4m ×4m ×0.8m 钢筋砼。2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1=21700+0.825106.3+20126.3k /m 0.1344N MPa 根据资料可知:原设计路面按汽一超 20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为: 460mm ×200mm ,通过受力计算,其地基承载力为: 2050?320罐支脚 800040002200600600 ?3300 3700 水泥罐平面位置示意图

δ2=1301000 1.413 MPa 460200 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 风荷载(500N/m2) 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M(18)?M 水泥罐空罐自重20t,则基础及水泥罐总重为: 抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

无负压设备供水原理

一、无负压供水设备的工作原理 自来水进入调节罐,罐内的空气从真空消除器内排出,待水充满后,真空消除器自动关闭。当自来水能够满足用水压力及水量要求时,供水设备通过旁通止回阀向用水管网直接供水;当自来水管网的压力不能满足用水要求时,系统通过压力传感器(或压力控制器、电接点压表)给出起泵信号起动水泵运行。水泵供水时,若自来水管网的水量大于水泵流量,系统保持正常供水,用水高峰期时,若自来水管网水量小于水泵流量时,调节罐内的水作为补充水源仍能正常供水,此时,空气由真空消除器进入调节罐,消除了自来水管网的负压,用水高峰期过后,系统恢复正常的状态。若自来水供水不足或管网停水而导致调节罐内的水位不断下降,液位控制器给出水泵停机信号以保护水泵机组。夜间及小流量供水时可通过小型膨胀罐供水,防止水泵频繁启动。 无负压供水设备关键技术部分为智能控制系统(变频型)和调节罐的真空消除。智能控制系统核心部分采用西门子可编程控制器,程序软件的编制及设计由资深专业技术工程人员充分根据水泵的运作特点在多年变频给水工程经验基础上精心编制而成,设备具有界面直观,操作简便可靠,性能稳定,高智能化等诸多特点。调节罐的真空消除也是该项目的关键技术,管网叠加的实现完全依靠罐上真空消除器在罐内水被抽空时及时消除罐内真空,从而达到罐内外压力平稳,由此不对市政管网造成负压影响,不影响其它市政管道用户的正常用水。 二、无负压供水设备的特点 1、技术先进:无负压供水设备将真空抑制技术、流体控制技术和智能变频技术等多项先进技术进行优化融合,无负压供水设备与自来水管网直接串接,实现稳压、节能、卫生、安全可靠运行,不产生负压,不用建水池、水箱。 2、卫生无污染:设备为全密封结构,细菌和粉尘不会进入系统;避免了藻类的滋生,防止了水源二次污染及供水水质污染问题,用户使用的是符合国家卫生标准的自来水。 3、节能效果显著:全封闭结构运行,避免了渗、跑、冒、滴、漏等现象发生,无水池、水箱,节约了消毒冲洗用水。与自来水管网直接串接,可以充分利用自来水原有压力,差多少补多少,自来水满足要求时设备就停止工作。无负压供水设备大部分时间在较低频率下运行,耗电量少。采用变频技术,进一步节能,综合节能一般可达50%以上。 4、运行可靠:对自来水管网无影响,设备利用调节罐无负压自动调节,管网增压供水时不会对原管网产生负压,不影响其它用户的正常用水。 5、投资节约:无需修建蓄水池或水箱,节省了土建投资;无需从零加压,因此设备选型较,设备投资减少;水质无污染,不需要净化设备,节省投资。可充分利用自来水管网的压力,能耗小,节省日常的用电开支。没用水池、水箱,节省定期清洗消毒的费用。 6、设备电气配置灵活:电气控制部分既可采用变频恒(变)压控制,也可采用压力(BZG 气压型)直接控制。 三、无负压供水设备应用范围:

