搜档网
当前位置:搜档网 › 轨道交通6号线工程投资建设项目可行性研究报告-广州中撰咨询

轨道交通6号线工程投资建设项目可行性研究报告-广州中撰咨询

轨道交通6号线工程投资建设项目可行性研究报告-广州中撰咨询
轨道交通6号线工程投资建设项目可行性研究报告-广州中撰咨询

轨道交通6号线工程投资建设项目可行性研究报告

(典型案例〃仅供参考)

广州中撰企业投资咨询有限公司

地址:中国·广州

目录

第一章轨道交通6号线工程项目概论 (1)

一、轨道交通6号线工程项目名称及承办单位 (1)

二、轨道交通6号线工程项目可行性研究报告委托编制单位 (1)

三、可行性研究的目的 (1)

四、可行性研究报告编制依据原则和范围 (2)

(一)项目可行性报告编制依据 (2)

(二)可行性研究报告编制原则 (2)

(三)可行性研究报告编制范围 (4)

五、研究的主要过程 (5)

六、轨道交通6号线工程产品方案及建设规模 (6)

七、轨道交通6号线工程项目总投资估算 (6)

八、工艺技术装备方案的选择 (6)

九、项目实施进度建议 (6)

十、研究结论 (6)

十一、轨道交通6号线工程项目主要经济技术指标 (9)

项目主要经济技术指标一览表 (9)

第二章轨道交通6号线工程产品说明 (15)

第三章轨道交通6号线工程项目市场分析预测 (15)

第四章项目选址科学性分析 (15)

一、厂址的选择原则 (15)

二、厂址选择方案 (16)

四、选址用地权属性质类别及占地面积 (17)

五、项目用地利用指标 (17)

项目占地及建筑工程投资一览表 (17)

六、项目选址综合评价 (18)

第五章项目建设内容与建设规模 (19)

一、建设内容 (19)

(一)土建工程 (19)

(二)设备购臵 (20)

二、建设规模 (20)

第六章原辅材料供应及基本生产条件 (20)

一、原辅材料供应条件 (20)

(一)主要原辅材料供应 (21)

(二)原辅材料来源 (21)

原辅材料及能源供应情况一览表 (21)

二、基本生产条件 (22)

第七章工程技术方案 (23)

一、工艺技术方案的选用原则 (23)

二、工艺技术方案 (24)

(一)工艺技术来源及特点 (24)

(二)技术保障措施 (24)

(三)产品生产工艺流程 (25)

轨道交通6号线工程生产工艺流程示意简图 (25)

三、设备的选择 (26)

(一)设备配臵原则 (26)

(二)设备配臵方案 (27)

主要设备投资明细表 (27)

第八章环境保护 (28)

一、环境保护设计依据 (28)

二、污染物的来源 (29)

(一)轨道交通6号线工程项目建设期污染源 (30)

(二)轨道交通6号线工程项目运营期污染源 (30)

三、污染物的治理 (30)

(一)项目施工期环境影响简要分析及治理措施 (31)

1、施工期大气环境影响分析和防治对策 (31)

2、施工期水环境影响分析和防治对策 (35)

3、施工期固体废弃物环境影响分析和防治对策 (36)

4、施工期噪声环境影响分析和防治对策 (37)

5、施工建议及要求 (39)

施工期间主要污染物产生及预计排放情况一览表 (41)

(二)项目营运期环境影响分析及治理措施 (42)

1、废水的治理 (42)

办公及生活废水处理流程图 (42)

生活及办公废水治理效果比较一览表 (43)

生活及办公废水治理效果一览表 (43)

2、固体废弃物的治理措施及排放分析 (43)

3、噪声治理措施及排放分析 (44)

主要噪声源治理情况一览表 (46)

四、环境保护投资分析 (46)

(一)环境保护设施投资 (46)

(二)环境效益分析 (47)

五、厂区绿化工程 (47)

六、清洁生产 (48)

七、环境保护结论 (48)

施工期主要污染物产生、排放及预期效果一览表 (50)

第九章项目节能分析 (51)

一、项目建设的节能原则 (51)

二、设计依据及用能标准 (51)

(一)节能政策依据 (51)

(二)国家及省、市节能目标 (52)

(三)行业标准、规范、技术规定和技术指导 (53)

三、项目节能背景分析 (53)

四、项目能源消耗种类和数量分析 (55)

(一)主要耗能装臵及能耗种类和数量 (55)

1、主要耗能装臵 (55)

2、主要能耗种类及数量 (55)

项目综合用能测算一览表 (56)

(二)单位产品能耗指标测算 (56)

单位能耗估算一览表 (57)

五、项目用能品种选择的可靠性分析 (58)

六、工艺设备节能措施 (58)

七、电力节能措施 (59)

八、节水措施 (60)

九、项目运营期节能原则 (60)

十、运营期主要节能措施 (61)

十一、能源管理 (62)

(一)管理组织和制度 (62)

(二)能源计量管理 (62)

十二、节能建议及效果分析 (63)

(一)节能建议 (63)

(二)节能效果分析 (63)

第十章组织机构工作制度和劳动定员 (64)

一、组织机构 (64)

二、工作制度 (64)

三、劳动定员 (65)

四、人员培训 (65)

(一)人员技术水平与要求 (65)

(二)培训规划建议 (66)

第十一章轨道交通6号线工程项目投资估算与资金筹措 (66)

一、投资估算依据和说明 (66)

(一)编制依据 (67)

(二)投资费用分析 (68)

(三)工程建设投资(固定资产)投资 (69)

1、设备投资估算 (69)

2、土建投资估算 (69)

3、其它费用 (69)

4、工程建设投资(固定资产)投资 (70)

固定资产投资估算表 (70)

5、铺底流动资金估算 (71)

铺底流动资金估算一览表 (71)

6、轨道交通6号线工程项目总投资估算 (71)

总投资构成分析一览表 (72)

二、资金筹措 (72)

投资计划与资金筹措表 (73)

三、轨道交通6号线工程项目资金使用计划 (73)

资金使用计划与运用表 (74)

第十二章经济评价 (74)

一、经济评价的依据和范围 (74)

二、基础数据与参数选取 (75)

三、财务效益与费用估算 (76)

(一)销售收入估算 (76)

产品销售收入及税金估算一览表 (76)

(二)综合总成本估算 (76)

综合总成本费用估算表 (77)

(三)利润总额估算 (77)

(四)所得税及税后利润 (78)

(五)项目投资收益率测算 (78)

项目综合损益表 (78)

四、财务分析 (79)

财务现金流量表(全部投资) (81)

财务现金流量表(固定投资) (83)

五、不确定性分析 (84)

盈亏平衡分析表 (84)

六、敏感性分析 (85)

单因素敏感性分析表 (86)

第十三章轨道交通6号线工程项目综合评价 (87)

