搜档网
当前位置:搜档网 › 马尔可夫编程matlab

马尔可夫编程matlab

马尔可夫编程matlab
马尔可夫编程matlab

%function [chain,state]=markov(T,n,s0,V);

%function [chain,state]=markov(T,n,s0,V);

% chain generates a simulation from a Markov chain of dimension

% the size of T

%

% T is transition matrix

% n is number of periods to simulate

% s0 is initial state (initial probabilities)

% V is the quantity corresponding to each state

% state is a matrix recording the number of the realized state at time t

%

% Original author: Tom Sargent

% Comments added by Qiang Chen

[r c]=size(T); % r is # of rows, c is # of columns of T

if nargin == 1; % "nargin" refers to "number of arguments in". So only T is provided in this case V=[1:r];

s0=1;

n=100;

end;

if nargin == 2; % both T and n are provided

V=[1:r];

s0=1;

end;

if nargin == 3; % T, n and S0 are provided

V=[1:r];

end;

% check if the transition matrix T is square

if r ~= c;

disp('error using markov function');

disp('transition matrix must be square');

return; % break the program and return

end;

% check if each row of T sums up to 1

for k=1:r;

if sum(T(k,:)) ~= 1;

disp('error using markov function')

disp(['row ',num2str(k),' does not sum to one']); % "num2str" converts numbers to a string.

disp(' it sums to :');

disp([ sum(T(k,:)) ]);

disp(['normalizing row ',num2str(k),'']);

T(k,:)=T(k,:)/sum(T(k,:));

end;

end;

[v1 v2]=size(V);

if v1 ~= 1 | v2 ~=r % "|" means "or"

disp('error using markov function');

disp(['state value vector V must be 1 x ',num2str(r),''])

if v2 == 1 &v2 == r;

disp('transposing state valuation vector');

V=V'; % change it to a column vector

else;

return;

end;

end

if s0 < 1 |s0 > r;

disp(['initial state ',num2str(s0),' is out of range']);

disp(['initial state defaulting to 1']);

s0=1;

end;

% The simulation of Markov chain formally starts from here

%T

%rand('uniform');

X=rand(n-1,1); % generate (n-1) random numbers drawn from uniform distribution on [0,1], each number to be used in one simulation.

s=zeros(r,1); % initiate the state vector "s" to be a rx1 zero vector

s(s0)=1; % change the "s0"th element of "s" to 1

cum=T*triu(ones(size(T)));

% "triu(ones(size(T)))" generates an upper triangular matrix with all elements equal to 1

% cum is a rxr matrix whose ith column is the cumulative sum from the 1st column to the ith column

% the ith row of cum is the cumulative distribution for the next period given the current state.

for k=1:length(X); % "length(X)" returns the size of the longest dimension of X. "k" indicates the kth simulation.

state(:,k)=s; % state is a matrix recording the number of the realized state at time k

ppi=[0 s'*cum]; % this is the conditional cumulative distribution for the next period given the current state s

s=((X(k)<=ppi(2:r+1)).*(X(k)>ppi(1:r)))';

% compares each element of ppi(2:r+1) or ppi(1:r) with a scalar X(k), and % returns 1 if the inequality holds and 0 otherwise

% this formula assigns 1 when both inequalities hold, and 0 otherwise

end;

chain=V*state;

马尔可夫预测

4.6 马尔可夫预测 4.6.1 马尔可夫预测法分析概述 马尔可夫是俄国著名的数学家,马尔可夫过程是以马尔可夫名字命名的一种特殊的描述事物发展过程的方法。马尔可夫过程主要用于对企业产品的市场占有率的预测。 众所周知,事物的发展状态总是随着时间的推移而不断地变化的。对于有些事物的发展,需要综合考察其过去与现在的状态,才能预测未来。但有些事物的发展,只要知道现在状态,就可以预测将来的状态而不需要知道事物的过去状态。例如,在下中国象棋时,一个棋子下一步应该怎样走,只与它当前的位置有关,而不需要知道它以前处于什么位置,也不需要知道它是怎么走到当前位置的。这种与过去的取值无关,称为无后效性。这种无后效性的事物的发展过程,就称为马尔可夫过程。 1.一步转移概率与转移概率矩阵 如果变量的状态是可数的,假设有N个,那么从状态i经一步转移到j,都有发生的可能,我们称Pij为一步转移概率。将这些依序排列起来构成的一个矩阵,叫做转移概率矩阵: 转移概率矩阵具有下述性质; (1)矩阵每个元素均非负; (2)矩阵每行元素之各等于1. 2.多步转移概率与转移概率矩阵 在一步转移概率概念的基础上,可导出多步转移概率。若系统在时刻T0处于状态i,经过n步转移,在时刻Tn时处于状态j,这种转移的可能性的数量指标称为n步转移概率,记为P(Xn=j|X0=i)=Pij(n)。n步转移概率矩阵记为

