搜档网
当前位置:搜档网 › RGMII接口数据 时序 波形分析

RGMII接口数据 时序 波形分析

RGMII接口数据 时序 波形分析
RGMII接口数据 时序 波形分析

RGMII接口发送一个数据包时的TXCTL为高电平的时间长度:

RGMII接口的TXCTL的时间为8B的Preamble+包长的时钟周期,如64B的包,TXCTL的长度就为72个TXCLK周期,80B的包,就为88个TXCLK周期。

64B的包(黄色为TXCLK,兰色为TXCTL)

80B的包(黄色为TXCLK,兰色为TXCTL)

RGMII接口上数据发送的顺序:

MAC和PHY之间的接口如MII/GMII/RGMII等,都是数字信号,上面的数据都是原始的数据,没经过编码/扰码等加工,数据的编码/扰码工作是在PHY部分,PHY将数字信号变为模拟信号放到双绞线或Fiber上,编码/扰码的目的主要是考虑到UTP的带宽限制、数据纠错和防辐射。

以太网首先发送的是Preamble同步信号,10101010……10101011即(7个AA加1个AB),在介质上就是按这个顺序发的,先发送哪位,哪位就是D0:

1 0 1 0 1 0 1 0 …… 1 0 1 0 1 0 1 1

D0 D1 D2 D3 D4 D5 D6 D7 ... D0 D1 D2 D3 D4 D5 D6 D7

而数据的顺序是先发低位再发高位,如数据01,在RGMII上,在TXCLK的上升沿,TXD[3:0]发送低4位的0001,在TXCLK的下降沿TXD[3:0]发送高4位的0000,对应关系如下:上升沿低4bit 下降沿高4bit

0 0 0 1 0 0 0 0

D3 D2 D1 D0 D7 D6 D5 D4

通过RGMII口发送DMAC为010*********的包来分析,示波器截图如下:

D0

D1

D2

为加强理解,再发DMAC为020*********的包:

D0

D1

D2

再发DMAC为080808080808的包:

D0

D1

D2

Dilly

时序逻辑电路的分析方法

7.2 时序逻辑电路的分析方法 时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。 7.2.1同步时序逻辑电路的分析方法 同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。 1、基本分析步骤 1)写方程式: 输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。 驱动方程:各触发器输入端的逻辑表达式。 状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。 2)列状态转换真值表: 将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。如现态的起始值已给定时,则从给定值开始计算。如没有给定时,则可设定一个现态起始值依次进行计算。 3)逻辑功能的说明: 根据状态转换真值表来说明电路的逻辑功能。 4)画状态转换图和时序图: 状态转换图:是指电路由现态转换到次态的示意图。 时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。 5)检验电路能否自启动 关于电路的自启动问题和检验方法,在下例中得到说明。

2、分析举例 例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。 解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。因此,它是一个同步时序逻辑电路,时钟方程可以不写。 ①写方程式: 输出方程: 驱动方程: 状态方程: ②列状态转换真值表: 状态转换真值表的作法是: 从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。 把得出的次态“001”作为下一轮计算的“现态”,继续计算下一轮的次态值和输出值。

数据采集及分析试验指导书

《数据采集及分析》实验指导书 实验一采样定理 一、实验目的 熟悉信号采样过程,并通过本实验观察欠采样时信号频谱的混迭现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定方法。 二、实验原理 模拟信号经过(A/D) 变换转换为数字信号的过程称之为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成份的两倍,这称之为采样定理。 a) 正常采样b)欠采样 图1.1 采样信号的频混现象 需要注意的是,在对信号进行采样时,满足了采样定理,只能保证不发生频率混叠,对信号的频谱作逆傅立叶变换时,可以完全变换为原时域采样信号,而不能保证此时的采样信号能真实地反映原信号。工程实际中采样频率通常大于信号中最高频率成分的3到5倍。 三、实验仪器和设备 1. 计算机 n台 2. 实验软件 1套 四、实验步骤及内容 1. 启动计算机。 2. 启动实验软件。

图1.2 采样定理实验 3. . 点击"采样定理"实验中的"正弦波"按钮,产生正弦波信号,然后选择不同的采样抽取率,分析和观察信号的时域波形与频谱的变化。 4. 点击"采样定理"实验中的"方波"按钮,产生方波信号,然后选择不同的采样抽取率,分析和观察信号的时域波形与频谱的变化。 5. 点击"采样定理"实验中的"三角波"按钮,产生三角波信号,然后选择不同的采样抽取率,分析和观察信号的时域波形与频谱的变化。 五、实验报告要求 1. 简述实验目的和原理。 2. 按实验步骤附上相应的信号波形和频谱曲线,说明采样频率的变化对信号时域和频域特性的影响,总结实验得出的主要结论。 六、思考题 1.为什么在实际测量中采样频率通常要大于信号中最高频率成分的3到5倍?