第一章项目概论

一、项目名称及承办单位

1、项目名称:轨道交通6号线工程投资投资建设项目

2、项目建设性质:新建

3、项目编制单位:广州中撰企业投资咨询有限公司

4、企业类型:有限责任公司

5、注册资金:500万元人民币

二、项目可行性研究报告委托编制单位

1、编制单位:广州中撰企业投资咨询有限公司

三、可行性研究的目的

本可行性研究报告对该轨道交通6号线工程项目所涉及的主要问题,例如:资源条件、原辅材料、燃料和动力的供应、交通运输条件、建厂规模、投资规模、生产工艺和设备选型、产品类别、项目节能技术和措施、环境影响评价和劳动卫生保障等,从技术、经济和环境保护等多个方面进行较为详细的调查研究。通过分析比较方案,并对项目建成后可能取得的技术经济效果进行预测,从而为投资决策提供可靠的依据,作为该轨道交通6号线工程项目进行下一步环境评价及工程设计的基础文件。

本可行性研究报告具体论述该轨道交通6号线工程项目的设立在经济上的必要性、合理性、现实性;技术和设备的先进性、适用性、可靠性;财务上的盈利性、合法性;环境影响和劳动卫

生保障上的可行性;建设上的可行性以及合理利用能源、提高能源利用效率。为项目法人和备案机关决策、审批提供可靠的依据。

本可行性研究报告提供的数据准确可靠,符合国家有关规定,各项计算科学合理。对项目的建设、生产和经营进行风险分析留有一定的余地。对于不能落实的问题如实反映,并能够提出确实可行的有效解决措施。

四、可行性研究报告编制依据原则和范围

(一)项目可行性报告编制依据

1、中华人民共和国国民经济和社会发展第十三个五年规划。

2、XX省XX市国民经济和社会发展第十三个五年规划纲要。

3、《产业结构调整指导目录(2011年本)(2013修正)》。

4、国家发改委、建设部发布的《投资建设项目经济评价方法与参数》(第三版)。

5、项目承办单位提供的有关技术基础资料。

6、国家现行有关政策、法规和标准等。

(二)可行性研究报告编制原则

在该轨道交通6号线工程项目可行性研究中,从节约资源和保护环境的角度出发,遵循“创新、先进、可靠、实用、效益”的指导方针,严格按照技术先进、低能耗、低污染、控制投资的要求,确保该轨道交通6号线工程项目技术先进、质量优良、保证进度、节省投资、提高效益,充分利用成熟、先进经验,实现

广州地铁6号线建设项目可行性分析

广州地铁6号线建设项目可行性分析 一、项目基本情况 六号线一期起点为广州西面的金沙洲地区的浔峰岗,高架跨过北环高速公路后 沿金沙洲路中央往东南方向前进,于沙凤村东侧以白沙河大桥横跨珠江支流,连接 到大坦沙岛之沙头顶。之后线路转向正南,由高架转入地下隧道,往南至双桥路侧 与五号线换乘。线路下穿广三铁路后,斜穿珠江支流,于旧广州南站范围内多宝路 处设如意坊站。线路沿黄沙大道往南抵达大同路处的黄沙站与一号线换乘。之后线 路沿六二三路,穿过文化公园,人民南路,沿一德路抵达海珠广场与二号线换乘。 绕过广州解放纪念碑后,依次经过泰康路、万福路、越秀南路后,穿过东华南路及 大沙头路附近的一大片建筑物,抵达东山湖公园。隧道下穿东山湖,折往东北方向,沿东山大街、龟岗大马路、署前路,与一号线再次换乘。随后线路辗转沿农林下路 往北,于区庄站与五号线再次换乘。之后线路以小半径曲线转入先烈中路、先烈东路,再转入广州大道北、兴华路,与三号线主线在燕塘站换乘。线路沿燕岭路往东 北行进,于天河客运站与三号线支线换乘,最后沿天源路抵达终点长湴。 广州地铁六号线一期将于2013年底开通试运营。 广州地铁六号线二期,已于2009年10月30日开工。 二期工程(长湴——萝岗街)全长17.6公里,设车站10个。各站为:华南植 物园、龙洞、柯木塱、高塘石、黄陂、香山路、科学城东、暹岗、萝岗、香雪。二 期全部为地下线。 根据新的规划,线路通过高塘石后,沿广汕路往东行进,跨大观路立交桥,过 联合村,在黄陂村设黄陂站,沿广汕路东行,在开创大道路口折向东南,沿开创大 道行进,在香山路口设站。后继续沿开创大道行进,在科学大道路口、科学城东侧 设科学城东站。经颐年园、暹岗村,在丰乐路口设暹岗站,与四号线换乘。线路沿 开创大道东行,在萝岗中心区南侧设萝岗站。之后下穿北二环高速公路,止于荔红 路口,设终点站香雪站。线路长约10.6公里,全部为地下线,设6座地下车站。 国家发改委已于2009年2月批准提前实施地铁6号线二期工程(长湴至萝岗街)建设。地铁6号线二期工程(东延线)是萝岗区科学城通往市中心区的快速通道。

上海地铁10号线线路说明

上海地铁10号线线路说明 上海轨道交通10号线,编号M1,是国内首条无人驾驶轨道交通线,一期由新江湾城站至虹桥火车站,支线在龙溪路站连接支线,抵达航中路站。线路全长36千米,其中龙溪路站以东及支线部分于2010年4月10日先期开通试运营,而主线龙溪路站以西于2010年11月28日开通。第二期将由新江湾城站延伸至基隆路,长10.08公里,共设6站,为上海2010~2020年规划建设线路。由于沿途经过新天地、豫园老城厢、南京路、淮海路、四川路、五角场城市副中心等上海中心区域,因此被称为“白金线路”。 未来发展规划: 浦东东北部的外高桥区域将新增一条通往虹桥枢纽的轨道交通线——日前,市规土局《关于轨道交通10号线(新江湾城-基隆路)选线专项规划》公示,透露了轨道交通10号线将进一步延伸,穿过黄浦江后到达基隆路。 轨道交通10号线是本市轨道交通网络中一条重要的市区级线路,一期工程已经运营通车,全长36.2公里,纵穿杨浦、虹口、黄浦、闸北、徐汇、长宁、闵行等区,并串联起虹桥火车站、虹桥机场等多个客运交通枢纽和大型客流集散点,共设31个车站。 10号线二期工程将由新江湾城出发向东延伸,设国帆路站、双江路站、高桥西站、高桥站、港城路站(换乘6号线)、基隆路站。 10号线未来将新增如下换乘站:港城路站(换乘6号线)

上海市轨道交通10号线二期工程线路起自一期工程终点站新江湾城站北端,沿淞沪路过黄浦江后,再沿港城路至外高桥保税区的基隆路站。线路主要途径杨浦区、浦东新区2个行政区。线路全长约10.080km,其中地下线(盾构)长度3.155km,明挖段长度0.228km,过渡段长度0.337km,高桥段长度6.36km;设站6座,其中地下站1座,高架站5座;设港城路停车场1座;在港城路停车场内设1座主变电所。预计2016年建成。10号线二期工程是10号线的组成部分,是上海轨道交通网络中北部越江通道,连接市中心区和浦东新区,服务于浦东新区北部及杨浦区北部地区,与10号线一期工程贯通运营 更多详情请访问媒力·中国官网:https://www.sodocs.net/doc/3a8436668.html,