经过计算,可以得到一个有用的结论: 同时,n步转移概率同一步转移概率一样具有下列性质; 2.4.2市场占有率预测分析 1.市场占有率预测分析概述 在市场经济条件下,各企业都十分重视扩大自身产品的市场占有率。因此,预测企业产品市场占有率,也就成为企业十分关心的问题。 市场占有率是指在一定地理范围内,某一类商品因为具有相同的用途或性质而相互竞争,那么在这类商品的整个销售市场上,每一种品牌的产品的销售额(销量)点该类商品总销售额(销量)的份额即为该品牌商品的市场占有率。 2.市场占有率预测分析的基本 市场占有率预测分析的基本步骤如下:假设该地区市场上有三种同类商品。 (1)调查目前市场占有率情况,得到市场占有率向量A 首先,通过抽样调查,了解目前市场占有率情况。根据调查结果,构建市场占有率向量A。则A=(P1 , P2 ,P3) (2)调查消费者的变动情况,计算转移概率矩阵P 通过合理的消费者抽样调整,汇总消费者消费变动的情况,并计算出转移概率矩阵P。则

案例九-马尔科夫预测

案例九 马尔科夫预测 一、 市场占有率的预测重点 例1:在北京地区销售鲜牛奶主要由三个厂家提供。分别用1,2,3表示。去年12月份对2000名消费者进行调查。购买厂家1,2和3产品的消费者分别为800,600和600。同时得到转移频率矩阵为: 3202402403601806036060180N ?? ?= ? ??? 其中第一行表示,在12月份购买厂家1产品的800个消费者中,有320名消费者继续购买厂家1的 产品。转向购买厂家2和3产品的消费者都是240人。N 的第二行与第三行的含义同第一行。 (1) 试对三个厂家1~7月份的市场占有率进行预测。 (2) 试求均衡状态时,各厂家的市场占有率。 解:(1)用800,600和600分别除以2000,得到去年12月份各厂家的市场占有率,即初始分布0(0.4,0.3,0.3)p =。 用800,600和600分别去除矩阵N 的第一行、第二行和第三行的各元素,得状态转移矩阵: 0.40.30.30.60.30.10.60.10.3P ?? ?= ? ???

于是,第k 月的绝对分布,或第 月的市场占有率为: 00()(1,2,3,,7)k k P p P k p P =?=L 1k =时,()()10.40.30.30.40.30.30.60.30.10.520.240.240.60.10.3p ?? ? == ? ??? 2k =时,()()()220.40.30.30.520.240.240.4960.2520.252p P P === 3 k =时 , ()()()330.40.30.30.4960.2520.2520.50080.24960.2496p P P === 类似的可以计算出4p ,5p ,6p 和7p 。 现将计算结果绘制成市场占有率变动表,如表所示:

Matlab学习系列34. 马尔可夫预测

33. 马尔可夫预测 马尔可夫预测,是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。 (一)经典马尔可夫模型 一、几个概念 状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。 状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态i E 转为状态j E 的状态转移概率 ()(|)i j j i ij P E E P E E p →== 状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状

态,即1,,n E E ,则矩阵 1111n n nn p p P p p ????=?????? 其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。 状态转移矩阵满足: (i) 01, ,1,,ij p i j n ≤≤= (ii) 1 1n ij j p ==∑ 二、状态转移矩阵的计算 即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。 例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。 计算该地区农业收成变化的状态转移概率矩阵。 datas=xlsread('Agriculture.xlsx');