电控汽车波形分析—电子信号分析

超引力论坛 电控汽车波形分析 ——电子信号分析 超引力论坛

电控汽车波形分析 电控系统电子信号分析 波形测试设备 传感器波形分析 执行器波形分析 点火波形分析 柴油机波形分析 波形分析在电控汽车故障检测诊断中的应用 超引力论坛

电控系统电子信号分析 发动机微机控制系统在整个工作过程中都是以电子信号的形式进行数据传输的,因此只要能够检测出发动机微机控制系统在发动机运转过程中数据传输的波形,通过观察波形便可以得知发动机微机控制系统的工作是否正常,从而判断发动机微机控制系统的故障所在。 超引力论坛

电控系统电子信号分析 通过示波器检测发动机微机控制系统工作过程中数据传输的波形,可以让检测、维修技术人员知道在电子电路中到底发生了什么。 它显示的电子信号比万用表更准确、更形象,因为万用表通常只能用1~2个电参数来反映电子信号的特性,而示波器则是用电压随时间的变化的图形来反映一个电子信号 因此波形分析是现代汽车电控系统故障分析的一种很重要的手段和方法。 利用波形检测方法可以进行发动机微机控制系统的运行情况分析(也称氧传感器平衡过程O2FB 电器电路故障分析。 超引力论坛

发动机微机控制系统 电子信号的类型 对于发动机微机控制系统而言,其电子信号一般有以下5大类型: 直流(DC)信号 交流(AC)信号 频率调制信号 脉宽调制信号 串行数据(多路)信号 超引力论坛

直流(DC)信号 在汽车电控系统中产生直流(DC)信号的传感器或电源装置有:蓄电池电压或控制电控单元(ECU 输出的传感器参考电压; 模拟传感器信号,如发动机冷却液温度传感器、燃油温度传感器、进气温度传感器、节气门位置传感器、废气再循环阀位置传感器、旋转翼片式或热线式空气流量传感器和节气门开关,以及通用汽车、克莱斯勒汽车和亚洲汽车的进气歧管绝对压力传感器等。 超引力论坛

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

汽车数据流诊断思路

汽车数据流分析思路 1、何谓数据流?有何作用? 汽车数据流是指电子控制单元(ECU)与传感器和执行器交流的数据参数通过诊断接口,由专用诊断仪读取的数据,且随时间和工况而变化。数据的传输就像队伍排队一样,一个一个通过数据线流向诊断仪。 汽车电子控制单元(ECU)中所记忆的数据流真实的反映了各传感器和执行器的工作电压和状态,为汽车故障诊断提供了依据,数据流只能通过专用诊断仪器读取。汽车数据流可作为汽车ECU的输入输出数据,使维修人员随时可以了解汽车的工作状况,及时诊断汽车的故障。 读取汽车数据流可以检测汽车各传感器的工作状态,并检测汽车的工作状态,通过数据流还可以设定汽车的运行数据。 2、测量数据流常采用哪些方法? 测量汽车数据流常采用以下三种方法: (1)电脑通信方式;(2)电路在线测量方式;(3)元器件模拟方式。 2.1怎样用电脑通信方式来获得汽车数据流? 电脑通信方式是通过控制系统在诊断插座中的数据通信线将控制电脑的实时数据参数以串行的方式送给诊断仪。在数据流中包括故障的信息、控制电脑的实时运行参数、控制电脑与诊断之间的相互控制指令。诊断仪在接收到这些信号数据以后,按照预定的通信协议将其显示为相应的文字和数码,以使维修人员观察系统的运行状态并分析这些内容,发现其中不合理或不正确的信息,进行故障的诊断。电脑诊断有两种:一种称为通用诊断仪;另一种称为专用诊断仪。 通用诊断仪的主要功能有:控制电脑版本的识别、故障码读取和清除、动态数据参数显示、传感器和部分执行器的功能测试与调整、某些特殊参数的设定、维修资料及故障诊断提示、路试记录等。通用诊断仪可测试的车型较多,适应范围也较宽,因此被称为通用型仪器,但