广州市轨道交通十一号线工程项目环境影响报告书--中国市场经济研究院

广 州 市 轨 道 交 通 十 一 号 线 工 程 环 境 影 响 报 告 书 ( 第 一 册 正 文) 广州市轨道交通十一号线工程 环境影响报告书 (全文公示版) 铁 四 院 图 文 中 心 制 作 建设单位:广州市地下铁道总公司 评价单位:中铁第四勘察设计院集团有限公司 2014年12月 武 汉 地 址:中国武汉武昌和平大道745号 邮 编:430063 电 话:(027)86812844 传 真:(027)86811444 网 址:https://www.sodocs.net/doc/3a8436668.html,

1……1……2……4……6……7……8……9……10……11……13……30……30……31……31……48……58……59……59……61……62……64……远期广州市轨道交通线网规划示意图 广州市轨道交通近期建设规划示意图 广州市轨道交通十一号线工程线路示意图 1 总论 1.1 建设项目前期工作简介 1.2 规划环境影响报告书批复意见及落实情况 1.3 编制依据 1.4 评价指导思想 1.5 评价范围和评价时段 1.6 评价内容和评价重点 1.7 评价工作等级 1.8 评价因子 1.9 评价标准 1.10 环境保护目标 1.10.5 电磁环境目标 1.10.6 地下水环境目标 2 工程概况及工程分析 2.1 工程概况 2.2 工程主要环境影响分析及环保措施说明 2.3 影响社会经济和城市生态环境的工程活动简述 3 项目影响区域环境概况 3.1 自然环境特征 3.2 社会经济环境概况 3.3 环境质量概况 4 声环境影响评价

64……66……74……77……91……101……104……104……105……113……114……133……144……146……146……146……148……152……153……153……157……159……163……163……4.1 概述 4.2 环境噪声现状调查与分析 4.3 噪声源类比调查与分析 4.4 环境噪声影响预测与评价 4.5 噪声污染防治措施方案 4.6 评价小结 5 振动环境影响评价 5.1 概述 5.2 振动环境现状评价 5.3 振动类比调查与分析 5.4 振动环境影响预测与评价 5.5 振动污染防治措施建议 5.6 评价小结 6 电磁辐射环境影响评价 6.1 评价范围、内容及依据的标准 6.2 工程沿线现状调查及监测 6.3 电磁污染源特性及影响评价 6.4 治理措施及建议 7 水环境影响评价 7.1 概述 7.2 水环境现状调查与分析 7.3 赤沙车辆段污水排放环境影响评价 7.4 车站污水排放影响评述 7.5 工程建设对水源保护区及周边地表水环境的 影响分析

上海轨道交通6号线上南路站建筑设计回顾

上海轨道交通6号线上南路站建筑设计回顾 摘要:对原上海轨道交通6、8号线上南路站总体布置以及地下一、二、三层车站建筑设计的难点作了介绍和分析,在此基础上,对车站功能布局、换乘方式、空间形式、资源共享等方面的设计作了新的探索。 关键词:轨道交通;换乘车站;建筑设计;总体布置;共享 1 工程概况 上海轨道交通6号线上南路站位于上南路与规划的华夏西路(中环线)路口,按原来的上海轨道交通线网设计, 6号线与规划8号线南延伸线在此“十”字相交换乘: 6号线车站沿华夏西路东西向布置,为地下二层浅埋侧式车站; 8号线车站沿上南路南北向布置,为地下三层岛式车站。 在工程实施过程中,上海轨道交通线网进行了调整, 8号线南延伸线路从经由上南路站调整到了济阳路站。因此, 6号线上南路站最终实施方案取消了与8号线的换乘,改为普通地下二层浅埋式车站。本文只是从原车站建筑设计的角度,介绍了6、8号线的换乘方案及特点。 2 设计重点及难点 (1)换乘站建筑设计的重点是为乘客提供完善、方便的换乘功能。本工程为地下三层换乘站,在预留地下管线敷设条件的前提下应充分利用地下空间。因此,设计提出站厅设置二层中庭的方案。 (2)规划华夏西路为中环线,已确定采用桥梁上跨上南路方案。因中环线工期滞后,必须与中环线设计单位协调处理桥桩及车站位置关系,确保不影响中环线后期的实施。 (3)通过一站式设计,让6、8号线部分设备形成共享,使轨道交通成本效益最大化。因考虑到8号线延伸段后期实施,所以土建施工一次实施、部分设备预留接口。 3 总体布置 3. 1 建设条件分析 6号线上南路站站址周围以新、旧住宅区为主。新住宅区有东北角的恒大瀚城、西北角的日月新苑等;旧住宅区有倪家宅、孙家弄、杨南新村等,东南侧有小型企业。车站周边有大量的客流,出入口的设置应便于吸引客流。 上南路现状,地下设有电话、海底光缆、上水、煤气、雨水、污水及电力等管线。受区间线路标高的控制, 6号线车站轨面标高为-6. 669 m,现状路面标高4. 20 m左右,车站为地下二层。因此,车站顶部基本无覆土,路面恢复时如果直接做在车站顶板上,可能会影响到上南路南北向管线的敷设。 华夏西路为规划中环线,道路宽度为100 m,快速路双向8车道。鉴于华夏西路路幅宽,上南路交通量大等因素,车站设计需要兼顾行人过街的功能。 3. 2 总体布置方案 经对本站设计方案长时间的研究和论证,最终采用两线斜交地下三层的方案。 经过与中环线设计单位的多次协调, 6号线车站主体避开了中环线高架桥墩,同时为了保证8号线车站布置空间和上南路地面交通通行条件,中环线采取大跨度高架桥跨越上南路路口的方案。6号线车站位于中环线高架北侧、地面辅道沿华夏西路东西向布置,为浅埋地下二层侧式车站。8号线车站沿上南路路中南北向布置。地下一层为设备层,地下二层为6、8号线共用站厅层和6号线站台层,地下三层为8号线站台层。 车站在路口四个象限共设5个出入口,方便各个方向的客流集散,同时能兼顾上南路和华夏西路客流过街功能。 车站共设3组风井。其中一组结合1号出入口布置在恒大瀚城前绿化带内,另外两组风井和冷却塔均布置在华夏西路路中6m宽绿化带内。为减少对周边景观的影响,全部采用低风井形式。 4 建筑设计 4. 1 平面设计 6号线与8号线车站东南侧附属结构无法避让中环线的两个桥墩,西侧附属结构与一个桥墩距离约1 m。因此,经过与中环线设计单位的多次协调,3个桥墩基础与车站一并施工,以确保不影响中环线后期的实施。

广州市新一轮轨道交通线网规划2015

广州市新一轮轨道交通线网规划 广州市新一轮轨道交通线网规划和2011-2015年建设方案已通过市政府批复和市人大审议,计划2015年前继续新建11条线路(含延长段)共312.6公里,其中,十三号线二期、七号线二期、四号线南延段、十六号线、三号线东延段、二十一号线及八号线东延段将于近期开工建设,争取2015年底建成。 根据市政府安排,我司拟同时启动十三号线二期、七号线二期、四号线南延段、十六号线、三号线东延段、二十一号线及八号线东延段七条线路的前期研究项目,以尽快稳定各新建线路方案,促进各线路设计和建设工作的顺利进展。为上述线路尽早开工建设创造条件。 (1)十三号线二期(凰岗~鱼珠) 十三号线二期起于凰岗,止于鱼珠。 罗冲围客运站地处广州西北出口的增槎路,是广州八大出口的西北主要出口起点。罗冲围地区有富力半岛花园、盈福居、松洲花园等居住小区,居住人口密集。为改善罗冲围地区的交通状况,十三号线线路出东风路后向西经流花路,到达罗冲围地区。由于车辆段选址原因,线路继续沿增槎路向东到达罗冲围客运站后折向北,至西槎路口设起点站凰岗站。 (2)七号线二期(大学城南~大沙东) 七号线一期主要经过广州南站地区、汉溪长隆万博发展区、广州大学城(小谷围岛),构建广州南站至大学城快速通道。其中小谷围岛作为大学城发展区的核心,现状开发已初具规模,且由于四号线大学城南站建设时已同步建成七号线车站及部分区间,七号线一期工程终点站选在大学城南站,位于大学城中轴线,在保证近期客流的同时,能有效促进周边地块开发,使得轨道交通运营效益和周边地块开发实现双赢。

