搜档网
当前位置:搜档网 › 直线与方程复习学案

直线与方程复习学案

直线与方程复习学案
直线与方程复习学案

直线与方程

一、知识要点: 1. 倾斜角与斜率

2. 直线方程式的5种形式:点斜式、斜截式、两点式、截距式、一般式 3.两条直线平行、垂直的条件(与斜率及系数的关系)

4.距离公式:两点间的距离公式、点到直线的距离公式、两平行直线间的距离公式 5. 对称问题(点对称、轴对称) 二、基础知识练习:

1. 直线倾斜角的取值范围___________,直线斜率的定义公式_____________, 过两点P 1(x 1,y 1), P 2(x 2,y 2)的斜率公式______________,斜率的取值范围______________.

2.x=1的倾斜角为__________,直线3310x y ++=的倾斜角是__________,90α=

时的斜率_________.

3. 直线方程的点斜式方程_________________,直线方程的斜截式方程_________________,直线方程的两点式方程_________________,直线方程的截距式方程_________________,直线方程的一般式方程_______________,与x 轴垂直的直线方程___________,与y 轴垂直的直线方程___________.

4.已知直线111222:,:l y k x b l y k x b =+=+,若1l ∥2l ,则__________________,若1l ⊥2l ,则______________;已知直线11112222:0,:0l A x B y C l A x B y C ++=++=,若1l ∥2l ,则_________________,若1l 、2l 重合,则__________________,若1l ⊥2l ,则______________.

5. 与:0l Ax By C ++=平行的直线可设为______________,与:0l Ax By C ++=垂直的直线可设为____________________.

6. 平面上任意两点111222(,),(,)P x y P x y 的距离公式__________________________, 点000(,)P x y 到直线:0l Ax By C ++=的距离d=_________________,两条平行直线

1:0l Ax By C ++=与2:0l Ax By C ++=间的距离为d=________________.

三、典例解析

例1.下列命题正确的有 :

①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应; ②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大; ③过两点A(1,2),B(m,-5)的直线可以用两点式表示; ④过点(1,1),且斜率为1的直线的方程为

1

11

y x -=-; ⑤直线Ax+By+C=0(A,B 不同时为零),当A,B,C 中有一个为零时,这个方程不能化为截距式. ⑥若两直线平行,则它们的斜率必相等;

⑦若两直线垂直,则它们的斜率相乘必等于-1.

例 2.若直线062:1=++y ax l 与直线01)1(:22=-+-+a y a x l ,则12l l 与相交时,a_________;21//l l 时,a=__________;这时它们之间的距离是________;21l l ⊥时,a=________ .

例3.求满足下列条件的直线方程:

(1)经过点P(2,-1)且与直线2x+3y+12=0平行; (2)经过点Q(-1,3)且与直线x+2y-1=0垂直; (3)经过点R(-2,3)且在两坐标轴上截距相等;

(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;

(5) 经过点N(-1,3)且在x 轴的截距与它在y 轴上的截距的和为零. 例4.已知直线l 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B (1)求△AOB 面积为4时l 的方程;

(2)求l 在两轴上截距之和为+322时l 的方程。 例5.已知△ABC 的两个顶点A(-10,2),B(6,4), 垂心是H(5,2),求顶点C 的坐标.

四、练习巩固

1.直线L :ax+4my+3a=0 (m ≠0)过点(1 , -1),那么L 的斜率为 ( )

A .

4

1

B .-4

C . -

4

1

D .4 2.两平行直线分别过(1,5),(-2,1)两点,设两直线间的距离为d ,则

( )

A .d=3

B .d=4

C .3≤d ≤4

D .0

3.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( )

A.1条 B.2条 C.3条 D.4条

4.等腰ABC ?的三个顶点的坐标是A(-3,4),B(-5,0)C(-1,0),则BC 边的中线AD 的方程

( )

A. x=-3

B.y=-3

C.x=-3(40≤≤y )

D.y=-3 (51x -≤≤-) 5.如果直线012=-+ay x 与直线01)13(=---ay x a 平行,则a 等于 ( )

A .0

B .

6

1

C .0或1

D .0或

6

1

6.已知直线l 过点P(5,10),且原点到它的距离为5,则直线l 的方程为 .

7.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 .

8.经过点(0,1)P -作直线l ,若直线l 与连接(1,2),(2,1)A B -的线段没有公共点,则直线l 的斜率k 的取值范围为 .