水泥砼系统水泥罐稳定性计算书终稿

水泥砼系统水泥罐稳定性计算书 根据测量结果,一、二、三工区水泥罐顶部中心与底部中心偏离最大的是:一工区贵广120楼的直径为3.25m,高度为23.467m的水泥罐,偏离值为15cm。 因此,以罐体直径为3.25m,高度为23.467m的水泥罐为计算对象,计算条件为:12级台风,风速取36.9m/s,且风向与罐体的倾斜方向一致;水泥重量按满载150t计;考虑测量误差,偏离值按20cm计算。 一、风荷载计算 1.计算罐体下部排架的迎风面积S1 罐体下部排架包括立柱、支撑角钢及焊接肋板等 a.Φ219×8×8258立柱4根 0.219×8.3×4=7.271㎡ b.支撑角钢∠75×8×3283型,共8根;∠75×8×1907型,共4根;∠75×8×2834型,共4根; 0.075×3.283×8+0.075×1.907×4+0.075×2.834 ×4=3.392㎡ C.焊接肋板 ①-8×253×403型共4块;②-8×99×250型共4块; ③-8×235×830型共4块;④-8×250×764型共4块; ⑤-8×250×323型共4块;⑥-8×74×250型共4块; ①:(0.09+0.235)×0.403×1/2×4=0.263㎡;

②:(0.099×0.25)×1/2×4=0.05㎡; ③:0.235×0.83×4=0.78㎡; ④:0.25×0.764×4=0.764㎡; ⑤:(0.25+0.09)×0.323×1/2×4=0.22㎡; ⑥:0.74×0.25×1/2×4=0.37㎡; S1=7.271+3.392+0.263+0.05+0.78+0.764+0.22+0.37 =13.11㎡ 2.上部罐体的迎风面积S2 上部罐体可分为三部分:高度7m~9m圆锥体部分、高度9m~23.25m圆柱罐体部分、高度23.25m以上不规则部分,取罐体最大截面积为迎风面积。 a.高度7m~9m罐体部分的迎风面积 1/2×3.25×2=3.25㎡ b.高度9m~23.25m罐体部分的迎风面积 3.25×(23.25-9)=46.313㎡ c.高度23.25m以上罐体部分的迎风面积 (3.25+0.687)×0.217×1/2+0.03×0.657×2 =0.467㎡ d.上部罐体的迎风面积S2 S2=3.25+46.313+0.467 =50.03㎡

无负压供水设备选型参数

无负压供水设备选型参数 无负压供水设备选型参数-无负压供水设备的运行控制功能 手动控制:人为操作面板开关控制设备 自动控制:设备根据传感信号自动改变其工作状态 远程监视:管理人员即便远离现场也能随时监视设备的控制状态温度控制:在热水循环系统中,可根据温度控制设备的工作状态市政水压监控:当市政管网压力可以达到用户所需水压时,给水系统自动处于停止状态自动软启动:设备自动开机时,有变频器或软启动器来实现软启。 无负压供水设备选型参数-无负压供水设备产品组成部分: 1、组合式不锈钢水箱(带泵房)。 2、智能化电气控制系统。 3、低噪音不锈钢多级离心泵(KCDL系列)。 4、无负压进水装置及防倒流装置。 5、不锈钢成套管路。 6、压力、液位信号采集、反馈设施。 无负压供水设备选型参数-无负压供水设备主要技术指标流量范围0--5000m3/h 压力范围0--2.5MPa 控制功率0-280Kw 压力调节精度≤0.01MPa

环境温度0--+40℃ 相对湿度≤90%以下(电控部分) 电源380V(1±10%)50Hz±2Hz 稳流补偿器0.5m3--100m3 无负压供水设备选型参数-无负压供水设备节能: 普通给水设备:自来水全部放入水池中,原有的压力全部为零,再从零开始重新加压给水,原有的能量白白浪费。这种给水方式能耗大,设备运行费用高,使用不经济。 无负压供水设备与自来水管道直接串接,可以充分利用自来水原有压力,差多少补多少,自来水满足要求时设备就停止工作。设备大部分时间在较低频率下运行,耗电量少。采用长方独有的优化变频技术,进一步节能。综合节能一般可达50-70%以上。设备完全停机时,节能可达100%。

几种常见的无负压供水设备

几种常见的无负压供水设备

————————————————————————————————作者:————————————————————————————————日期:

几种常见的无负压供水设备 一、第五代叠压补偿式无负压供水设备 简介 第五代叠压补偿式无负压供水设备采用微机变频技术、降噪技术、一屏双机技术、双稳态压力补偿技术、负压处理技术实现无负压供水。通过触摸屏显示运行状态,通过微机控制、双稳态压补偿装置及真空补偿系统,实现了与自来水管网直接串接,并且克服了对管网的不良影响。 首先根据实际情况设定用水点工作压力,检测出水管实际压力并与设定压力进行比较,如果实际压力高于设定压力,则降低变频器频率,反之升高变频器频率。工控微机随时检测管网压力,计算速度很快,调节速度也是瞬时完成,使管网压力始终保持在设定数值上。 另外如设备原理图所示,通过微机控制、双稳态压力补偿装置及真空补偿系统,使本设备可以和自来水直接串接,因水泵工作的叠加原理,使设备可以充分利用自来水原有的压力,增加了变频调速给水设备的节能点。当自来水压力不足致使压力下降时,本设备通过真空抑制器及稳流补偿器中的检测装置采集稳流补偿器内的水位信号,通过微机控制真空抑制器及双稳态压力补偿装置中的的特殊装置动作,抑制负压的产生,保证设备不对城市管网产生任何影响。

设备结构示意图如下 ZBW型叠压补偿式无负压供水设备工作原理(如下流程图):

主要组成部件 1.双稳态压力补偿系统 自主专利技术(专利号ZL 2012 2 0646001.X),具备高低峰压力补偿及保压不启动泵等独特技术。用水低峰期进行能量储存,多余压力释放到用户管道补偿给用户供水,降低水泵转速及小流量保压不启动泵,节约电能;用水高峰期,高压能腔释放能量,通过装置补偿到自来水给水管道内,从而抑制负压的产生,完成不间断持续正常供水。 2 .管阀防回流系统 自主专利技术(专利号:ZL 2012 2 0151983.5):采用304不锈钢无缝管,镜面抛光,防止水回流设计避免泵的反转。 3.旁通管自动供水设计 采用旁通管设计,自来水压力满足供水时无压力损失的供给用户,从而不用启运泵。停电后也能保证低区用户的供水。 4.增压系统 主要由一组(两台或三台)不锈钢多级离心泵组成,不锈钢多级离心泵主要采用了自动激光焊接叶轮,全不锈钢花键轴,变频专用电机,进口轴承和机械密封等组成,具有效率高(阻力小),噪音低(全部做过动静平衡实验)、寿命长等特点。 5.压力检测装置 采用压力变送器检测,精度达到了千分级,压力精确(传统远传压力表精度为百分级且抗干扰性一般),稳定性更好,无扰动。 6.稳压系统 采用进口意大利隔膜稳压罐(用于小流量保压不起动泵,节约电能),全自动焊接,烤漆工艺,探伤检测,隔膜胶嚢伸缩次数20万次以上,具有良好的保压及防水锤的作用,是供水过程中的品质保证。

船舶稳性和吃水差计算

船舶稳性和吃水差计算 Ship stability and trim calculations 1.总则General rules 保证船舶稳性和强度在任何时候都保持在船级社认可的稳性计算书规定范围内,防止因受载不当,产生应力集中造成船体结构永久性变形或损伤。Ensure stability and strength of the ship at all times to maintain stability within stability calculations approved by the classification societies in order to prevent due to load improperly resulting in stress concentration which will cause the ship structure permanent deformation or subversion. 2.适用范围Sphere of application 公司所属和代管船舶的稳性、强度要求 To satisfy the requirement of company owned and managed ships stability and strength 3.责任Responsibility 3.1.大副根据本船《装载手册》或《稳性计算手册》等法定装载资料,负责合理配载或对 相关部门提供的预配方案进行核算,确保船舶稳性及强度处于安全允许值范围。Based on the ship "loading manual" or "stability calculations manual" and other legal loading information, the chief officer is responsible for making reasonable stowage plan or adjust accounts of the pre plan from relevant departments to ensure stability and strength of the ship in a safe range of allowed values. 3.2.船长负责审批大副确认的配载方案和稳性计算。 The captain is responsible for checking and approving the stowage plan and stability calculation that has been confirmed by chief officer. 4.实施步骤Implementation steps 4.1.每次装货前,大副必须对相关部门提供的预配方案仔细核算,报船长审核签字后才可 实施。 Every time before loading, the chief officer should carefully adjust accounts of the pre stowage plan from the relevant department and transfer it to captain, the stowage plan should be implemented after captain reviewing and signing. 4.2.船舶装货前后大副应认真进行船舶稳性及强度计算校核,包括装货前的预算和装货后 的船舶局部强度和应力状况的核算,货品发生变化后,要重新进行计算。计算时充分考虑自由液面,油水消耗,污水变化及甲板结冰等对船舶稳性产生的影响,确保船舶在离港、航行、抵港的过程中均满足要求。 Every time before loading, the chief officer should carefully calculate and check the ship’s stability and strength, including calculation before loading and the partial strength and stress condition of the ship after loading, if cargos changes, the stability and strength should be re-calculated. When calculating, should fully consider the free surface, water and oil consumption, sewage and water ice on deck and other changes on the impact of ship stability, to ensure that the ship departure, navigating and arriving at port in the process can meet the requirements. 4.3.开航前,大副应完成初稳性高度和强度的计算。稳性计算结果应满足: Before departure, the chief officer should complete the calculations of height of initial stability and strength. Stability calculation results should be satisfied as below: hc - ⊿h > hL 式中:hc:计算的初稳性高度The calculating height of initial stability ⊿h:自由液面修正值Free surface correction value hL:临界初稳性高度The critical height of initial stability 船舶静水力弯矩和剪力以及局部强度不得超过允许值。 Hydrostatic moment of force, shear force and partial strength of the ship can not to exceed the allowable values. 4.4.大副要将每航次的稳性计算资料包括积载图留存,并将稳性计算中的重要内容摘录记 在航海日志中,报船长审核确认签字。 The chief officer should preserve such documents including stability calculation information and stowage plan, and records the important contents of the stability calculation into the log, which shall be reported to captain to verify and sign.