二期工程继续延伸至黄埔区,覆盖深井和长洲岛历史文化保护区、黄埔区商业中心,终点选择在黄埔大沙东站。线路延伸使七号线作为接运线的功能增强,将城市的南拓轴(二号线、三号线、四号线)与东进轴(五号线,十三号线)串接,远期还与八号线、十二号线、广莞惠城际线形成换乘,不仅方便沿线客流进入新、老城区中心,亦减轻地面交通的过江通道压力;且长洲岛作为广州市第一批历史文化保护区,有非常著名的黄埔军校等历史文化古迹,二期线路也为东部去往广州南站的旅客提供便捷通道,同时支持黄埔区发展。 (3)四号线南延段(金洲~南沙客运港) 四号线南延段起点由金洲站接出,终点选择在南沙客运港,主要覆盖南沙岛重点区域。南沙岛发展定位为南沙区的综合服务中心,广州“多中心网络式布局”的中心之一,南沙科技创新产业与现代服务业基地,适宜创业发展和生活居住的现代海滨新城的典型示范区。广州市城市建设规划明确,南部地区集中建设大学城重点发展区、广州新城、南沙重点发展区等三个南拓发展的重要节点,四号线延伸至南沙,能够将南拓轴的各核心节点串联起来,通过建立“TOD”土地利用发展模式,带动南拓轴沿线的土地开发建设,对实现“南拓”的城市布局调整有非常重要的意义。 同时,四号线工程南延段终点选择在南沙客运港,是顺应广州市促进“知识经济建设”的发展,促进在东部珠江口滨海地带,规划建设新的大学园区,以及南沙汽车城和南沙客运港建设的需要;是稳定城市结构形态、实现广州总体规划的需要。 (4)十六号线(新塘~荔城) 广州市轨道交通十六号线西起增城市新塘镇新塘火车站,并在新塘火车站设置新塘站,与广州市轨道交通十三号线新塘站平行换乘,强了增城市与中心区的联系。

广州地铁三号线介绍

广州地铁三号线介绍 广州地铁3号线,代表颜色是橙色。线路呈南北“Y”字形走向,从北向南贯穿广州市区新城市中轴线和番禺区发展轴线。线路向北与机场快线衔接,向南延伸至广州新城。三号线全长36.86公里,共设18座车站,1座车辆段,新建2座主变电站,1座控制指挥中心。总投资为人民币159.05亿元。 线路 三号线全长64.41公里。 主线共设16座车站:天河客运站、五山、华师、岗顶、石牌桥、珠江新城(可换乘五号线)、赤岗塔(可换乘APM线)、客村(可换乘八号线)、大塘、沥滘、厦滘、大石、汉溪长隆、市桥、番禺广场。支线(又称北延线)为机场北至体育西路,设15座车站:机场北、机场南、高增、人和、龙归、嘉禾望岗(可换乘二号线)、白云大道北、永泰、同和、京溪南方医院、梅花园、燕塘、广州东站(可换乘一号线)、林和西(可换乘APM线)。 建设历程 广州地铁三号线分两段时间通车:广州东站至客村段于2005年12月26日开通,其余于2006年12月30日下午2时正式开通。现时三号线的列车分别运行于天河客运站与番禺广场之间,以及机场南与体育西路之间,并在体育西路站进行互相换乘。 三号线北延线2010年10月30日开通。三号线北延段由广州东站向北延伸至新白云国际机场,新增线路30.9公里,全部为地下线路。

加上原来已建成的线路,三号线总长将达到64.41公里 未来发展 此外三号线还计划开设北延长线及南延长线,北延长线由广州东站至新白云机场,全长约28.9公里,建有12个车站,初步站点分别为广州东站、燕塘、梅花园、京溪南方医院、同和、永泰、白云大道北、嘉禾望岗、龙归、人和、高增、机场南及机场北,已于2010年开通,新机场北站于2012年开通,高增站开通暂无时间表;南延长线由番禺广场开始,至海鸥岛,是一条长远规划的路线,暂未有落成的时间。三号线是国内首条最高时速达到120公里的城市轨道交通快线,也是国内首条Y形运行模式的线路。 根据2020~2040年地铁线网规划公众咨询方案,未来三号线支线天河客运站—体育西路将可能与地铁10号线合并,向西南延伸至荔湾区成为一条新的线路,三号线将真正实现花都到番禺1.5小时内直达;远期,地铁9号线(高增-飞鹅岭)也有可能与三号线合并,成为一条新的支线。 效益 地铁像是无形的巨手,带来一种奇特的城市景象:地铁所到之处,交通拥堵得到缓解,楼宇得以兴旺,土地增值,人流聚集,居住、商业、文化、社会等区域性功能迅速形成,带动周边经济迅猛发展。1999年一号线开通时,当年天河城营业额就提高了20%。短短几年间,地铁烈士陵园站上盖的中华广场铺位租金,已经涨了好几倍。到了3号线,仅是靠着具体站点规划公布的利好消息,番禺区住宅成交量就开

2020年广州地铁线路规划图

方案一(小环线方案) 方案一采用了经行康王路的小环线方案,选择了东风路东西干线与三号线形成的十字快线,构建了拆解三号线支线形成的十号线与新八号线构成的X形对角线。远期轨网由20条城市线和11条城际线组成,轨网总里程为1041公里,其中城市线里程为761公里。 (1)轨道环线 环线利用原八号线,新增康王路、人民北路、火车站、广园路、广州东站、天河北路、中山大道、员村二横路走廊构建,全长35.5公里,设站31座。该环线串接两大火车站,并直接连通所有外围放射线,整合了珠江两岸并带动员村、琶洲等重点地区的发展。 (2)十字快线 三号线(南北快线):北起新机场,南至海鸥岛,串接了花都、白云、天河、海珠、番禺等5区,线路长75.5公里,设站33座。预留与花都九号线贯通运营的条件。 十三号线(东西快线):线路西起白云湖,经东风路、黄埔大道、中山大道、港前路、广深公路,东至新塘,线路串接白云、荔湾、越秀、天河、黄埔、萝岗、增城等七区市,线路长55.1公里,设站24座。另设东莞支线(沙埔-东莞):线路西起沙浦站,向东经黄埔客运港,延伸至东莞,广州段长6.5公里,设站2座。 (3)X形对角线 1十号线(西南-东北对角线):线路西起穗盐路,经花蕾路、同福西、东湖路、寺右新马路、天河路,与三号线支线贯通,向北延伸至天河客运站,线路长20.9公里,设站15座。 2八号线(西北-东南对角线):线路北起凰岗,经西槎路、白云大道、下塘西路、东川路、二沙岛、双塔路、新港路,向东延伸至化龙,该线长35.3公里,设站25座。 表1 远期广州市轨道交通线网规划方案一指标一览 线路 长度 (km) 线路名称起讫点 城市线 一号线18.5 中山路线西塱-广州东站 二号线32.3 嘉禾线嘉禾-广州新客站 三号线75.5 市桥线新机场北-海鸥岛 四号线70.4 科学城线暹岗-南沙客运港 四号线支线 5.6 琶洲线琶洲-大学城北 五号线41.7 环市路线滘口-黄埔客运港 六号线41.9 沿江线浔峰岗-萝岗 七号线33.3 新造线广州新客站-萝岗 八号线35.3 双塔路线凰岗-化龙 九号线16.0 花都线汽车城-高增 十号线20.9 同福西线穗盐路-天河客运站 十一号线35.5 市区环线火车站-赤岗-东站 十二号线22.8 新滘路线东沙-汇景新城 十三号线55.1 东风路线白云湖-新塘 十三号支线 6.5 东莞支线沙浦-黄埔客运港-东莞十四号线62.6 从化线火车站-街口 十五号线30.5 南沙环线蕉门-南沙客运港-蕉门

