搜档网
当前位置:搜档网 › 优先级调度算法设计与实现

优先级调度算法设计与实现

优先级调度算法设计与实现
优先级调度算法设计与实现

操作系统实验报告

主要模块:

第3章处理器调度

第3章处理器调度 一、填空 1.一个操作系统的可扩展性,是指该系统能够跟上先进计算机技术发展的能力。 2.在引入线程的操作系统中,线程是进程的一个实体,是进程中实施调度和处理机分派的基本单位。 3.一个线程除了有所属进程的基本优先级外,还有运行时的动态优先级。 4.进程调度程序具体负责处理器的分配。 5.为了使系统的各种资源得到均衡使用,进行作业调度时,应该注意cpu繁忙型作业和输入/输出繁忙型作业的搭配。 6.总的来说,进程调度有两种方式,即剥夺方式和不剥夺方式。 7.作业被系统接纳后到运行完毕,一般还需要经历后备、运行和完成三个阶段。 8.假定一个系统中的所有作业同时到达,那么使作业平均周转时间为最小的作业调度算法是短作业优先调度算法。 二、选择 1.计算机系统在执行时,会自动从目态变换到管态。 A.P操作B.V操作C.系统调用D.I/O指令2.在Windows 2000/XP中,只有状态的线程才能成为被切换成运行状态,占用处理器执行。 A.备用B.就绪C.等待D.转换 3.Windows 2000/XP是采用来实现对线程的调度管理的。 A.线程调度器就绪队列表 B.线程调度器就绪队列表、就绪位图 C.线程调度器就绪队列表、就绪位图、空闲位图 D.线程调度器就绪队列表、空闲位图 4.在Windows 2000/XP里,一个线程的优先级,会在时被系统降低。 A.时间配额用完B.请求I/O C.等待消息D.线程切换6.由各作业JCB形成的队列称为。 A.就绪作业队列B.阻塞作业队列 C.后备作业队列D.运行作业队列 7.既考虑作业等待时间,又考虑作业执行时间的作业调度算法是。 A.响应比高者优先B.短作业优先 C.优先级调度D.先来先服务 8.作业调度程序从处于状态的队列中选取适当的作业投入运行。 A.就绪B.提交C.等待D.后备9.是指从作业提交到作业完成的时间间隔。

几种操作系统调度算法

保证调度算法 基本思想:向用户做出明确的性能保证,然后去实现它.如你工作时有n个用户的登录,则你将获得cpu处理能力的1/n 算法实现:跟踪计算各个进程已经使用的cpu时间和应该获得的cpu时间,调度将转向两者之比最低的进程 五,保证调度算法 思想:向用户做出明确的性能保证,然后去实现它. 算法:容易实现的一种保证是:当工作时己有n个用户登录在系统,则将获得CPU处理能力的1/n.类似的,如果在一个有n个进程运行的用户系统中,每个进程将获得CPU处理能力的1/n. 实现方法:OS应记录及计算,各个进程在一定时间段内,已经使用的CPU时间和应该得到的CPU时间,二者之比小者优先级高. 5. 保证调度 一种完全不同的调度算法是向用户作出明确的性能保证,然后去实现它。一种很实际并很容易实现的保证是:若用户工作时有n个用户登录,则用户将获得CPU处理能力的1/n。类似地,在一个有n个进程运行的单用户系统中,若所有的进程都等价,则每个进程将获得1/n的CPU时间。看上去足够公平了。 为了实现所做的保证,系统必须跟踪各个进程自创建以来已使用了多少CPU时间。然后它计算各个进程应获得的CPU时间,即自创建以来的时间除以n。由于各个进程实际获得的CPU时间是已知的,所以很容易计算出真正获得的CPU时间和应获得的CPU时间之比。比率为0.5说明一个进程只获得了应得时间的一半,而比率为2.0则说明它获得了应得时间的2倍。于是该算法随后转向比率最低的进程,直到该进程的比率超过它的最接近竞争者为止。 彩票调度算法 基本思想:为进程发放针对系统各种资源(如cpu时间)的彩票;当调度程序需要做出决策时,随机选择一张彩票,持有该彩票的进程将获得系统资源 合作进程之间的彩票交换 六,彩票调度算法 彩票调度算法: 为进程发放针对各种资源(如CPU时间)的彩票.调度程序随机选择一张彩票,持有该彩票的进程获得系统资源. 彩票调度算法的特点: 平等且体现优先级:进程都是平等的,有相同的运行机会.如果某些进程需要更多的机会,可被给予更多彩票,增加其中奖机会. 易计算CPU的占有几率:某进程占用CPU的几率,与所持有的彩票数成正比例.该算法可实现各进程占用CPU的几率. 响应迅速 各个进程可以合作,相互交换彩票. 容易实现按比例分配如图象传输率,10帧/s,15帧/s,25帧/s