数学建模之马尔可夫预测

马尔可夫预测 马尔可夫过程是一种常见的比较简单的随机过程。该过程是研究一个系统的 状况及其转移的理论。它通过对不同状态的初始概率以及状态之间的转移概率的研究,来确定状态的变化趋势,从而达到对未来进行预测的目的。 三大特点: (1)无后效性 一事物的将来是什么状态,其概率有多大,只取决于该事物现在所处的状态如何,而与以前的状态无关。也就是说,事物第n 期的状态,只与第n 期内的变化和第n-1期状态有关,而与第n-1期以前的状态无关。 (2)遍历性 不管事物现在所处的状态如何,在较长的时间内马尔可夫过程逐渐趋于稳定状态,而与初始状态无关。 (3)过程的随机性。 该系统内部从一个状态转移到另一个状态是,转变的可能性由系统内部的原先历史情况的概率值表示。 1.模型的应用, ①水文预测, ②气象预测, ③地震预测, ④基金投资绩效评估的实证分析, ⑤混合动力车工作情况预测, ⑥产品的市场占有情况预测。 2.步骤 ①确定系统状态 有的系统状态很确定。如:机床工作的状态可划分为正常和故障,动物繁殖后代可以划分为雄性和雌性两种状态等。但很多预测中,状态需要人为确定。如:根据某种产品的市场销售量划分成滞销、正常、畅销等状态。这些状态的划分是依据不同产品、生产能力的大小以及企业的经营策略来确定的,一般没有什么统一的标准。在天气预报中,可以把降水量划分为旱、正常和涝等状态。 ②计算初始概率()0i S 用i M 表示实验中状态i E 出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L ③计算一步转移概率矩阵

令由状态i E 转移到状态j E 的概率为()|ij j i P P E E =,则得到一步转移概率矩阵为: 1112121 2221 2n n n n nn p p p p p p P p p p ??????=??????L L M M M M L ④计算K 步转移概率矩阵 若系统的状态经过了多次转移,则就要计算K 步转移概率与K 步转移概率矩阵。 K 步转移概率矩阵为: 11121212221 2()k n n k n n nn p p p p p p P k p p p p ??????==??????L L M M M M L ⑤预测及分析 根据转移概率矩阵对系统未来所处状态进行预测,即: () ()111210212221 2K n K n n n nn p p p p p p S S p p p ??????=??????L L M M M M L 例题: 设某企业生产洗涤剂为A 型,市场除A 型外,还有B 型、C 型两种。为了生产经营管理上的需要,某企业要了解本厂生产的A 型洗涤剂在未来三年的市场占有倩况。为此,进行了两项工作,一是进行市场调查,二是利用模型进行预测。 市场调查首先全面了解各型洗涤剂在市场占有情况。年终调查结果:市场洗涤剂目前总容量为100万件,其中A 型占40万,B 型和C 型各占30万。 再者,要调杏顾客购买各型洗涤剂的变动情况。调查发现去年购买A 型产品的顾客,今年仍购A 型产品24万件,转购B 型和C 型产品备占8万件,去年购买B 型产品顾客,今年仍购B 型产品9万件,转购A 型15万件,转购C 型6万件,去年购买C 型产品的顾客,今年仍购C 型产品9万件,转购A 型15万件,转购B 型6万件。计算各型产品保留和转购变动率。 模型的建立: ①计算初始概率 用i M 表示i E 型产品出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L (1) ②计算各类产品保留和转购变动率