广州地铁六号线卡斯柯信号系统LATS故障控制中心应急组织与处理

广州地铁六号线卡斯柯信号系统LATS故障控制中心应急组织与处 理 文章就广州地铁六号线卡斯柯信号系统出现LATS故障的情况下,地铁控制中心的行车组织与应急处理进行探讨,描述从故障发生的判断,到线路上不同区域出现故障时的应急处理和恢复正常运营的流程与细节。 标签:卡斯柯信号系统;LATS故障;应急处理 1 LATS是什么? LATS即本地ATS(车站ATS),一般情况下仅设备集中站(联锁站)LATS 对运营产生影响。设备集中站LATS负责控制中心与车站联锁系统之间的数据传输,能根据运行图或目的地码自动触发列车进路,当列车到达站台后,设备集中站LATS将正确驱动发车计时器(DTI)的显示。设备集中站LATS是双机热备,备机实时从主机获得同步的各種数据,可实现无扰切换。 2 LATS故障产生的影响 LATS故障情况下,控制中心将无法与车站联锁系统产生数据传输,列车将不能根据运行图或目的地码自动触发进路,DTI也无法正确显示。 3 LATS故障现象 以2015年12月25日,广州地铁六号线如意坊站LATS主机与交换机网络通信阻塞导致LATS主机信息丢失故障为例,六号线各关键位置的故障现象如下: (1)中央MMI故障时相应联锁区灰显,跨联锁区进路可以排列。 (2)中央CHMI故障时相应联锁区灰显。 (3)联锁站故障时联锁区灰显;相邻联锁区有可能出现短时重启现象。 (4)列车故障时不会紧制,原已触发的进路不会取消,故障区列车将不会自动触发进路且没有自动广播;站台DTI无显示。 4 LATS故障应急处理流程 根据目前LATS故障处理流程及12月25日LATS故障出现的实际情况,整理并细化LATS故障处理流程:

广州地铁三北线道岔设计思路(中铁)

刘杰 (中铁第一勘察设计院集团有限公司线运处西安710043) 【摘要】广州地铁三号线北延段道岔采用的是60kg/m钢轨钢筋混凝土短轨枕道岔系列.本文结合广州地铁三号线北延段,阐述了地铁用道岔种类、号数及主要技术特点,并对地铁用道岔的选型、设计提出建议. 【关键词】地铁道岔尖轨辙叉选型设计 1 地铁轨道交通的特点 地铁同国有铁路相比有其特殊性:车辆速度低、轴重轻、轴距单一、固定轴距小;行车密度大,列车间隔时间小、运营时间长、列车侧向通过道岔时一般为空车折返;列车运行区段一般在人口较为密集的繁华地区,要求轨道有良好的弹性和减振降噪能力;养护维修只能在夜间断电时间内完成,要求道岔必须具有足够的强度和稳定性,扣件力求简单、方便、可调,有一定的通用性. 2 道岔的种类及号数 主线道岔宜以列车计算通过速度为依据来选用.不同类型道岔侧向、直向容许通过速度如表1所示.广州地铁三号线北延段折返能力不受道岔型号的控制,仅受列车直向、侧向通过道岔速度要求的制约.当列车直向通过道岔速度低于95km/h或侧向通过道岔速度不大于30km/h时,宜采用9号道岔;当直向通过道岔速度为95—120km/h或侧向通过道岔速度大于30kin/h时,宜选用12号道岔;当侧向通过道岔速度大于50km/h时,宜选用18号道岔.全线所有道岔、交叉渡线均采用60kg/m钢轨. 3.1 道岔尖轨 目前我国地铁铺设的道岔结构一般采用AT藏尖式尖轨,尖轨跟端构造分为间隔铁式和可弯式.尖轨的平面线型分为直线型和曲线型,各有优缺点,道岔设计时可根据不同情况选用.3.1.1 直线型尖轨 直线型尖轨的工作边为一直线,它与基本轨工作边所成的交角称转辙角,转辙角与尖端角相等,也与车轮轮缘冲击尖轨工作边的角相等.这种尖轨可用于左开或右开单开道岔,加工制造简单,便于修换.缺点是尖轨尖端轨距加宽大,影响列车沿正线运行的平稳,当列车逆向进入侧线时,轮缘对尖轨的冲击较大,列车摇晃,尖轨也易磨损.3.1.2 曲线型尖轨 曲线型尖轨的工作边除尖端前部有一小段直线外,其余均为圆曲线,一般冲击角小于直线型尖轨,这种尖轨与导曲线的衔接比较圆顺,与同号码直线型尖轨比较,导曲线半径可以增大,侧向通过速度可以提高,道岔全长可以缩短.其缺点是左右开道岔不能通用,加工较复杂.曲线尖轨根据平面线型的不同又可分为切线型、半切线型、割线型、半割线型.其中半切线型、割线型、半割线型在我国铁路应用的较为广泛. (1)半切线型:见图1,尖轨曲线的理论起点与基本轨工作边相切,在尖轨25ram断面宽作切线,将尖轨前部取直.这种线型可显著地增大导曲线半径和缩短道岔全长,我国各种曲线尖轨主要采取此种形式,上海地铁一、二号线应用此道岔已运营十余年。 (2)割线型:见图2,曲线尖轨工作边与基本轨工作边相割,割距应满足使车轮逆向进岔时