时序逻辑电路的组成及分析方法案例说明

时序逻辑电路的组成及分析方法案例说明 一、时序逻辑电路的组成 时序逻辑电路由组合逻辑电路和存储电路两部分组成,结构框图如图5-1所示。图中外部输入信号用X (x 1,x 2,… ,x n )表示;电路的输出信号用Y (y 1,y 2,… ,y m )表示;存储电路的输入信号用Z (z 1,z 2,… ,z k )表示;存储电路的输出信号和组合逻辑电路的内部输入信号用Q (q 1,q 2,… ,q j )表示。 x x y 1 y m 图8.38 时序逻辑电路的结构框图 可见,为了实现时序逻辑电路的逻辑功能,电路中必须包含存储电路,而且存储电路的输出还必须反馈到输入端,与外部输入信号一起决定电路的输出状态。存储电路通常由触发器组成。 2、时序逻辑电路逻辑功能的描述方法 用于描述触发器逻辑功能的各种方法,一般也适用于描述时序逻辑电路的逻辑功能,主要有以下几种。 (1)逻辑表达式 图8.3中的几种信号之间的逻辑关系可用下列逻辑表达式来描述: Y =F (X ,Q n ) Z =G (X ,Q n ) Q n +1=H (Z ,Q n ) 它们依次为输出方程、状态方程和存储电路的驱动方程。由逻辑表达式可见电路的输出Y 不仅与当时的输入X 有关,而且与存储电路的状态Q n 有关。 (2)状态转换真值表 状态转换真值表反映了时序逻辑电路的输出Y 、次态Q n +1与其输入X 、现态Q n 的对应关系,又称状态转换表。状态转换表可由逻辑表达式获得。 (3)状态转换图

状态转换图又称状态图,是状态转换表的图形表示,它反映了时序逻辑电路状态的转换与输入、输出取值的规律。 (4)波形图 波形图又称为时序图,是电路在时钟脉冲序列CP的作用下,电路的状态、输出随时间变化的波形。应用波形图,便于通过实验的方法检查时序逻辑电路的逻辑功能。 二、时序逻辑电路的分析方法 1.时序逻辑电路的分类 时序逻辑电路按存储电路中的触发器是否同时动作分为同步时序逻辑电路和异步时序逻辑电路两种。在同步时序逻辑电路中,所有的触发器都由同一个时钟脉冲CP控制,状态变化同时进行。而在异步时序逻辑电路中,各触发器没有统一的时钟脉冲信号,状态变化不是同时发生的,而是有先有后。 2.时序逻辑电路的分析步骤 分析时序逻辑电路就是找出给定时序逻辑电路的逻辑功能和工作特点。分析同步时序逻辑电路时可不考虑时钟,分析步骤如下: (1)根据给定电路写出其时钟方程、驱动方程、输出方程; (2)将各驱动方程代入相应触发器的特性方程,得出与电路相一致的状态方程。 (3)进行状态计算。把电路的输入和现态各种可能取值组合代入状态方程和输出方程进行计算,得到相应的次态和输出。 (4)列状态转换表。画状态图或时序图。 (5)用文字描述电路的逻辑功能。 3.案例分析 分析图8.39所示时序逻辑电路的逻辑功能。 图8.39 逻辑电路 解:该时序电路的存储电路由一个主从JK触发器和一个T触发器构成,受统一的时钟CP控制,为同步时序逻辑电路。T触发器T端悬空相当于置1。 (1)列逻辑表达式。 输出方程及触发器的驱动方程分别为