9.直线01)2(:05)1(:21=-++=+-+my x m l y m mx l 与互相垂直,则m 的值是 . 10.已知直线l 与直线3x+4y -7=0平行,并且与两坐标轴围成的三角形的面积为24,求直线l 的方程。

11.设直线l 的方程为()()

062123222=+--++--m y m m x m m ,根据下列条件求m 的值.(1)直线l 的斜率为1; (2)直线l 经过定点()P 1,1--.

直线与方程之综合应用

一、基础知识练习:

1.点P(a,b) 关于原点对称的点是_________,关于x 轴对称的点是_________,关于y 轴对称的点是_________,关于直线=y x 对称的点是_________,关于直线=-y x 对称的点是_________,关于直线=x m 对称的点是_________,关于直线=y n 对称的点是_________.

2.直线Ax+By+C=0关于原点对称的直线方程是______________;它关于x 轴对称的直线方程是______________;它关于y 轴对称的直线方程_______________;它关于直线=y x 对称的直线方程______________.它关于直线=-y x 对称的直线方程______________.

3. 若11112222:0,:0l A x B y C l A x B y C ++=++=相交,则过1l 、2l 的交点的直线系方程为________________________________________________.

4.经过原点且经过直线+-=++=12l :3x 4y 20,l :2x y 20交点的直线方程是_______________.

5. 已知点A(1,1)和点B(3,3),则在x 轴上必存在一点P ,使得从A 出发的入射光线经过点P 反射后经过点B ,点P 的坐标为__________. 二、典例解析

例1.过点)3,1(作直线l ,若l 经过点)0,(a 和),0(b ,且*

∈N b a 、,则可作出的l 的条数为( ) A. 1 B. 2 C. 3 D. 多于3

例2.已知两直线++=11a x b y 10和++=22a x b y 10都通过点P(2,3),求经过两点

111222Q (a ,b ),Q (a ,b )的直线方程.

例3.从点A(4,1)-出发的一束光线l ,经过直线1l :x y 30-+=反射,反射光线恰好通过点

B(1,6),求入射光线l 所在的直线方程.

例4.已知直线012:=+-y x l 和点A (-1,2)、B (0,3),试在l 上找一点P ,使得PB PA +的值最小,并求出这个最小值。

例5.过点(2,3)的直线l 被两平行直线12:2590,:2570l x y l x y -+=--=所截得线段AB 的中点恰好在直线410x y --=上,求直线l 的方程. 三、练习巩固

1.直线,031=-+-k y kx 当k 变动时,所有直线都过定点

( )

A .(0,0)

B .(0,1)

C .(3,1)

D .(2,1)

2.过点(1,3)且与原点距离为1的直线有 ( )

A.3条

B. 2条

C. 1条

D. 0条 3.到x 轴、y 轴和直线02=++y x 的距离相等的点有 ( ) A.1个 B.2个 C.3个 D.4个

4. 如果直线02=+-y ax 与直线03=--b y x 关于直线0=-y x 对称,则( )

A. 31=

a , 6=

b B. 3

1

=a , 6-=b C. 3=a 2-=b D. 3=a , 6=b

5.已知点M (4,2)与N (2,4)关于直线l 对称,则直线l 的方程为 ( )

A .06=++y x

B .06=-+y x

C .0=+y x

D .0=-y x

6.设三条直线0123201832,06232=+-=+-=++y mx y m x y x 和围成直角三角形,

则m 的取值是 ( )

A .01或±

B .或094-

C .941,0或--

D .9

4

1-或- 7.与两平行直线:1l :;093=+-y x l 2:330x y --=等距离的直线方程为 .

8.直线l 方程为08)2()23(=+-++y m x m ,若直线不过第二象限,则m 的取值范围是 . 9.一束光线从点(1,1)A -出发,经x 轴反射到点(2,3)O ,光线经过的最短路程是

10.已知03=-+y x ,则2

2)1()2(++-y x 的最小值等于 ;

11.已知132=-n m ,则直线5=+ny mx 必然过定点___________.

12.△ABC 中,A (0,1),AB 边上的高线方程为x +2y -4=0,AC 边上的中线方程 为2x +y -3=0,求AB ,BC ,AC 边所在的直线方程.