马尔科夫预测

第6章 马尔可夫预测 马尔可夫预测方法不需要大量历史资料,而只需对近期状况作详细分析。它可用于产品的市场占有率预测、期望报酬预测、人力资源预测等等,还可用来分析系统的长期平衡条件,为决策提供有意义的参考。 6.1 马尔可夫预测的基本原理 马尔可夫(A.A.Markov )是俄国数学家。二十世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状态有关,而与事物的过去状态无关。具有这种特性的随机过程称为马尔可夫过程。设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济和社会行为都可用这一类过程来描述或近似,故其应用范围非常广泛。 6.1.1 马尔可夫链 为了表征一个系统在变化过程中的特性(状态),可以用一组随时间进程而变化的变量来描述。如果系统在任何时刻上的状态是随机的,则变化过程就是一个随机过程。 设有参数集(,)T ?-∞+∞,如果对任意的t T ∈,总有一随机变量t X 与之对应,则称 {,}t X t T ∈为一随机过程。 如若T 为离散集(不妨设012{,,,...,,...}n T t t t t =),同时t X 的取值也是离散的,则称 {,}t X t T ∈为离散型随机过程。 设有一离散型随机过程,它所有可能处于的状态的集合为{1,2,,}S N =L ,称其为状态空间。系统只能在时刻012,,,...t t t 改变它的状态。为简便计,以下将n t X 等简记为n X 。 一般地说,描述系统状态的随机变量序列不一定满足相互独立的条件,也就是说,系统将来的状态与过去时刻以及现在时刻的状态是有关系的。在实际情况中,也有具有这样性质的随机系统:系统在每一时刻(或每一步)上的状态,仅仅取决于前一时刻(或前一步)的状态。这个性质称为无后效性,即所谓马尔可夫假设。具备这个性质的离散型随机过程,称为马尔可夫链。用数学语言来描述就是: 马尔可夫链 如果对任一1n >,任意的S j i i i n ∈-,,,,121Λ恒有 {}{}11221111,,,n n n n n n P X j X i X i X i P X j X i ----=======L (6.1.1) 则称离散型随机过程{,}t X t T ∈为马尔可夫链。 例如,在荷花池中有N 张荷叶,编号为1,2,...,N 。假设有一只青蛙随机地从这张荷叶上跳到另一张荷叶上。青蛙的运动可看作一随机过程。在时刻n t ,青蛙所在的那张荷叶,称为青蛙所处的状态。那么,青蛙在未来处于什么状态,只与它现在所处的状态()N i i ,,2,1Λ=有关,与它以前在哪张荷叶上无关。此过程就是一个马尔可夫链。 由于系统状态的变化是随机的,因此,必须用概率描述状态转移的各种可能性的大小。 6.1.2 状态转移矩阵 马尔可夫链是一种描述动态随机现象的数学模型,它建立在系统“状态”和“状态转移”的概念之上。所谓系统,就是我们所研究的事物对象;所谓状态,是表示系统的一组记号。当确定了这组记号的值时,也就确定了系统的行为,并说系统处于某一状态。系统状态常表示为向量,故称之为状态向量。例如,已知某月A 、B 、C 三种牌号洗衣粉的市场占有率分别是0.3、0.4、0.3,则可用向量()0.3,0.4,0.3P =来描述该月市场洗衣粉销售的状况。

马尔科夫预测法

马尔科夫预测案例 一、 市场占有率的预测 例1:在北京地区销售鲜牛奶主要由三个厂家提供。分别用1,2,3表示。去年12月份对2000名消费者进行调查。购买厂家1,2和3产品的消费者分别为800,600和600。同时得到转移频率矩阵为: 3202402403601806036060180N ?? ?= ? ??? 其中第一行表示,在12月份购买厂家1产品的800个消费者中,有320名消费 者继续购买厂家1的 产品。转向购买厂家2和3产品的消费者都是240人。N 的第二行与第三行的含义同第一行。 (1) 试对三个厂家1~7月份的市场占有率进行预测。 (2) 试求均衡状态时,各厂家的市场占有率。 解:(1)用800,600和600分别除以2000,得到去年12月份各厂家的市场占有率,即初始分布0(0.4,0.3,0.3)p =。 用800,600和600分别去除矩阵N 的第一行、第二行和第三行的各元素,得状态转移矩阵: 0.40.30.30.60.30.10.60.10.3P ?? ?= ? ??? 于是,第k 月的绝对分布,或第 月的市场占有率为: 00()(1,2,3,,7)k k P p P k p P =?= 1k =时,()()10.40.30.30.40.30.30.60.30.10.520.240.240.60.10.3p ?? ? == ? ??? 2k =时,()()()220.40.30.30.520.240.240.4960.2520.252p P P === 3 k =时, ()()()330.40.30.30.4960.2520.2520.50080.24960.2496p P P === 类似的可以计算出4p ,5p ,6p 和7p 。