优先级调度算法

优先级调度算法 1、调度算法 考虑到紧迫型作业进入系统后能得到优先处理,引入了高优先级优先调度算法。 优先级调度的含义: (1)当该算法用于作业调度时,系统从后背作业队列中选择若干个优先级最高的,且系统能满足资源要求的作业装入内存运行;(2)当该算法用于进程调度时,将把处理机分配给就绪进行队列中优先级最高的进程。 2、调度算法的两种方式 非抢占式优先级算法:在这种调度方式下,系统一旦把处理机分配给就绪队列中优先级最高的进程后,该进程就能一直执行下去,直至完成;或因等待某事件的发生使该进程不得不放弃处理机时,系统才能将处理机分配给另一个优先级高的就绪队列。 抢占式优先级调度算法:在这种调度方式下,进程调度程序把处理机分配给当时优先级最高的就绪进程,使之执行。一旦出现了另一个优先级更高的就绪进程时,进程调度程序就停止正在执行的进程,将处理机分配给新出现的优先级最高的就绪进程。常用于实时要求比较严格的实时系统中,以及对实时性能要求高的分时系统。 3、优先级的类型 进程的优先级可采用静态优先级和动态优先级两种,优先级可由用户自定或由系统确定。

静态优先级调度算法 含义:静态优先级是在创建进程时确定进程的优先级,并且规定它在进程的整个运行期间保持不变。 确定优先级的依据: 1)进程的类型。 2)进程对资源的需求。 3)根据用户的要求。 优点:简单易行;系统开销小。 缺点:不太灵活,很可能出现低优先级的作业,长期得不到调度而等待的情况;静态优先级法仅适合于实时要求不太高的系统。 动态优先级调度算法 含义:动态优先级是创建进程时赋予该进程一个初始优先级,然后其优先级随着进程的执行情况的变化而改变,以便获得更好的调度性能。 优点:使相应的优先级调度算法比较灵活、科学,可防止有些进程一直得不到调度,也可防止有些进程长期垄断处理机。 缺点:需要花费相当多的执行程序时间,因而花费的系统开销比较大。 4、实时调度算法 由于在任何一个实时系统中毒存在着若干个实时进程或任务,用来反应或控制相应的外部事件,并往往具有某种程度的紧迫性,所以对实时系统中的调度算法提出了某些特殊要求。 对实时系统的要求