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

汽车数据流分析

1、何谓数据流?有何作用? 汽车数据流是指电子控制单元(ECU)与传感器和执行器交流的数据参数通过诊断接口,由专用诊断仪读取的数据,且随时间和工况而变化。数据的传输就像队伍排队一样,一个一个通过数据线流向诊断仪。 汽车电子控制单元(ECU)中所记忆的数据流真实的反映了各传感器和执行器的工作电压和状态,为汽车故障诊断提供了依据,数据流只能通过专用诊断仪器读取。汽车数据流可作为汽车ECU的输入输出数据,使维修人员随时可以了解汽车的工作状况,及时诊断汽车的故障。 读取汽车数据流可以检测汽车各传感器的工作状态,并检测汽车的工作状态,通过数据流还可以设定汽车的运行数据。 2、测量数据流常采用哪些方法? 测量汽车数据流常采用以下三种方法: (1)电脑通信方式;(2)电路在线测量方式;(3)元器件模拟方式。 2.1怎样用电脑通信方式来获得汽车数据流? 电脑通信方式是通过控制系统在诊断插座中的数据通信线将控制电脑的实时数据参数以串行的方式送给诊断仪。在数据流中包括故障的信息、控制电脑的实时运行参数、控制电脑与诊断之间的相互控制指令。诊断仪在接收到这些信号数据以后,按照预定的通信协议将其显示为相应的文字和数码,以使维修人员观察系统的运行状态并分析这些内容,发现其中不合理或不正确的信息,进行故障的诊断。电脑诊断有两种:一种称为通用诊断仪;另一种称为专用诊断仪。 通用诊断仪的主要功能有:控制电脑版本的识别、故障码读取和清除、动态数据参数显示、传感器和部分执行器的功能测试与调整、某些特殊参数的设定、维修资料及故障诊断提示、路试记录等。通用诊断仪可测试的车型较多,适应范围也较宽,因此被称为通用型仪器,但它与专用诊断仪相比,无法完成某些特殊功能,这也是大多数通用仪器的不足之处。 专用诊断仪是汽车生产厂家的专业测试仪,它除了具备通用诊断仪的各种功能外,还有参数修改、数据设定、防盗密码设定更改等各种特殊功能。专用诊断仪是汽车厂家自行或委托设计的专业测试仪器,它只适用于本厂家生产的车型。 通用诊断仪和专用诊断仪的动态数据显示功能不仅可以对控制系统的运行参数(最多可达上百个)进行数据分析,还可以观察电脑的动态控制过程。因此,它具有从电脑内部分析过程的诊断功能。它是进行数据分析的主要手段。 2.2怎样用电路在线检测方式来获得汽车数据流? 电路在线测量方式是通过对控制电脑电路的在线检测(主要指电脑的外部连接电路),将控制电脑各输入、输出端的电信号直接传送给电路分析仪的测量方式。电路分析仪一般有两种:一种是汽车万用表;一种是汽车示波器。 汽车万用表也是一种数字多用仪表,其外形和工作原理与袖珍数字万用表几乎没有区别,只增加了几个汽车专用功能档(如DWELL档、TACHO档)。 汽车万用表除具备有袖珍数字万用表功能外,还具有汽车专用项目测试功能。可测量交流电压与电流、直流电压与电流、电阻、频率、电容、占空比、温度、闭合角、转速;也有一些新颖功能,如自动断电、自动变换量程、模拟条图显示、峰值保持、读数保持(数据锁定)、电池测试(低电压提示)等。 为实现某些功能(例如测量温度、转速),汽车万用表还配有一套配套件,如热电偶适配器、热电偶探头、电感式拾取器以及AC/DC感应式电流夹钳等。 汽车万用表应具备下述功能: (1)测量交、直流电压。考虑到电压的允许变动范围及可能产生的过载,汽车万用表应能

Moore型同步时序逻辑电路的设计与分析

实验九Moore型同步时序逻辑电路的分析与设计 22920132203686 薛清文周2下午实验 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.D,JK触发器的特性机器检测方法。 2.掌握时序逻辑电路的测试方法。 3.了解时序电路自启动设计方法。 4.了解同步时序电路状态编码对电路优化作用。 二.实验原理: 二、 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