13.已知直线012:=+-y x l 和点O (0,0)、M (0,3),试在l 上找一点P ,使得PO PM -的值最大,并求出这个最大值。

直线与方程之基础复习答案

三、典例解析 例1.⑤

例2.a 2a 1≠≠-且;a 1=-;

65

5

;2a 3=

例3.(1)2x+3y-1=0 (2)2x-y+5=0

(3)x+y-1=0或3x+2y=0 (4)4x+y-6=0或3x+2y-7=0 (5)03=+y x 或04=+-y x . 例4.解: 设(a,0),B(0,b) ∴a,b>0 ∴l 的方程为

1=+b

y

a x ∵点(1,2)在直线上 ∴12

1=+b

a ∴=-2a

b a 1 ① ∵b>0 ∴a>1

(1) S △AOB =

ab 2

1

=?

-12a a 2a 1 =4 ∴a=2 这时b=4 ∴当a=2,b=4时S △AOB 为4 此时直线l 的方程为

14

2=+y

x 即2x+y-4=0 (2) +

=+-2a

a 322a 1

∴=+a 21 这时=+b 22 ∴l 在两轴上截距之和为3+22时,直线l 的方程为y=-2x+2+2。 例5.解: ∵BH 24k 256-=

=- ∴AC 1

k 2

=- ∴直线AC 的方程为1

y 2(x 10)2

-=-

+ 即x+2y+6=0 (1) 又∵AH k 0= ∴BC 所直线与x 轴垂直 故直线BC 的方程为x=6 (2) 解(1)(2)得点C 的坐标为C(6,-6) 四、练习巩固

1.C 2. D 3. C 4. C 5. D

6.x=5或3x-4y+25=0

7.[)(]2,00,2?-

8.(-∞,-1)∪(1,+ ∞)

9. 1m 0m 2

==-

或 O

A

B

(1,2) x

y

10. 解:设l :3x 4y m 0++= 则当y=0得m x 3=- ; 则当x=0得m y 4

=- ∵直线l 与两坐标轴围成的三角形面积为24 ∴

1m m

||||24234

?-?-= ∴m 24=± ∴直线l 的方程为3x 4y 240+±=

11. 解:(1)由题意得:()

123222-+=---m m m m

即0432

=--m m ,解之得 ()

3

41=

-=m m 或舍去. (2)由题意得:

()()()

()06211213222

=+--?-++-?--m m m m m

即01032

=-+m m ,解之得 3

52=

-=m m 或. 直线与方程之综合应用答案

二、典例解析

例1.解:(方法一)设过点)3,1(的直线l 的方程为

1=+b y a x ,则131=+b a ,∴3

-=b b

a , 由*

∈N b a 、逐步试解可得??

?==44a b 或???==2

6

a b ,所以选B.

(方法二)设过点)3,1(的直线l 的方程为)1(3-=-x k y ,则.3,13

k b k

a -=+-

= 由*

∈N b a 、得:1-=k 或3-=k ,相应的由??

?==44b a 或???==6

2

b a ,所以选B.

例2.解:依题意得:112a 3b 10++=,这说明111Q (a ,b )在直线2x 3y 10++=上,同理,122Q (a ,b )也在直线2x 3y 10++=上.

因为两点确定一直线,所以经过两点111Q (a ,b )

、122Q (a ,b )的直线方程为2x 3y 10++=.

例3.设B(1,6)关于直线1l 的对称点为'

00B (x ,y )

则0000x 1y 6

302

2y 611x 1

++?-+=???-??=--?? 解得00x 3y 4=??=?

∴直线'

AB 的方程为

y 1x 4

4134

-+=-+ 即3x 7y 190-+= 故直线l 的方程为3x 7y 190-+=

例4.解:过点B (0,3)且与直线l 垂直的直线方程为x y l 2

1

3:'

-

=-, 由?????+-==+-321

012x y y x 得:???

????==51354y x ,即直线l 与直线'

l 相交于点)513,54(Q , 点B (0,3)关于点)513,

54(Q 的对称点为)5

11,58('B , 连'

AB ,则依平面几何知识知,'

AB 与直线l 的交点P 即为所求。

直线'

AB 的方程为)1(1312+=-x y ,由?????+==+-1327131012x y y x 得???

???

?

==25532514y x ,即:)2553,2514(P , 相应的最小值为5

170

)5112()581(22=

-+--=

AB . 例5.解: 与两平行直线12:2590,:2570l x y l x y -+=--=等距离的直线方程为

2510x y -+=

解4102510x y x y --=??