水泥罐抗风验算计算书

京新高速公路临河至白疙瘩段三标一分部(K532+150~K565+000段) 水泥罐抗风验算计算书 中国交通建设股份有限公司 京新高速公路LBAMSG-3项目总承包管理部第一项目部 二〇一五年四月

水泥罐抗风验算计算书 一、验算内容及验算依据 为保证我项目水泥罐安全性对我分部拌合站筒仓的抗风性能进行了验算。主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。 验算依据为:《公路桥涵设计通用规范》(JTG D60-2004)及《公路桥梁钢结构设计规范》。 二、风荷载大小的确定 根据现场调研及相关工区提供的资料,检算时取罐体长度为12m ,支腿长度为9.0m 。罐体直径为5.0m, 自重为10 t ,满载时料重300 t 。 根据《公路桥涵设计基本规范》中的4.4.1条确定风荷载的大小。 根据资料显示,我项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为主导风向NW ,最大风速53m/s 。相关抗风的设计计算以此为依据。 表1 风级风速换算表 《公路桥涵设计基本规范》中的4.4.1条规定,作用于结构物上的风荷载强度可按下式计算: 0321W K K K W = (1) 式中 W —风荷载强度(Pa ); 0W —基本风压值(Pa ),2 06 .11ν= W ,系按平坦空旷地面,离地面20m 高,频率1/100的10min 平均最大风速ν(m/s )计算确定;一般情况0W 可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实

后采用; K—风载体形系数,对桥墩可参照《铁路桥涵设计基本规范》中表4.4.1-1,1 其它构件为1.3; K—风压高度变化系数,可参照《铁路桥涵设计基本规范》中表4.4.1-2,2 风压随离地面或常水位的高度而异,除特殊高墩个别计算外,为简化计算,桥梁工程中全桥均取轨顶高度处的风压值; K—地形、地理条件系数,可参照《铁路桥涵设计基本规范》中表4.4.1-3。 3 针对本工程场地实际特点,取k1=1.3,k2=1.0 ,k3=1.3。取风级11下的风速为30m/s,风级13下的风速为39m/s,风级15下的风速为48m/s;风级17下的风速为58m/s。计算得罐体每延米的荷载强度见表2。 表2 风级与风荷载强度大小 三、不同工况下立柱强度、稳定性及整体倾覆检算 为了考虑罐体支架的内力,检算过程采用有限元数值计算方法。根据工程的实际使用情况及受力最不利原则,验算时重点对罐体满载的情况进行了立柱的强度及稳定性验算。罐体立柱采用φ330mm(壁厚8mm),立柱间横撑采用槽钢120x40 x4.5mm。有限元模型见图1及图2。 3.1 风级11结构性能抗风验算 风级11时的风荷载和罐体满载时的恒荷载(包括自重)组合进行立柱的强度、稳定性验算。同时对风级11时的风荷载和罐体空载时的恒荷载组合进行了基础的稳定性验算。 (1)罐体满载状态下立柱的强度及稳定性验算 在11级风荷载作用下,按照风荷载+罐体满载时计算得到的立柱应力见图3。

相关主题