现代汽车故障诊断中数据流分析的应用

现代汽车故障诊断中数据流分析的应用 摘要:在现代汽车使用中经常会出现故障问题,为了更好地解决故障问题,应 科学开展故障诊断工作,应用数据流的分析方式进行故障分析与探索,保证诊断 的准确性与可靠性,并提出合理的汽车故障维修建议,为其后续发展夯实基础。 关键词:现代汽车故障诊断数据流分析 现代汽车故障诊断期间使用数据流分析方式,有利于获取准确的数据信息, 形成自动化的诊断系统,合理检测电器元件工作状态,转变传统诊断技术方式, 提升检测工作效果,使得工作人员可以准确且快速地掌握故障点,并合理地进行 维修与保养,延长现代汽车的使用寿命,为人们提供高质量的服务。 一、现代汽车故障诊断数据流问题 1.缺乏完善的诊断步骤。在实际工作期间,未能合理完善诊断工作步骤,缺 乏针对性与现代化的工作方法,没有建立完善的管控体系与模式,甚至会影响整 体工作效果,无法满足当前的故障诊断数据信息的分析要求。例如:出现某种诊 断故障代码(DTC)时,动力系统控制模块没有发出指令,冷却风扇一直运转, 工作人员未能完善诊断流程与步骤,缺乏科学化的工作方式。 2.缺乏针对性的工作方法。在故障数据流分析工作中,没有开展严格的管理 工作,难以创建精细化的工作模式与体系,在缺乏完善工作方法的情况下,难以 创建先进性与针对性的管理体系,严重影响到整体工作的合理发展。 3.测量方式落后。在故障数据流分析的过程中,没有使用先进的测量方式开 展工作,缺乏科学化与合理化的测量工作形式,难以使用合理的方法对其进行管 理与控制,严重影响到测量工作的可靠性与有效性。 二、现代汽车故障诊断中数据流分析的应用 在现代汽车故障诊断的过程中,数据流分析方式具有较高的应用价值,有利 于提升故障诊断的准确性,改革传统的诊断方式与方法,保证数据信息获取的便 捷性,满足当前的管理与发展需求,形成现代化的工作模式。 1.完善诊断步骤内容。在使用数据流分析方式期间,应完善现代汽车故障诊 断步骤,创建科学化与合理化的工作模式。 (1)在诊断期间需针对故障码进行合理分析,明确是否存在故障码,结合检测标准等进行综合化的分析与研究。在全面分析之后,检测人员需根据故障码原 因与情况进行分析,使用数组与波形分析方式明确汽车的故障位置,确保可以提 升故障诊断工作效率与水平,优化整体管控模式,(2)如果现代汽车数据流分 析中没有发现故障码,在检测的时候就要尽量找出故障码,明确故障情况。检测 人员可以结合系统的实际运行原理与参数等开展各方面的分析工作,并全面分析 数据参数内容。在数据分析的时候,还需全面分析维修系统原理,明确维修参数 内容,在认真分析的情况下,准确判断故障情况,提升自身工作效果。 2.针对性地进行故障诊断。(1)合理检查点火位置。(2)针对燃油供给结 构进行检查。(3)实现数据流的合理分析。检测工作人员需针对解码器故障码 进行合理的查询,明确每辆汽车的故障检查情况。如果没有故障码,就要使用计 算机数据块开展数据流的分析工作,在每个数据模块中都要显示具体的故障结果,以此形成科学的分析系统与模式。检测人员可以使用数据流分析的方式开展传感 器的检测工作,在形成数据流之后使用计算机设备等进行验证,明确数值是否处 于正常范围。(4)数据流的进一步分析。在分析数据流之后还需进行进一步的 分析,明确汽车零部件的故障原因与实际位置,并了解故障程度。在明确具体故

时序数据上的数据挖掘

V ol.15, No.1 ?2004 Journal of Software 软 件 学 报 1000-9825/2004/15(01)0000 时序数据上的数据挖掘 ? 黄书剑1+ 1(南京大学 计算机科学与技术系 江苏 南京 210093) Data Mining on Time-series Data HUANG Shu-Jian 1+ 1(Department of Computer Science and technology, Nanjing University, Nanjing 210093, China) + Corresponding author: Phn +86-**-****-****, Fax +86-**-****-****, E-mail: ****, http://**** Abstract : Data mining has been developing rapidly in the recent years. Since time related data occurs frequently in various areas, there has been “an explosion” of interest in mining time-series data, which is a popular branch of data mining. In this paper we present an overview of the major research areas and tasks in mining time-series data, such as preprocessing, representation, segmentation, similarity, classification, clustering, anomaly detection, rule discovery, etc. Some solutions of several tasks are also included in this paper. Key words : data mining; time-series 摘 要: 近年来数据挖掘得到了蓬勃的发展。由于越来越多的数据都与时间有着密切的关系,时序数据的挖掘作为数据挖掘的一个分支,正在受到越来越高的重视。本文概述了时序数据上的数据挖掘这个领域内的主要研究方向和课题,包括数据预处理、数据表示、分割、相似度度量、分类、聚类、异常检测、规则识别等。并对部分课题的主要解决方案进行了一些介绍。 关键词: 数据挖掘;时序数据挖掘 中图法分类号: **** 文献标识码: A 1 引言 近几十年来,计算机运算存储能力不断提高,数据产生和采集的速度也越来越快,因而数据量越来越大;而与此同时,人们面对巨量数据,能够直接获得的信息量却越来越有限。单纯的人力已经很难胜任对这样巨量的数据进行分析并提取出相关信息的任务。为了解决这种数据与信息之间的矛盾,数据挖掘应运而生。所谓数据挖掘,即从巨量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程[1]。数据挖掘的目的就在于找出巨量数据中的潜在规律,以对未来的分析和决策提供支持,其在分析处理中的优势以 ? Supported by the **** Foundation of China under Grant No.****, **** (基金中文完整名称); the **** Foundation of China under Grant No.****, **** (基金中文完整名称) 作者简介: 黄书剑(1984),男,江苏盐城人,硕士生,主要研究领域为自然语言处理.