-+=?得交点3

1

x y =-??=-?

则所求直线l 的方程为

y 1x 3

3123

++=++ 即4x 5y 70-+= 三、练习巩固

1. C

2. B

3. D

4. A

5. D

6. C 解:10662

21±=?=-?⊥m m l l ,当1=m 时,32//l ,故1=m 舍去;

106631=?=-?⊥m m l l ,当1=m 时,32//l ,故1=m 舍去;

940094232-

=?=+?⊥或m m m l l . 综上所述:=m 9

41,0或-- 7. 3x-y+3=0

8. 2(,]3

-∞- (解:直线l 过定点(-1,-3),数形结合得,]3,0[∈l k ,∴32

2

30≤-+≤

m m ,

解之得:2m 3

≤-

.) 9. 5 10.

2 11. (10,-15)

12. 解:直线AB 的斜率为2,∴AB 边所在的直线方程为012=+-y x ,

直线AB 与AC 边中线的方程交点为??

? ??2,2

1B

设AC 边中点D (x 1,3-2x 1),C(4-2y 1,y 1),∵D 为AC 的中点,由中点坐标公式得

BC C y y x y x ∴∴=???

?+=--=),1,2(,11)23(224211

11

1边所在的直线方程为0732=-+y x ;

AC 边所在的直线方程为y =1.

13. 解:点O (0,0)关于直线012:=+-y x l 的对称点为)5

2

,54(-

O ,直线'MO 的方程为x y 4133=-,直线'MO 与直线012:=+-y x l 的交点)5

11

,58(--P 即为所求,相应的PO PM -的最大值为.5

185

=‘

MO

(推荐)高中数学直线与方程知识点总结

直线与方程 1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x 轴平行或重合时, 规定α= 0°. 2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα ⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,

如果它们的斜率互为负倒数,那么它们互相垂直,即

直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211 y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x-x1/x-x2 2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0) 2、各种直线方程之间的互化。 3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标 1、给出例题:两直线交点坐标 L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 3420 2220x y x y +-=??++=? 得 x=-2,y=2

数学必修2 直线与方程典型 例题

第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型一求直线的倾斜角 例 1 已知直线的斜率的绝对值等于,则直线的倾斜角为(). A. 60° B. 30° C. 60°或120° D. 30°或150° 变式训练: 设直线过原点,其倾斜角为,将直线绕原点沿逆时针方向旋转45°, 得到直线,则的倾斜角为()。 A. B. C. D. 当0°≤α<135°时为,当135°≤α<180°时,为 题型二求直线的斜率 例2如图所示菱形ABCD中∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率. 变式训练:已知过两点, 的直线l的倾斜角为45°,求实数的值. 题型三直线的倾斜角与斜率的关系 例3右图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则(). A .k1<k2<k3 B. k3<k1<k2 C. k3<k2<k1 D. k1<k3<k2

拓展一三点共线问题 例4 已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值. 变式训练: 若三点P(2,3),Q(3,),R(4,)共线,那么下列成立的是(). A. B. C. D. 拓展二与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线与线段AB始终有公共点,求直线的斜率的取值范围. 变式训练: 已知两点,直线过定点且与线段AB相交,求直线的斜率的取值范围.

拓展三利用斜率求最值 例 6 已知实数、满足当2≤≤3时,求的最大值与最小值。 变式训练:利用斜率公式证明不等式:且 3.1.2 两条直线平行与垂直的判定 【知识点归纳】 1.直线平行的判定 2.两条直线垂直的判定(注意垂直与x轴和y轴的两直线): 【典型例题】 题型一两条直线平行关系 例 1 已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行? 变式训练:经过点和的直线平行于斜率等于1的直线,则的值是(). A.4 B.1 C.1或3 D.1或4

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

教案《直线与方程小结复习》

直线与方程小结复习 教学目标: (1)在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. (3)能根据两条直线的斜率判定这两条直线平行或垂直. (4)掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一 般式),了解斜截式与一次函数的关系. (5)能用解方程组的方法求两相交直线的交点坐标. (6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离. 教学方法:探究、交流、讲授结合 教学计划:2课时 教学过程: 第一课时: 知识点梳理: 1.倾斜角:一条直线l 向上的方向与x 轴的正方向所成的最小正角,叫做直线的倾斜角,范围为[)0,π. 斜率:当直线的倾斜角不是90?时,则称其正切值为该直线的斜率,即tan k α=; 当直线的倾斜角等于90?时,直线的斜率不存在。 说明:(1)每一条直线都有倾斜角,但不一定有斜率; (2) 斜率为倾斜角的函数: 2.斜率的求法: (1)定义法:tan k α=(?≠90α) (2)坐标法:过两点()111,P x y ,()222,P x y ()12x x ≠的直线的斜率 公式:21 21 tan y y k x x α-== - 若12x x ≠,则直线12P P 的斜率不存在,此时直线的倾斜角为90?.