论述马尔可夫模型的降水预测方法

随机过程与随机信号处理课程论文

论述马尔可夫模型的降水预测方法 摘要:预测是人们对未知事物或不确定事物行为与状态作出主观的判断。中长 期降水量的预测是气象科学的一个难点问题, 也是水文学中的一个重要问题。今年来,针对降水预测的随机过程多采用随机过程中的马尔可夫链。本文总结了降水预测的马尔可夫预测的多种方法和模型,对其中的各种方法的马尔可夫链进行了比较和分析,得出了一些有用的结论。 关键字:降水预测,随机过程,马尔可夫链,模拟 前言:大气降水是自然界水循环的一个重要环节。尤其在干旱半干旱地区, 降 水是水资源的主要补给来源, 降水量的大小,决定着该地区水资源的丰富程度。因此, 在水资源预测、水文预报中经常需要对降水量进行预报。然而, 由于气象条件的变异性、多样性和复杂性, 降水过程存在着大量的不确定性与随机性, 因此到目前为止还难以通过物理成因来确定出未来某一时段降水量的准确数值。在实际的降水预测中,有时不必预测出某一年的降水量,仅需预测出某个时段内降水的状况既可满足工作需要。因此,预测的范围相应扩大,精度相应提高。因此对降水的预测可采用随机过程的马尔可夫链来实现。 用随机过程中马尔可夫链进行预测是一种较为广泛的预测方法。它可用来预测未来某时间发生的变化, 如预测运输物资需求量、运输市场等等。马尔可夫链, 就是一种随机时间序列, 它表示若已知系统的现在状态, 则系统未来状态的规律就可确定, 而不管系统如何过渡到现在的状态。我们在现实生活中, 有很多情况具有这种属性, 如生物群体的生长与死亡, 一群体增加一个还是减少一个个体, 它只与当前该生物群体大小有关, 而与过去生物群体大小无关。] 本文针对降水预测过程中采用马尔可夫链进行模拟进行了综述和总结。主要的方法有利用传统的马尔可夫链的方法模拟;有采用加权的马尔可夫链模拟来进行预测;还有基于模糊马尔可夫链状模型预测的方法;还有通过聚类分析建立降水序列的分级标准来采用滑动平均的马尔可夫链模型来预测降水量;从这些方法中我们可以看出,马尔可夫链对降水预测有着重要的理论指导意义。 1.随机过程基本原理 我们知道,随机变量的特点是,每次试验结果都是一个实现不可预知的,但为确定的量。而在实际中遇到的许多物理现象,实验所得到的结果是一个随时间变化的随机变量,且用一个或多个随机变量我们有时无法描述很多这种现象的的全部统计规律,这种情况下把随时间变化的随机变量的总体叫做随机过程。对随机过程的定义如下:

马尔科夫预测

第 6 章马尔可夫预测 马尔可夫预测方法不需要大量历史资料,而只需对近期状况作详细分析。它可用于产品的市场占有率预测、期望报酬预测、人力资源预测等等,还可用来分析系统的长期平衡条件,为决策提供有意义的参考。 6.1 马尔可夫预测的基本原理 马尔可夫(A.A.Markov )是俄国数学家。二十世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状态有关,而与事物的过去状态无关。具有这种特性的随机过程称为马尔可夫过程。设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济和社会行为都可用这一类过程来描述或近似,故其应用范围非常广泛。 6.1.1 马尔可夫链 为了表征一个系统在变化过程中的特性(状态),可以用一组随时间进程而变化的变量来描述。如果系统在任何时刻上的状态是随机的,则变化过程就是一个随机过程。 设有参数集T ( , ),如果对任意的t T ,总有一随机变量X t 与之对应,则称{X t ,t T} 为一随机过程。 如若T 为离散集(不妨设T {t0,t1,t2,...,t n,...} ),同时X t的取值也是离散的,则称{X t ,t T} 为离散型随机过程。 设有一离散型随机过程,它所有可能处于的状态的集合为S {1,2,L ,N} ,称其为状态空间。系统只能在时刻 t0,t1,t2,...改变它的状态。为简便计,以下将X t n等简记为X n。 一般地说,描述系统状态的随机变量序列不一定满足相互独立的条件,也就是说,系统将来的状态与过去时刻以及现在时刻的状态是有关系的。在实际情况中,也有具有这样性质的随机系统:系统在每一时刻(或每一步)上的状态,仅仅取决于前一时刻(或前一步)的状态。这个性质称为无后效性,即所谓马尔可夫假设。具备这个性质的离散型随机过程,称为马尔可夫链。用数学语言来描述就是: 马尔可夫链如果对任一n 1,任意的i1,i2, ,i n 1, j S恒有 P X n j X1 i1,X2 i2,L ,X n 1 i n 1 P X n j X n 1 i n 1 (6.1.1)则称离散型随机过程{X t ,t T} 为马尔可夫链。 例如,在荷花池中有N 张荷叶,编号为1,2,..., N 。假设有一只青蛙随机地从这张荷叶上跳到另一张荷叶上。青蛙的运动可看作一随机过程。在时刻t n ,青蛙所在的那张荷叶,称为青蛙所处的状态。那么,青蛙在未来处于什么状态,只与它现在所处的状态i i 1,2, ,N 有关,与它以前在哪张荷叶上无关。此过程就是一个马尔可夫链。 由于系统状态的变化是随机的,因此,必须用概率描述状态转移的各种可能性的大小。 6.1.2 状态转移矩阵 马尔可夫链是一种描述动态随机现象的数学模型,它建立在系统“状态”和“状态转移”的概念之上。所谓系统,就是我们所研究的事物对象;所谓状态,是表示系统的一组记号。当确定了这组记号的值时,也就确定了系统的行为,并说系统处于某一状态。系统状态常表示为向量,故称之为状态向量。例如,已知某月 A 、B 、C 三种牌号洗衣粉的市场占有率分别是0.3、0.4、 0.3,则可用向量P 0.3,0.4,0.3 来描述该月市场洗衣粉销售的状况。

马尔可夫预测方法

马尔可夫预测方法 1马尔可夫预测的性质及运用 对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的可能性程度。这就是关于事件发生的概率预测。 马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是地理预测研究中重要的预测方法之一。 2基本概念 (一)状态、状态转移过程与马尔可夫过程 1.状态 在马尔可夫预测中,“状态”是一个重要的术语。所谓状态,就是指某一事件在某个时刻(或时期)出现的某种结果。一般而言,随着所研究的事件及其预测的目标不同,状态可以有不同的划分方式。譬如,在商品销售预测中,有“畅销”、“一般”、“滞销”等状态;在农业收成预测中,有“丰收”、“平收”、“欠收”等状态;在人口构成预测中,有“婴儿”、“儿童”、“少年”、“青年”、“中年”、“老年”等状态;等等。 2.状态转移过程 在事件的发展过程中,从一种状态转变为另一种状态,就称为状态转移。事件的发展,随着时间的变化而变化所作的状态转移,或者说状态转移与时间的关系,就称为状态转移过程,简称过程。 3.马尔可夫过程 若每次状态的转移都只仅与前一时刻的状态有关、而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔可夫过程。在区域开发活动中,许多事件发展过程中的状态转移都是具有无后效性的,对于这些事件的发展过程,都可以用马尔可夫过程来描述。 (二)状态转移概率与状态转移概率矩阵 1.状态转移概率 在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。根据条件概率的定义,由状态E i 转为状态E j 的状态转移概率P (E i →E j )就是条件概率P (E j /E i ),即 P(Ei Ej)=P(Ej/Ei)=Pij → (1) 2.状态转移概率矩阵 假定某一种被预测的事件有E 1,E 2,…,E n ,共n 个可能的状态。记P ij 为从状态E i 转为状态E j 的状态转移概率,作矩阵 1112121 22212n n n n nn P P P P P P P P p p ??????=?????? (2) 则称P 为状态转移概率矩阵。