VC编程实现对波形数据的频谱分析修订稿

V C编程实现对波形数据的频谱分析 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

到1024时,需要进行复数乘法运算1,048,576次,显然这种算法在实际运用中无法保证当点数较大时的运算速度,无法满足对信号的实时处理。 根据W矩阵中W元素的周期性和对称性我们可以将一个N点的DFT运算分解为两组N/2点的DFT运算,然后取和即可,为进一步提高效率,将上述两个矩阵按奇偶顺序逐级分解下去。当采样点数为2的指数次方M时,可分解为M级子矩阵运算,全部工作量仅为: 复数乘法:M*N/2次 复数加法:N*M次 而直接DFT需要的运算量为: 复数乘法:N*N次 复数加法:N*(N-1)次 当点数N为几十个点时FFT的优势还不明显,而一旦达到几千、几百个点时优势是十分明显的: N=1024时:DFT需1048576次运算,FFT仅需5120次运算,改善比。 N=2048时:DFT需4194304次运算,FFT仅需11264次运算,改善比达到。

三、 "时间抽选奇偶分解快速离散傅立叶变换"的程序实现 当采样点数较多时,如变换前和变换后的序列都按自然顺序排列,则中间运算过程会占用大量的中间存储单元,造成效率的低下和存储单元的浪费。根据FFT的实现原理我们可以对采样序列进行逐次奇偶抽选,打乱以前的次序重新排序,然后按此顺序参加运算,可以实现"即位运算"提高存储单元的利用率。 (一)复数的描述方法 进行傅立叶变换时不可避免的要用到复数,而在VC中并没有现成的可用于表示复数的数据类型,可以自己定义一个含有两个成员变量的数据结构来表示复数,这两个成员变量可分别用于表示复数的实部与虚部:

发动机动态数据流工作分析原理

发动机动态数据流工作分析原理 1、何谓数据流?有何作用? 汽车数据流是指电子控制单元(ECU)与传感器和执行器交流的数据参数通过诊断接口,由专用诊断仪读取的数据,且随时间和工况而变化。数据的传输就像队伍排队一样,一个一个通过数据线流向诊断仪。 汽车电子控制单元(ECU)中所记忆的数据流真实的反映了各传感器和执行器的工作电压和状态,为汽车故障诊断提供了依据,数据流只能通过专用诊断仪器读取。汽车数据流可作为汽车ECU的输入输出数据,使维修人员随时可以了解汽车的工作状况,及时诊断汽车的故障。 读取汽车数据流可以检测汽车各传感器的工作状态,并检测汽车的工作状态,通过数据流还可以设定汽车的运行数据。 2、测量数据流常采用哪些方法? 测量汽车数据流常采用以下三种方法: (1)电脑通信方式;(2)电路在线测量方式;(3)元器件模拟方式。 2.1怎样用电脑通信方式来获得汽车数据流? 电脑通信方式是通过控制系统在诊断插座中的数据通信线将控制 电脑的实时数据参数以串行的方式送给诊断仪。在数据流中包括故障的信息、控制电脑的实时运行参数、控制电脑与诊断之间的相互控制指令。诊断仪在接收到这些信号数据以后,按照预定的通信协议将其显示为相应的文字和数码,以使维修人员观察系统的运行状态并分析这些内容,发现其中不合理或不正确的信息,进行故障的诊断。电脑诊断有两种:

一种称为通用诊断仪;另一种称为专用诊断仪。 通用诊断仪的主要功能有:控制电脑版本的识别、故障码读取和清除、动态数据参数显示、传感器和部分执行器的功能测试与调整、某些特殊参数的设定、维修资料及故障诊断提示、路试记录等。通用诊断仪可测试的车型较多,适应范围也较宽,因此被称为通用型仪器,但它与专用诊断仪相比,无法完成某些特殊功能,这也是大多数通用仪器的不足之处。 专用诊断仪是汽车生产厂家的专业测试仪,它除了具备通用诊断仪的各种功能外,还有参数修改、数据设定、防盗密码设定更改等各种特殊功能。专用诊断仪是汽车厂家自行或委托设计的专业测试仪器,它只适用于本厂家生产的车型。 通用诊断仪和专用诊断仪的动态数据显示功能不仅可以对控制系统的运行参数(最多可达上百个)进行数据分析,还可以观察电脑的动态控制过程。因此,它具有从电脑内部分析过程的诊断功能。它是进行数据分析的主要手段。 2.2怎样用电路在线检测方式来获得汽车数据流? 电路在线测量方式是通过对控制电脑电路的在线检测(主要指电脑的外部连接电路),将控制电脑各输入、输出端的电信号直接传送给电路分析仪的测量方式。电路分析仪一般有两种:一种是汽车万用表;一种是汽车示波器。 汽车万用表也是一种数字多用仪表,其外形和工作原理与袖珍数字万用表几乎没有区别,只增加了几个汽车专用功能档(如DWELL档、TACHO

实验十 Moore型同步时序逻辑电路的分析与设计

实验十Moore型同步时序逻辑电路的分析与设计 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.掌握时序逻辑电路的测试方法。 二.实验原理: 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

(7)利用卡诺图如图2,求状态方程、驱动方程。 (8)自启动检验:将各无效状态代入状态方程,分析状态转换情况,画出完整的 状态转换图,如图3所示,检查是否能自启动。

【文献综述】时间序列预测――在股市预测中的应用

文献综述 信息与计算科学 时间序列预测――在股市预测中的应用 时间序列是一种重要的高维数据类型, 它是由客观对象的某个物理量在不同时间点的采样值按照时间先后次序排列而组成的序列, 在经济管理以及工程领域具有广泛应用. 例如证券市场中股票的交易价格与交易量、外汇市场上的汇率、期货和黄金的交易价格以及各种类型的指数等, 这些数据都形成一个持续不断的时间序列. 利用时间序列数据挖掘, 可以 ]1[ 获得数据中蕴含的与时间相关的有用信息, 实现知识的提取. 时间序列分析方法最早起源于1927年, 数学家耶尔(Yule)提出建立自回归(AR)模型来预测市场变化的规律, 接着, 在1931年, 另一位数学家瓦尔格(Walker)在A R模型的启发下, 建立了滑动平均(MA)模型和自回归、滑动平均(ARMA)混合模型, 初步奠定了时间序列分析方法的基础, 当时主要应用在经济分析和市场预测领域. 20世纪60年代,时间序列分析理论和方法迈入了一个新的阶段, 伯格(Burg)在分析地震信号时最早提出最大熵谱(MES)估计理论, 后来有人证明AR模型的功率谱估计与最大熵谱估计是等效的, 并称之为现代谱估计. 它克服了用传统的傅里叶功率谱分析(又称经典谱分析)所带来的分辨率不高和频率漏泄严重等固有的缺点, 从而使时间序列分析方法不仅在时间域内得到应用, 而且扩展到频率域内, 得到更加广泛的应用, 特别是在各种工程领域内应用功率谱的概念更加方便和普遍. 到20世纪70年代以后, 随着信号处理技术的发展, 时间序列分析方法不仅在理论上更趋完善, 尤其是在参数估计算法、定阶方法及建模过程等方面都得到了许多改进, 进一步地迈向实用化, 各种时间序列分析软件也不断涌现, 逐渐成为分析随机数据序列不可缺少的有效工具 ]2[ 之一. 随着时间序列分析方法的日趋成熟, 其应用领域越来越广泛, 主要集中在预报预测领域, 例如气象预报、市场预测、地震预报、人口预测、汛情预报、产量预测, 等等. 另一个应用领域是精密测控, 例如精密仪器测量、精密机械制造、航空航天轨道跟踪和监控,以及遥控遥测、精细化工控制等. 再一个应用领域是安全检测和质量控制. 在工程施工和维修中经常会出现异常险情, 采用仪表监测和时间序列分析方法可以随时发现问题, 及早排除故障, 以保证生产安全和质量要求. 以上仅仅列举了某些应用领域,实际上还有许多应用, 不胜 ]4,3[ 枚举. 股票市场在中国社会经济生活中起着越来越重要的作用. 截至2006年底, 沪深两市总市值为89403.89亿元, 市值规模上升至全球第10位, 亚洲第3位. 由于中国股票市场在国民经济中的地位和作用不断提高, 无论是从政府宏观决策层面还是从具体投资者微观层面