(3)由直线方程求其斜率:直线0Ax By C ++=的斜率为B A k - = 3.直线方程的几种形式: 基本题型: 问题1:斜率与倾角 : 例1:已知两点()1,2A -,(),3B m . (1)求直线AB 的斜率k ; (2)若实数1m ?? ∈???? ,求AB 的倾斜角α的范围. 例2.已知直线l 过点()0,0P 且与以点()2,2A --,()1,1B -为端点的线段相交, 求直线l 的斜率及倾斜角α的范围. 问题2.直线l 的方程 例3:求满足下列条件的直线l 的方程: (1)过两点()2,3A ,()6,5B ;(2)过()1,2A ,且斜率为2 3= k ; (3)过()3,2P ,倾斜角是直线30x +=的倾斜角的2倍; (4)过()5,2A -,且在x 轴,y 轴上截距相等; (5)在y 轴上的截距为3-,且它与两坐标轴围成的三角形面积为6.

《直线与方程》教案+例题精析

考点1:倾斜角与斜率 (一)直线的倾斜角 例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.??? ?????? ??32,22,0πππ B.??? ?????? ??32223ππππ,, C.??? ?????? ??πππ,,330 D.?? ? ?????? ??πππ,,3220 2 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .,63ππ?????? B .,62ππ?? ??? C .,32ππ?? ??? D .,62ππ?????? (二)直线的斜率及应用 3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++= 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或4 3.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150° 4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B .1b a -= C .23a b -= D .23a b -= 5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2 6.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = . 7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围. 9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 考点2:求直线的方程 例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。 2、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A. x +y -5=0 B. 2x -y -1=0 C. 2y -x -4=0 D. 2x +y -7=0 3、直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线方程为________. 4、过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_____________. 5、已知点A (2,-3)是直线a 1x +b 1y +1=0与直线a 2x +b 2y +1=0的交点,则经过两个不同点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是( )A .2x -3y +1=0 B .3x -2y +1=0 C .2x -3y -1=0 D .3x -2y -1=0 6、.过点P (0,1)且和A (3,3),B (5,-1)的距离相等的直线方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0 7.如图,过点P (2,1)作直线l ,分别为交x 、y 轴正半轴于A 、B 两点。(1)当⊿AOB

高一数学必修2直线与方程知识点总结

高一数学必修 2 直线与方程知识点总结 (一)高一数学必修2 直线与方程知识点总结一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时, 我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0180 (2)直线的斜率 ①定义:倾斜角不是90 的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即。斜 率反映直线与轴的倾斜程度。 当时,; 当时,; 当时,不存在。②过两点的直线的斜率公式:注意下面四点:(1) 当时,公式右边无意义,直线的斜率不存在,倾斜角为90 (2)k 与P1、P2 的顺序无关;(3) 以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式:直线斜率k,且过点注意:当直线的斜率为0 时,k=0 ,直线的方程是y=y1 。 当直线的斜率为90 时,直线的斜率不存在,它的方程不能用点斜式表示. 但因l 上每一点的横坐标都

等于x1 ,所以它的方程是x=x1 。 ②斜截式:,直线斜率为k,直线在y 轴上的截距为b ③两点式:()直线两点,④截矩式: 其中直线与轴交于点, 与轴交于点, 即与轴、轴的截距分别为。 ⑤ 一般式:(A ,B 不全为0) 注意:各式的适用范围特殊的方程如: 平行于x 轴的直线:(b 为常数); 平行于y 轴的直线:(a 为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系 平行于已知直线(是不全为0 的常数)的直线系:(C 为常数) (二)垂直直线系 垂直于已知直线(是不全为0 的常数)的直线系:(C 为常数) (三)过定点的直线系 (ⅰ )斜率为k 的直线系:,直线过定点; (ⅱ )过两条直线,的交点的直线系方程为 (为参数),其中直线不在直线系中。 (6)两直线平行与垂直