上海轨道交通发展史

早在1958年上海就开始地铁建设前期准备,当时苏联专家断言上海是软土地层含水量多,不宜建设隧道工程。但中方专家并未放弃,1963年在浦东塘桥采用结构法钢筋混凝土管片衬内试挖了直径4.2米的隧道,用于验证粉沙性土质和淤混质粘土质中建设隧道的可行性。1964年在衡山公园附近又开挖了代号为“60工程”的地铁试验工程。正当专家们欲进一步试验时,文革开始了,上海地铁建设前期准备工作被迫停止。 1979年上海地铁建设再次启动,在漕溪公园的地底下,又尝试了第二条试验隧道的掘进,投资达四千多万人民币,上下行总长1290米。细心的乘客可以发觉这段线路采用结构法修筑地下连续水泥墙(方形隧道),与此后采用的盾构掘进(圆形隧道)有明显不同。这段线路现在作为轨道交通1号线的正式路线使用。 1989年5月,中德双方正式签署了4.6亿马克的地铁专款贷款协议书,1990年3月7日国务院正式同意,上海地铁工程新龙华站(今上海南站)至新客站(今上海火车站)开工兴建。上海地铁1号线于1993年1月9日进行试通车,计划第一列车从新龙华开往徐家汇,列车由内燃机车调车至新龙华车站。由於是历史上的首次,缺乏经验导致上行线供电触网无法送电,最后只能将列车调车回梅龙车辆段。第二天即1993年1月10日,上海地铁历史上第一列列车在新龙华至徐家汇区间进行车辆试运行。(地铁建成后一般需要经过三个阶段:试通车,不载客运行;试运营,载客运行;正式运营,通过国家正式验收)。经过地铁工程建设者不懈的努力,上海地铁1号线终于在1995年4月10日,全线上海火车站-锦江乐园站建成通车。锦江乐园车站是在试通车后加出来的,原来这一段线路是试车线。由于居住在附近康健新村、梅龙地区的市民在出入市区时感觉非常方便(到徐家汇只有10分钟),并且当时乘车方便、车票便宜(只有1元钱),故一下就吸引了大量的市民移居到梅龙地区,最后才决定正式建造锦江乐园车站并建设成大楼跨越式车站,大楼上部用于商业用房。 【建设发展大事纪】 1990年1月19日,经国务院同意正式开工建设。 1993年4月,1号线南段线路(徐家汇—锦江乐园)开始观光试运行。 1995年4月,1号线主线(上海火车站—锦江乐园)试运营。 1995年12月,1号线南延伸段(锦江乐园—莘庄)试运营。 1999年9月,2号线(中山公园—张江)试通车。 2000年6月,2号线(中山公园—张江)试运营。 2000年12月,3号线(上海南站—江湾镇)试运营。 2003年11月,5号线(莘庄—闵行开发区)试运营。

广州地铁6号线高架段的噪声控制方案(最终修改版)

目录 前言 一、工程概况 二、工程环境管理与目标 (1)施工环境指标 (2)施工环境目标 三、工程依据 四、工程噪声分析 (1)施工期间噪声污染源 (2)运营期噪声污染源 五、工程噪声控制 (1)施工期间噪声防治与控制措施 (2)营运期间噪声防止与控制措施六、噪声的危害 (1)噪声概况 (2)噪声对人的主要危害 七、高架段周围居民区的噪声防治建议 八、降噪后的效果 九、参考资料

前言: 城市轨道交通出行为方便市民出行,一般位于人流相对集中的闹市区,车辆运行噪声不可避免的对周边的学校、医院及居民生活区等产生不同程度的噪声干扰。因此,控制城市轨道交通的振动和噪声污染,已经成为环境保护领域急待研究和解决的重要问题。 关键词: 地铁振动和噪声减振降噪控制措施 一、工程概况: 广州地跌六号线起点为广州西面的金沙洲地区的浔峰岗,高架跨过北环高速公路后沿金沙洲路中央往东南方向前进,于沙凤村东侧以白沙河大桥横跨珠江支流,连接到大坦沙岛之沙头顶。之后线路转向正南,由高架转入地下隧道,往南至双桥路侧坦尾站与五号线换乘。其中在该路段有有浔峰岗、横沙、沙贝、河沙为高架站台。广州地铁六号线首期轨道工程左右线共48.92公里(不含车辆段线路),其中高架线6公里高架段。

二、工程环境管理与目标: (1)施工环境目标:在施工期间对噪声进行全面控制,尽量减少噪声污染所造成的不良影响。 (2)施工环境指标:在工程施工期间,对于所产生的噪声影响控制到最低,满足国家和广州市有关法律法规的要求。运营调试阶段,把运营期将可能对周围附近产生较大影响的地区配置隔声装置等有效可行措施。 三、工程依据: 1、《环境噪声污染防治法》,1997 2、《城市区域环境噪声标准》GB/3096-1993. 3、《城市轨道交通和噪声控制简明手册》

上海城市轨道交通规划

上海城市轨道交通规划 自1863年在英国伦敦出现第一条地下铁道以来,城市轨道成为世界各国解决城市交通问题的首选方案,并在世界40多个国家的130多个城市快速发展。城市交通成为一个国家现代化进程的标尺。 回索历史的胶片,中国的地铁始建于1965年,比世界发达国家晚了整整一个世纪!到二十世纪末,在北京、天津、上海和广州四个已运营的地铁系统中,总长仅80公里,而法国巴黎的地铁即超过300公里。 1958年8月,北京中南海。周恩来总理在一次会上提出:“西方卡不住我们的油脖子,中国也要修地下铁道”。9月,中铁四局集团的前身铁道部北京地下铁道工程局在北京市正式成立,很快就开始了北京地铁一号线的筹建,在西方实施经济技术封锁的情况下,克服重重困难,进行了线路比选、地质钻探、勘测设计、方案研究、施工组织等大量工作,后因三年自然灾害而暂缓施工。1965年3月,中铁四局集团抽调所属第一工程处、地下铁道工程技术研究组、钢筋混凝土预制构件工厂、机械厂筹建组、机械经租站、修配厂及机关部分人员重新组建铁道部北京地下铁道工程局,开始了新中国第一条地铁——北京地铁一号线的艰难困苦的掘进。 步入新世纪,城市轨道交通作为疏通堵塞的唯一选择,成为中国经济增长的新亮点。据悉,中国“十五”期间城市交通投资达8000亿元,其中2000亿元用于地铁建设。城市规划建设地铁和轻轨线路30多条,总长650公里。北京、上海、天津、广州在加速地铁里程的拓展,深圳、南京、青岛、重庆、沈阳、长春、成都和哈尔滨在动工兴建地铁,杭州、大连、兰州、昆明、西安、鞍山、合肥、佛山和乌鲁木齐在积极筹建地铁。首都北京现有地