VC编程实现对波形数据的频谱分析

V C编程实现对波形数据 的频谱分析 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

法在实际运用中无法保证当点数较大时的运算速度,无法满足对信号的实时处理。 根据W矩阵中W元素的周期性和对称性我们可以将一个N点的DFT运算分解为两组N/2点的DFT运算,然后取和即可,为进一步提高效率,将上述两个矩阵按奇偶顺序逐级分解下去。当采样点数为2的指数次方M时,可分解为M 级子矩阵运算,全部工作量仅为: 复数乘法:M*N/2次 复数加法:N*M次 而直接DFT需要的运算量为: 复数乘法:N*N次 复数加法:N*(N-1)次 当点数N为几十个点时FFT的优势还不明显,而一旦达到几千、几百个点时优势是十分明显的: N=1024时:DFT需1048576次运算,FFT仅需5120次运算,改善比。 N=2048时:DFT需4194304次运算,FFT仅需11264次运算,改善比达到。

三、 "时间抽选奇偶分解快速离散傅立叶变换"的程序实现 当采样点数较多时,如变换前和变换后的序列都按自然顺序排列,则中间运算过程会占用大量的中间存储单元,造成效率的低下和存储单元的浪费。根据FFT的实现原理我们可以对采样序列进行逐次奇偶抽选,打乱以前的次序重新排序,然后按此顺序参加运算,可以实现"即位运算"提高存储单元的利用率。 (一)复数的描述方法 进行傅立叶变换时不可避免的要用到复数,而在VC中并没有现成的可用于表示复数的数据类型,可以自己定义一个含有两个成员变量的数据结构来表示复数,这两个成员变量可分别用于表示复数的实部与虚部:

数据流在电控发动机故障分析中的运用

“数据流”在电控发动机故障分析中的运用 摘要:现如今,电控燃油喷射技术在不断完善和发展,应用该技术可以提升汽车维修的水平,同时利用故障诊断仪对发动机电控单元进行诊断,了解故障出现的位置和原因,为故障检修提供有效的依据。本文主要就“数据流”在电控发动机故障分析中的应用进行了相关的阐述和分析,了解发动机的实时数据流,通过对比实际参数,明确故障原因和位置,进而确保故障的准确排除。 关键词:数据流;电控发动机;故障分析 在电控发动机故障诊断方面,可以运用数据流。为了确保数据流可以充分发挥作用,首先要扎实理论基础,了解电控发动机的工作原理、元件作用等等,根据理论知识进行初步的分析和判断。其次,要掌握传感器数据的各种表现形式。气压传感器数据的应用单位较多,包括kPa、mmHg等等,要做好不同单位之间的转换工作,这样才能确保数据得到充分有效的利用。 一、“静态数据流”在电控发动机故障分析中的应用 (一)故障现象 所谓静态数据流,就是将点火开关接通,但没有起动发动机的时候,应用故障诊断仪对发动机电控系统的数据进行读取。例如,进气压力传感器的静态数据约在100-102kPa左右,与标准大气压力接近[1]。冷却温度传感器在冷车的时候,静态数据应该与周围的环境温度接近。通过具体的案例来说明,在冬季早晨,某桑塔纳轿车无法起动。在检修之前,要先与车主交流,了解车辆的基本信息。交流得知,该车在几天前就已经出现起动困难的情况,经常需要较长的起动时间,但在成功起动之后可以正常运作。针对该问题,可以采用检测仪器对燃油压力、喷油嘴、气缸压力、火花塞等位置进行检查,检查后并没有发现故障问题。发动机中的油量充足且有火,说明电路和油路都没有问题,但仍旧存在发动机无法起动的情况。针对这种情况进行反复检查,发现火花塞没有被“淹”,说明冷起动加浓不够,所以出现难以起动的情况。造成该问题的主要原因是冷却液温度传感器没有正常工作,因为该传感器的作用就是在冷却水温度比较低的情况下对空燃比进行加浓,从而提升发动机的稳定性,确保发动机可以正常起动和工作。如果

相关主题