直线与方程例题解析

第三章:直线与方程的知识点 一、基础知识 倾斜角与斜率 1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<或),0[πα∈ 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点 1122(,),(,)P x y P x y ,则有斜率公式2 1 21y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0. 注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α?<,随着α的增大,斜率k 也增大;当90180α?<

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

直线与方程知识点总结(学生版)

I直线方程知识点总结 一、基础知识梳理 知识点 1:直线的倾斜角与斜率 ( 1)倾斜角:一条直线向上的方向与X 轴的所成的最小正角,叫做直线的倾斜角,范围为 ( 2)斜率:当直线的倾斜角不是900时,则称倾斜角的为该直线的斜率,即k=tan 注记:所有直线都有倾斜角,但不是所有直线都有斜率.(当=90 0时,k 不存在)(3)过两点 p1(x1,y1),p2(x2,y2)(x1≠ x2)的直线的斜率公式: k=tan y 2 y 1(当x 1=x2时,k不存在,此时直线的倾斜角为900) . x2x1 知识点 2:直线的方程名称方程 斜截式y=kx+b 点斜式y-y0=k( x-x0) 两点式y y 1 =y y1 y2y1y2y1 截距式x y +=1 a b 一般式Ax+By+C=0已知条件局限性 k——斜率 b——纵截距 (x0, y0)——直线上 已知点, k——斜率 (x1,y1) ,(x2,y2)是直线上 两个已知点 a——直线的横截距 b——直线的纵截距 A C C ,,分别为 B A B A、 B 不能同时为零斜率、横截距和纵截距 直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。 二、规律方法提炼 1、斜率的求法一般有两种方式 ( 1)已知倾斜角,利用k tan ;(2)已知直线上两点,利用 k y2y 1 ( x1 x 2 ) x2x1 2、求直线的一般方法 (1)直接法:根据已知条件选择适当的直线方程,选择时应注意方程表示直线的局限性; (2)待定系数法:先设直线方程,根据已知条件求出待定系数,最后先出直线方程; 3、与直线方程有关的最值问题的求解策略: ○1 首先,应根据问题的条件和结论,选取适当的直线方程形式,同时引进参数; ○2 然后,可以通过建立目标函数,利用函数知识求最值;或通过数形结合思想求最值. II两直线的位置关系

(完整版)必修二第3章直线与方程题型总结

必修2 第3章 直线与方程 理论知识: 1直线的倾斜角和斜率 1、倾斜角: 2、 倾斜角α的取值范围: .. 3、直线的斜率: k = 记住特殊角的正切值 ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k = 2两条直线的平行与垂直 1,L1∥L2则 注意: 2、 则 注意: 3.直线方程 1、 直线的点斜式方程: 2、、直线的斜截式方程: 3 直线的一般式方程: 4.了解斜率和截距的性质 4.两条直线的交点坐标求法:联立方程组。 5.距离 1.两点间的距离公式: . 2.点到直线距离公式: 3、两平行线间的距离公式: 6.对称问题 1.中点坐标公式:已知两点P 1 (x 1,y 1)、P 1(x 1,y 1),则线段的中点M 坐标为 2.若点11(,)M x y 及(,)N x y 关于(,)P a b 对称;求解方法: 3.点关于直线的对称: 若111(,)P x y 与222(,)P x y 关于直线:0l Ax By C ++=对称,求解方法:

直线与方程测试题 题型一(倾斜角与斜率) 1.直线053=-+y x 的倾斜角是( ) A.120° B.150° C.60° D.30° 2.若直线x =1的倾斜角为 ,则( ). A .等于0 B .等于 C .等于2π D .不存在 3.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则( ). A .k1<k2<k3 B .k3<k1<k2 C .k3<k2<k1 D .k1<k3<k2 4.求直线3x +ay =1的斜率为 题型二(直线位置关系) 1.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x ,6),且l1∥l2,则x =( ). A .2 B .-2 C .4 D .1 2.已知直线l 与过点M(-3,2),N(2,-3)的直线垂直,则直线l 的倾斜角是( ). A .3π B .32π C .4π D .43π 3.设直线 l1经过点A(m ,1)、B(—3,4),直线 l2经过点C(1,m)、D(—1,m+1), 当(1) l1/ / l2 (2) l1⊥l1时分别求出m 的值 4.已知两直线l1: x+(1+m) y =2—m 和l2:2mx+4y+16=0,m 为何值时l1与l2①相交②平行 5.. 已知两直线l1:(3a+2) x+(1—4a) y +8=0和l2:(5a —2)x+(a+4)y —7=0垂直,求a 值。 题型三(直线方程) 1:根据下列各条件写出直线的方程,并且化成一般式: (1)斜率是1 2-,经过点A(8,—2); . (2)经过点B(4,2),平行于x 轴; . (3)在x 轴和y 轴上的截距分别是3 ,32-; . 4)经过两点P 1(3,—2)、P 2(5,—4); .