处理机调度算法详解

关于处理机调度算法 《操作系统》教材中,介绍了常用的作业调度算法和进程调度算法。其中先来先服务法(FCFS)和优先级法对作业调度和进程调度都适用,时间片轮转法(RR)适用于进程调度。此外,还介绍了其他调度算法,如短作业优先法、最短剩余时间优先法、多级队列法和多级反馈队列法,这4个算法不是课程的重点内容,不作为考核要求。 需要指出的是:(1)在作业调度和进程调度中同时出现的算法,如FCFS、优先级法,其使用原理是基本相同的;(2)作业调度算法和进程调度算法应严格与存储管理中的“请求淘汰换页算法”相区别,注意不要混淆。 下面,结合具体的例题,详解调度算法: 1. 先来先服务法(FCFS) 算法描述:每次调度时,从后备作业队列或就绪队列中选择一个最先进入该队列的作业或进程。 【例1】下表给出作业l,2,3的到达时间和运行时间。采用先来先服务调度算法,试问作业调度的次序和平均周转时间各为多少?(时间单位:小时,以十进制进行计算。) 分析解题关键是要根据系统采用的调度算法,弄清系统中各道作业随时间的推进情况。我们可以用一个作业执行时间图来形象地表示作业的执行情况,帮助我们理解此题。 先来先服务调度算法是按照作业到达的先后次序挑选作业,先进入的作业优先被挑选。即按照“排队买票”的办法,依次选择作业。其作业执行时间图如下: 或者简化为下图: 作业1 作业2 作业3 | | | | 时间 0 8 12 13 由于作业1,2,3是依次到来的,所以刚开始时系统中只有作业1,于是作业1被选中。在8.0时刻,作业1运行完成,这时作业2和作业3已经到达,都在系统中等待调度,按照先来先服务法的规定,每次调度最先进入就绪队列中的作业,由于作业2比作业3先到达,于是作业2被优先选中运行。待作业2运行完毕,最后运行作业3。因此,作业调度的次序

优先级调度算法实验报告

优 先 级 调 度 算 法 实 验 报 告 院系:****************学院班级:*********** 姓名:*** 学号:************

一、实验题目:优先级调度算法 二、实验目的 进程调度是处理机管理的核心内容。本实验要求用高级语言编写模拟进程调度程序,以便加深理解有关进程控制快、进程队列等概念,并体会和了解优先级算法的具体实施办法。 三、实验内容 1.设计进程控制块PCB的结构,通常应包括如下信息: 进程名、进程优先数(或轮转时间片数)、进程已占用的CPU时间、进程到完成还需要的时间、进程的状态、当前队列指针等。 2.编写优先级调度算法程序 3.按要求输出结果。 四、实验要求 每个进程可有三种状态;执行状态(RUN)、就绪状态(READY,包括等待状态)和完成状态(FINISH),并假定初始状态为就绪状态。(一)进程控制块结构如下: NAME——进程标示符 PRIO/ROUND——进程优先数 NEEDTIME——进程到完成还需要的时间片数 STATE——进程状态 NEXT——链指针 注: 1.为了便于处理,程序中进程的的运行时间以时间片为单位进行

计算; 2.各进程的优先数或,以及进程运行时间片数的初值,均由用户在程序运行时给定。 (二)进程的就绪态和等待态均为链表结构,共有四个指针如下:RUN——当前运行进程指针 READY——就需队列头指针 TAIL——就需队列尾指针 FINISH——完成队列头指针 五、实验结果:

六、实验总结: 首先这次实验的难度不小,它必须在熟悉掌握数据结构的链表和队列的前提下才能完成,这次实验中用了三个队列,就绪队列,执行队列和完成队列,就绪队列中的优先级数是有序插入的,当进行进程调度的时候,需要先把就绪队列的队首节点(优先级数最大的节点)移入执行队列中,当执行进程结束后,判断该进程是否已经完成,如果已经完成则移入完成队列,如果没有完成,重新有序插入就绪队列中,这就是这次实验算法的思想。 附录(算法代码):

采用静态优先权优先算法的进程调度程序

采用静态优先权优先算法的进程调度程序 学号: 姓名: 专业: 指导教师: 日期: 目录 第1部分课设简介 (3)

1.1 课程设计题目 (3) 1.2 课程设计目的 (3) 1.3 课程设计内容 (3) 1.4 时间安排 (3) 第2部分实验原理分析 (3) 2.1问题描述 (3) 2.2解决方法 (4) 第3部分主要的功能模块 (5) 3.1主要的函数 (5) 3.2 测试用例及运行结果 (7) 第4部分源代码 (9) 第5部分总结及参考文献 (16) 5.1 总结 (16) 5.2 参考文献 (17)