铁一号线、环线和复八线,总长54公里,已全部贯通运营。全长27.7公里的地铁五号线已动工。北京规划地铁网络12条新线,总长达408公里。 上海地铁发展简史 早在1956年,上海市就开始地铁建设的前期准备,1956年8月,上海市政建设交通办公室向市人委提交《上海市地下铁道初步规划(草案)》,上海地下铁道建设开始提到市领导的议事日程。 1958年8月,上海市地下铁道筹建处成立,以“平战结合”的功能要求,对上海地下铁道开始规划设计、方案论证和试验研究。当时苏联专家断言上海是软土地层,含水量多,因此不宜建设隧道工程。1959年8月,上海警备区领导机关提出:上海地下铁道应以“平战结合、以战为主”的指导思想规划建设,地铁尽可能深埋入基岩层。市地铁筹建处组织科研、大专院校和设计单位,对上海地下铁道的埋设深度作浅、中、深3种方案的研究。对深埋方案探索后认为:如将地铁置于地下300~350米的基岩层,对功能要求、工程技术和建设经济均不合理。 1960年2月,上海市隧道工程局在浦东塘桥开始作盾构掘进试验。 1963年3月,上海市城市建设局隧道处继续在浦东塘桥用直径4.2米盾构,分别在覆土4米和12米处,建成25.2米和37.8米的装配式钢筋混凝土管片衬砌试验隧道,用于验证粉沙性土质和淤混质粘土质中建设隧道的可行性。 1964年11月,上海市委决定结合战备在地铁规划线上的衡山路段实施地铁扩大试验工程。至1967年7月,完成一井一站和600米区间的两条隧道后,因“文化大革命”中止。11年后,地铁试验工程才得以继续,1978年,漕溪路段试验工程批准开工,在漕溪公园的地底下,又尝试了第二条试验隧道的掘进,投资达四千多万人民币,上下行总长1290米。至1983年底,完成一井一站和圆形隧道913米、矩形隧道274米。试验成果:盾构掘进的轴线误差和地表沉陷都可控制在允许的范围之内;隧道用单层装配式钢筋混凝土管片衬砌可满足地铁隧道结构要求,防水达到同期国际标准;初步掌握槽壁地下连续墙的设计与施工技术。细心的乘客可以发觉这段线路采用结构法修筑地下连续水泥墙(方形隧道),与此后采用的盾构掘进(圆形隧道)有明显不同。这段线路现在作为上海轨道交通一号线的正式路线使用。 十一届三中全会后,随着改革开放形势的发展,市区“乘车难”的矛盾日渐突出。1983年初,市基本建设委员会、市科学技术委员会组织有关专家探讨上海的多平面、大容量快速有轨交通工程。4月,市计委向市政府上报《关于建设本市南北快速有轨交通项目建议书》,建议建设南起金山卫、北抵宝山、纵贯南北的快速有轨交通干线,穿越市区的中段为地下铁道。8月,市政府批准项目建议书,并成立上海市南北快速有轨交通线项目筹备组,组织有关单位和国内外专家开展项目的可行性研究。 1985年3月,上海市地铁公司成立,接替上海市南北快速有轨交通线项目筹备组的地铁工程项目可行性研究。1986年7月,市政府向国务院上报建设新龙华至新客站地下铁道的请示报告。8月,国务院批准立项。1988年2月,国务院批准工程可行性研究报告,同时成立上海市地铁工程建设指挥部,组织实施工程建设,由上海市市政工程管理局副局长石礼安兼任指挥。

广州地铁3号线车辆...

摘要:介绍了广州铁3号线地铁车辆的主要参数,阐述了车体、车门、转向架、列车牵引系统、列车制动系统、列车辅助供电、列车微机控制系统及列车空调等列车主要部件的技术特点,该车尤其在制动技术方面首次采用了EP2002国际最新技术。 关键词:广州地铁;3号线;地铁车辆;EP2002制动系统 引言 广州市轨道交通3号线(以下简称广州3号线)全长36.33 km,包括主线与支线,共设有18座车站(全部为地下车站)。其中,主线从广州东站至番禺广场站,长28.78 km,设车站13座;支线从天河客运站至体育西路站,长7.55 km,设车站5座。运营初期采用3辆编组的列车,配车数为120辆(每列车3辆编组,共40列)。 广州3号线地铁车辆由株洲电力机车有限公司与德国西门子公司组成的联合体于2003年5月19日与广州地铁公司签定合同,2005年12月开始交付首批车辆。车辆的国产化率为70%,设计寿命为35年。 1 广州3号线地铁车辆的主要参数 1.1 地铁车辆的主要技术参数 车辆形式 B型轨距 1435 m/n 列车编组一A+B+A 一(一:自动车钩,+:半永久牵引杆,A:带司机室和受电弓的动车,B:拖车) 列车长度 59940 mm 单节车辆长度(跨车钩连接面) ≤19 980 mm 车辆宽度 2 800 mm 车辆高度(轨面至车顶高、新轮、不含受电弓) 不含排气口及空调单元≤3 800 mm 含排气口及空调单元≤3 855 mm 受电弓落弓高度 3 875 mm 轴距 2 300 mm 转向架中心距 12 600 mm 车轮直径 840(新轮)/805(半磨耗)/770(全磨耗)mm 最高运行速度 1 20 km/h 车辆地板高度 1 130 mm 车钩距轨面高度 720 mm 供电方式 (正线)架空刚性接触网额定电压 DC 1 500 V 受电弓工作高度 175~1 600 mm 车辆中心高度(客室净高) 地板面到天花板中心最小高度 2 100mm 客室内乘客站立区最小高度 1 900mm 站台高度 1 060 mm 站台有效长度 120 m

广州地铁6号线列车停车冲击问题分析与优化_何晔

— 107 — 机 车 电 传 动 ELECTRIC DRIVE FOR LOCOMOTIVES №2, 2015 Mar. 10, 2015 2015年第2期 2015年3月10日收稿日期:2014-11-11;收修改稿日期:2015-01-21 城市轨道车辆 何 晔,赵 帅 (广州市地下铁道总公司?运营事业总部, 广东?广州?510380) 摘 要:针对广州地铁6号线列车出现的在停车时冲击较大的问题进行了系统分析,详述了试验过程,提出了通过降低低速时的停车级位作为解决方案,并验证了整改后的效果,使得广州地铁6号线的停车平稳性有了较大优化。 关键词:停车冲击;保压制动;平稳性;舒适度;优化;广州地铁6号线 中图分类号:U231;U260.35 文献标识码:B 文章编号:1000-128X(2015)02-0107-003doi :10.13890/j.issn.1000-128x.2015.02.026 广州地铁6号线列车停车冲击问题分析与优化 广州地铁6号线在运营初期时常接到反馈,列车在正线车站对标停车时,列车的平稳性较差,在列车进站停车瞬间乘客站立不稳,对乘客的乘车舒适度造成较大影响。通过乘坐其他地铁线路并对比,发现其他线路车辆在停车瞬间也存在停车冲击率较大的问题。针对该问题,广州地铁和相关供应商展开了专题研究。 这里提出一种方法,通过改进列车进站时的控车方案来实现降低停车冲击率,增加乘车舒适度。 1?问题分析 为了找到6号线停车冲击大的原因,首先对在ATO 调试阶段的正线试验数据进行了分析并上车体验乘坐舒适性。 从图1~图3列车运行曲线可以看出,北京路站列车停车制动级位约为70%,停车冲击较大;寻峰岗站列车停车制动级位约为20%,停车冲击较小;横沙站列车停车制动级位约为60%,停车冲击较大。当列车进站停车级位较大时刻,在列车停稳的一瞬间,列车的停车制动级位较大,导致列车减速度比较大,列车停车冲击较为明显。 列车停车瞬间是列车由动变静的过程,减速度率变化势必会比较大,若在车辆停稳之前施加的制动力过大,会导致加速度变化较大,感觉到的冲击较为明显,出现乘客站不稳的情况。从图中的对比可以看出,停车前施加的制动级位越大,列车冲击越大。因此,6号线列车出现停车冲击较大的原因为停车瞬间施加的制动级位较大所致。 2?原因分析 为了查找停车瞬间冲击偏大的原因,在试车线上进行了一系列的试验。根据前期ATO 调试时期的数据,在人工模式下列车加速到25 km/h ,进行了各种制动参考值下的制动试验。试验测试内容、部分测试曲线和结果如表1及图4~图7所示。 图1 北京路站列车停站制动曲线 图2 寻峰岗站列车停站制动曲线图3 横沙站列车停站制动曲线 表1?不同级位下的停车情况统计 测试内容 (人工模式下列车加速到25 km/h) 施加10%全常用制动停车施加20%全常用制动停车施加30%全常用制动停车施加40%全常用制动停车施加50%全常用制动停车施加60%全常用制动停车施加70%全常用制动停车施加80%全常用制动停车施加90%全常用制动停车施加100%全常用制动停车 停车情况非常平稳平稳平稳有冲动有冲动有冲动冲动较大冲动较大冲动较大冲动较大 图4 列车10% 级位停车制动曲线