人教A版高中数学必修2第三章 直线与方程3.1 直线的倾斜角与斜率习题(3)

直线的倾斜角和斜率 3.1倾斜角和斜率 1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有L 1∥L 2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 基础卷 一.选择题: 1.下列命题中,正确的命题是 (A )直线的倾斜角为α,则此直线的斜率为tan α (B )直线的斜率为tan α,则此直线的倾斜角为α (C )任何一条直线都有倾斜角,但不是每一条直线都存在斜率 (D )直线的斜率为0,则此直线的倾斜角为0或π 2.直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为 (A )3 (B )-3 (C )33 (D )-3 3 3.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是 (A )[0, 2π] (B )[0, π) (C )[-4π, 6π] (D )[0, 4π]∪[4 3π,π) 4.若直线l 经过原点和点(-3, -3),则直线l 的倾斜角为 (A )4π (B )54π (C )4π或54 π (D )-4π 5.已知直线l 的倾斜角为α,若cos α=-5 4,则直线l 的斜率为

高中数学直线与方程知识点归纳与常考题型专题练习(附解析)

高中数学直线与方程知识点归纳与常考题型专题练习(附解析)  知识点: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即。斜率反映直线与轴的倾斜程度。 tan k α=当时,; 当时,; 当时,不存[) 90,0∈α0≥k () 180,90∈α0

直线与方程知识点及典型例题.docx

第三章直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即 k=tan 。斜率反映直线与轴的倾斜程度。 当直线 l 与 x 轴平行或重合时 ,α=0°,k = tan0 =0;° 当直线 l 与 x 轴垂直时 ,α= 90k°不,存在 . 当0,90时, k0 ;当90 ,180时, k0;当90 时,k不存在。 例 .如右图,直线l 1的倾斜角 =30°,直线 l1⊥ l 2,求直线 l1和 l2的斜率 . y 解: k1=tan30° =3∵ l1⊥ l2∴ k1· k2 =— 1l 1 3 ∴ k2 =—32x 1 例:直线 x 3 y50 的倾斜角是()o l2 °°°° ②过两点 P1 (x1, y1)、P1(x1,y1) 的直线的斜率公式: k y2y 1 ( x1x 2 ) x2x1 注意下面四点: (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与 P1、 P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 例 .设直线l1经过点A(m,1)、B(—3,4),直线l2经过点C(1,m)、D(—1,m+1), 当 (1) l / / l 2(2) l⊥l时分别求出 m 的值 111 ※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。 3. 直线方程 ① 点斜式:y y1k( x x1 )直线斜率k,且过点x1, y1 注意:当直线的斜率为0°时, k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都

高二数学知识点总结大大全(必修)

高二数学会考知识点总结大全(必修) 第1章空间几何体1 1 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则: 长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一)空间几何体的表面积 1棱柱、棱锥的表面积:各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl Sπ π+ = 4 圆台的表面积2 2R Rl r rl Sπ π π π+ + + = 5 球的表面积2 4R Sπ = (二)空间几何体的体积 1柱体的体积h S V? = 底 2锥体的体积h S V? = 底 3 1 3台体的体积h S S S S V? + + =) 3 1 下 下 上 上 ( 4球体的体积3 3 4 R Vπ = 第二章直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 2 2 2r rl Sπ π+ =

1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质 D C B A α L A · α C B · A · α α 共面 =>a ∥c

高中数学必修二第三章直线与方程知识点总结

高一数学总复习学案 必修2第三章:直线与方程 一、知识点 倾斜角与斜率 1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<. 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两 点1122(,),(,)P x y P x y ,则有斜率公式21 21 y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直, 斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0. 注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α?<,随着α的增大,斜率k 也增大;当90180α?<

相关主题