第1部分课设简介 1.1 课程设计题目 采用静态优先权优先算法的进程调度程序 1.2 课程设计目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。 1)进一步巩固和复习操作系统的基础知识。 2)培养学生结构化程序、模块化程序设计的方法和能力。 3)提高学生调试程序的技巧和软件设计的能力。 4)提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 1.3 课程设计内容 设计并实现一个采用静态优先权算法的进程调度演示程序 1.4 时间安排 1)分析设计贮备阶段(1 天) 2)编程调试阶段(7 天) 3)写课程设计报告、考核(2 天) 第2部分实验原理分析 2.1问题描述 (1)每一个进程有一个PCB,其内容可以根据具体情况设定。 (2)进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定

(3)可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、作业大小、进程优先级的初始化 (4)可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间的同步关系,故只有两种状态) (5)采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相应的阻塞队列 (6)有性能比较功能,可比较同一组数据在不同调度算法下的平均周转时间(7)具有一定的数据容错性 2.2程序设计流程图

操作系统原理-第四章 处理机调度(有答案)

第四章处理机调度 4.3 习题 4.3.1 选择最合适的答案 1.某系统采用了银行家算法,则下列叙述正确的是()。 A.系统处于不安全状态时一定会发生死锁 B.系统处于不安全状态时可能会发生死锁 C.系统处于安全状态时可能会发生死锁 D.系统处于安全状态时一定会发生死锁 2.银行家算法中的数据结构包括有可利用资源向量Available、最大需求矩阵Max、分配矩阵Allocation、需求矩阵Need,下列选项正确的是()。 A.Max[i,j]=Allocation[i,j]+Need[i,j] B.Need[i,j]= Allocation[i,j]+ Max[i,j] C.Max[i,j]= Available[i,j]+Need[i,j] D.Need[i,j]= Available[i,j]+ Max[i,j] 3.下列进程调度算法中,()可能会出现进程长期得不到调度的情况。 A.非抢占式静态优先权法 B.抢占式静态优先权法 C.时间片轮转调度算法 D.非抢占式动态优先权法 4.在下列选项中,属于预防死锁的方法是()。 A.剥夺资源法 B.资源分配图简化法 C.资源随意分配 D.银行家算法 5.在下列选项中,属于检测死锁的方法是()。 A.银行家算法 B.消进程法 C.资源静态分配法 D.资源分配图简化法 6.在下列选项中,属于解除死锁的方法是()。 A.剥夺资源法 B.资源分配图简化法 C.银行家算法 D.资源静态分配法 7.为了照顾紧迫型作业,应采用()。 A.先来服务调度算法 B.短作业优先调度算法 C.时间片轮转调度算法 D.优先权调度算法 8.在采用动态优先权的优先权调度算法中,如果所有进程都具有相同优先权初值,则

最早期限优先调度算法(EDF)的特点和实现

最早期限优先调度算法(EDF)的特点和实现 摘要:最早期限优先调度算法是基于优先级的动态调度方法,是最优的单处理器调度算法,具有灵活性高、能充分利用CPU计算能力的特点。但是同时也具有调度开销增大、不能确定优先级低的任务截止之间能否得到满足的缺点,从而产生了EDF算法的优化算法NEDF和DPDS,较好的解决了上述问题,平衡了CPU使用率、响应时间、公平性和截止时间的问题。关键词:任务调度;动态调度;优先级;EDF 引言:随着计算机的发展,多道程序处理的出现需要强大的调度算法来对多任务进行调度,以确定多任务环境下任务的执行顺序以及占有CPU时间。相对于静态、不可抢占的调度方法,EDF的出现使之凭借灵活性高、CPU占有率高很快成为最优的单处理器调度算法。 一、任务调度的基本概念 在计算机发展的初期,需要使用计算机时,通常要集中在计算机所在的地方,人为的以作业的方式把工作内容一件一件的交给计算机处理,也就不存在调度的概念。随后,出现了计算机的批处理方式,计算机把作业按照先来先服务的方式进行处理,体现了一种非常简单的调度概念。随着多道程序处理方式的出现,调度逐渐变得重要和复杂起来。 在多任务的实时操作系统中,调度是一个非常重要的功能,用来确定多任务环境下任务执行的顺序和获得CPU资源后能够执行的时间长度。操作系统通过一个调度程序看来实现调度功能,调度程序以函数的形式存在,用来实现操作系统的调度算法。 调度程序是影响系统性能(如吞吐率、延迟时间等)的重要部分。在设计调度程序时,通常要综合考虑如下因素:CPU的使用率、输入、输出设备的吞吐率、响应时间、公平性和截止时间。这些因素之间有一定的冲突性,在设计调度程序时需要优先考虑最重要的需求,然后再各种因素之间进行折中处理。 二、调度方法的分类 对于大量的实时调度方法来说,主要存在以下几种划分方法: 1、离线(off-line)和在线(on-line)调度 根据获得调度信息的时机,调度算法可以分为离线调度和在线调度两类。对