马尔可夫预测算法

马 尔可夫预测算法 综述 马尔可夫预测法以系统状态转移图为分析对象,对服从给定状态转移率、系统的离散稳定状态或连续时 间变化状态进行分析马尔可夫预测技术是应用马尔可夫链的基本原理和方法研究分析时间序列的变化规律,并预测其未来变化趋势的一种技术。 方法由来 马尔可夫是俄国的一位著名数学家 (1856—1922),20世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状况有关,而与事物的过去状态无关。针对这种情况,他提出了马尔可夫预测方法,该方法具有较高的科学性,准确性和适应性,在现代预测方法中占有重要地位。 基础理论 在自然界和人类社会中,事物的变化过程可分为两类:一类是确定性变化过程;另一类是不确定性变化过程。确定性变化过程是指事物的变化是由时间唯一确定的,或者说,对给定的时间,人们事先能够确切地知道事物变化的结果。因此,变化过程可用时间的函数来描述。不确定性变化过程是指对给定的时间,事物变化的结果不止一个,事先人们不能肯定哪个结果一定发生,即事物的变化具有随机性。这样的变化过程称为随机过程一个随机试验的结果有多种可能性,在数学上用一个随机变量(或随机向量)来描述。在许多情况下,人们不仅需要对随机现象进行一次观测,而且要进行多次,甚至接连不断地观测它的变化过程。这就要研究无限多个,即一族随机变量。随机过程理论就是研究随机现象变化过程的概率规律性的。客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发生变化状态即为客观事物可能出现或存在的状况,用状态变量表示状态: ??? ? ?????=???==,2,1,,2,1t N i i X t 它表示随机运动系统,在时刻),2,1( =t t 所处的状态为),2,1(N i i =。状态 转移:客观事物由一种状态到另一种状态的变化。设客观事物有 N E E E E ...,,321共 N 种状态,其中每次只能处于一种状态,则每一状态都具有N 个转向(包括转向自身),即由于状态转移是随机的,因此,必须用概率来描述状态转移可能性的大小,将这种转移的可能性用概率描述,就是状态转移概率。

实验4_马尔科夫预测

实验4:马尔柯夫预测 实验目的 1、了解状态及状态转移的概念,理解马尔科夫链定义和性质,能根据具体实例和研究目的划分状态; 2、掌握用Excel 软件计算一步转移概率矩阵的全过程; 3、掌握利用Excel 软件进行马尔科夫链、市场占有率、马尔科夫稳态的相关预测。 实验原理 马尔柯夫预测的基本原理 马尔可夫预测法是马尔科夫过程和马尔科夫链在经济预测领域的一种应用,这种方法通过对事物状态划分、研究各状态的初始概率和状态之间转移概率来预测事物未来状态变化趋势,以预测事物的未来。 马尔可夫链 若时间和状态参数都是离散的马尔科夫过程,且具有无后效性,这一随机过程为马尔可夫链。无后效性可具体表述为如果把随机变量序列{}(),Y t t T ∈的时间参数s t 作为“现在”,那么s t t >表示“将来”,s t t <表示“过去”,那么,系统在当前的情况()s Y t 已知的条件下,()Y t “将来”下一时刻所处的的情况与“过去”的情况无关,随机过程的这一特性称为无后效性。 状态及状态转移

1、状态是指客观事物可能出现或存在的状况。在实际根据研究的不同事物、不同的预测目的,有不同的预测状态划分。 (1)预测对象本身有明显的界限,依状态界限划分。如机器运行情况可以分为“有故障”和“无故障”两种状态,天气有晴、阴、雨三种状态。(2)研究者根据预测事物的实际情况好预测目的自主划分。如:公司产量按获利多少人为的分为畅销、一般销售、滞销状态。这种划分的数量界限依产品不同而不同。 2、状态转移是指所研究的系统的状态随时间的推移而转移,及系统由某一时期所处的状态转移到另一时期所处的状态。发生这种转移的可能性用概率描述,称为状态转移概率 状态转移概率矩阵及计算原理 1、概念:状态转移概率指假如预测对象可能有E 1,E 2,…,E n 共n 种状态,其每次只能处于一种状态i E ,则每一状态都具有n 个转向(包括转向自身),即:1i E E →1 、2i E E →、 、i n E E →,将这种 转移的可能性用概率描述,就是状态转移概率。最基本的是一步转移概率(|)j i P E E ,它表示某一时间状态i E 经过一步转移到下一时刻状态 j E 的概率,可以简记为ij P 。 2、状态转移概率矩阵P 系统全部一次转移概率的集合所组成的矩阵称为一步转移概率矩阵,简称状态转移概率矩阵

相关主题