上海市轨道交通10号线详勘报告

一.前言 1.工程概况 上海市轨道交通10号线(地铁M1线)是《上海市城市轨道交通系统规划方案》中规划的市区级轨道线网中的地铁类线路之一。一期工程线路起点为高速铁路客站站、终点为新江湾城站,全长32.76km。线路具体走向为:高速铁路客站~星站路~吴中路~虹井路~延安西路~虹桥路~淮海路~复兴路~河南路~武进路~四平路~淞沪路~新江湾城,连接闵行、长宁、徐汇、卢湾、黄浦、虹口、杨浦等7个区。一期工程均采用地下线方案,共包含30个车站、29个区间,并在外环路站南侧设地面停车场一座。 拟建南京东路站~天潼路区间在苏州河(吴淞江)以南位于黄浦区境内,苏州河以北位于闸北区和虹口区交界处。区间起点为南京东路站北端,线路从河南中路、宁波路口起,沿河南中路向北穿越北京东路,在通过苏州河后,沿河南北路行进,到达区间终点天潼路站南端,里程约为AK21+116~AK21+618,全长502m。本区间拟采用盾构法施工,盾构外径约为6.5m。 工程建设单位为上海申通集团有限公司,本区间由上海市隧道工程轨道交通设计研究院设计。我单位受建设单位委托对本工程进行详勘工作,工程勘察等级为甲级。 2.勘察依据 1)上海市轨道交通10号线(地铁M1线)一期工程(AK18+521~AK25+076)岩土工程初勘报告(上海市隧道工程轨道交通设计研究院,2005年2月) 2)上海市轨道交通10号线(地铁M1线)工程南京东路站~天潼路站区间平面图、结构断面图。 3)上海市轨道交通10号线(地铁M1线)一期工程第4标段岩土工程勘察投标文件(上海市隧道工程轨道交通设计研究院,2005年7月)。 3.采用的规范、规程及标准 1)国家及行业规范、标准 《岩土工程勘察规范》(GB50021-2001) 《地下铁道、轻轨交通岩土工程勘察规范》(GB 50307-1999) 《建筑地基基础设计规范》(GB50007-2002) 《建筑抗震设计规范》(GB50011-2001) 《土工试验方法标准》(GB/T50123-1999) 《建筑工程勘察文件编制深度规定》(2003年6月试行) 《工程测量规范》(GB50026-93) 2)上海市工程建设规范、规程 《岩土工程勘察规范》(DGJ08-37-2002) 《地基基础设计规范》(DGJ08-11-1999) 《城市轨道交通设计规范》(DGJ08-109-2004) 《建筑抗震设计规程》(DGJ08-9-2003) 《岩土工程勘察文件编制深度规定》(DGJ08-72-98) 《岩土工程勘察外业操作规程》(DG/TJ08-1001-2004) 3)其他标准 《工程建设标准强制性条文》(2002年版) 《静力触探技术标准》(CECS04:88) 4.勘察目的及技术要求 本次勘察目的是在初勘基础上,详细查明拟建场地的工程地质、水文地质条件,并作出定性、定量评价,对不良地质、特殊地质提出治理措施,为施工图设计提供充分地质依据及必要的设计参数,给出结论并提出相应的建议。主要技术要求如下: 1)详细查明工程沿线场地的地形地貌、地基土层埋藏深度、地质年代、成因类型和分布特征,对拟建场地稳定性和适宜性作出分析评价。 2)详细查明工程沿线场地内不良地质,分析其成因、分布范围及其对工程可能产生的不利影响,并为设计提供所需的资料。 3)详细查明地下水类型、埋藏条件、水位、水质及渗透性等,分析其对拟选施工方案的影响,为设计提供所需的水文地质参数。 4)划分场地类别和地基土类型,按抗震设防烈度7度要求,对场地地震效应进行分析。 5)根据既有资料并结合拟建建(构)筑物的特征,提供设计所需的各种物理力学指标及其它的技术参数,提出适宜的技术措施及合理的建议,满足设计施工要求:对区间隧道沿线地基土及不良地质等对隧道盾构施工可能产生的各种影响作出评价,提出相应的防治措施,并提供盾构设计施工所需的有关参数。

广州轨道交通三号线北延段施工9标“5.5”安全事故

广州轨道交通三号线北延段施工9标“5.15”安全事故事故发生时间:二OO九年五月十五日二十一时十分 事故发生地点:白云区人和镇秀水村广州轨道交通三号线北延【龙归—人和】 区间里程ZDK22+489.61处 事故单位名称:中铁十五局集团有限公司 事故简要经过:5月15日下午,广州轨道交通三号线北沿盾构9标左线盾构机 在528环掘进时,例行进行开仓检查,经监理同意后,根据开仓程序,中午13:30 对仓内气体进行了第三方检测,未发现异常气体,但是氧气含量偏低,要求通风1 小时后再开仓。施工单位根据第三方气体检测意见实施通风准备工作,随后对土仓 内进行通风。14:30,打开仓门进行通风,16:30,检测氧气19.7%,无其他气体 超标,于是杜兴峰进入土仓内初步检查了地址围岩情况,旁边的监理人员对围岩情 况进行了拍照。检查完毕后,刘松站在仓门口冲洗刀盘,17:10分左右,冲洗完毕。随后,杜兴峰在土仓口查看土仓内刀具情况,突然坠入土仓内;在其身后的刘松立 即进入土仓施救,也坠入土仓内;第三名作业人员包海军紧接着施救,也掉入土仓;第四名作业人员陈总准备进仓施救时,旁站的监理人张岸将其拉出,整个过程前后 不到10分钟。

经初步分析,事故发生的初步原因是土仓内突然出现不明毒气。本地段工程地质为、号泥质粉砂岩,设计勘察时未发现有毒气体,在之前施工过程每次开仓检查时,均未发现有毒气体,根据已通过的第一台盾构机在同一地段开仓的情况,也没有发现有毒气体,有毒气体的来源需进一步调查与分析。 现场应急措施:事故发生后,施工单位现场负责人紧急启动事故应急预案,组织现场人员进行抢救,对拉出来的1名作业人员进行医院救治,并试图救援仓内的3人,同时向110、119寻求救援。广州市常务副市长苏泽群、市建委、公安、消防、安监、环保、地铁等部门领导,区政府、医院等领导立即赶赴现场开展指挥和部署抢救工作。目前,仍在紧急救援之中。

相关主题