设计一个按优先数调度算法实现处理器调度的程序 改

题目:设计一个按优先数调度算法实现处理器调度的程序 提示: (1)假定系统有5个进程,每个进程用一个PCB来代表。PCB的格式为: 进程名、指针、要求运行时间、优先数、状态。 进程名——P1~P5。 指针——按优先数的大小把5个进程连成队列,用指针指出下一个进程PCB的首地址。 要求运行时间——假设进程需要运行的单位时间数。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态——假设两种状态,就绪,用R表示,和结束,用E表示。初始状态都为就绪状态。 (2) 每次运行之前,为每个进程任意确定它的“优先数”和“要求运行时间”。 (3) 处理器总是选队首进程运行。采用动态改变优先数的办法,进程每运行1次,优先 数减1,要求运行时间减1。 (4) 进程运行一次后,若要求运行时间不等于0,则将它加入队列,否则,将状态改为“结 束”,退出队列。 (5) 若就绪队列为空,结束,否则,重复(3)。 2.程序中使用的数据结构及符号说明: #define num 5//假定系统中进程个数为5 struct PCB{ char ID;//进程名 int runtime;//要求运行时间 int pri;//优先数 char state; //状态,R-就绪,F-结束 }; struct PCB pcblist[num];//定义进程控制块数组 3.流程图: (1)主程序流程图: (2)子程序init()流程图:

(3) 子程序max_pri_process()流程图:

(4)子程序show()流程图:

(5)子程序run()流程图:

车辆调度算法研究及其应用文献综述

文献综述 车辆调度算法研究及其应用 一、前言部分 车辆调度问题是现代物流系统优化中关键的一环,也是开展电子商务不可缺少的内容。对车辆调度优化理论与算法进行系统研究是构建综合物流系统、建立现代调度指挥系统、发展智能交通运输系统和开展电子商务的基础[1]。 车辆调度问题是运筹学与组合优化领域的研究热点。有效的调度车辆,不仅可以提高物流工作效率,而且能够为及时生产模式的企业提供运输上的保障,从而实现物流管理科学化。由于该问题的理论涉及很多学科,很多实际问题的理论抽象都可归结为这一类问题,研究该问题具有很重要的理论意义和实际意义。 1 . VRP(Vehicle Routing Problem)问题描述及其分类 VRP问题一般可定义为:对一系列的装货点或卸货点,组织适当的行车路线,使车辆 有序地通过它们,在满足一定的约束条件(货物需求量、发送量、车辆容量限制、行驶里程限制、时间限制)下,达到一定的目标(路程最短、时间最小、费用最省、车辆数目最少等)。由于该问题研究范围非常广,根据其网络性能大致可以分为两类:一类为静态 VRP (StaticVRP, SVRP),一类为动态VRP (dynamic VRP, DVRP)。 (1)静态VRP问题描述 SVRP 问题是VRP 中较简单的一类问题,是大部分研究者研究的热点。该问题具有一 个很重要的特征:在安排初始路线时,和路线相关的所有信息已知,并且在安排路线以后其相关信息始终保持改变[2]。以下列举了一些常见的SVRP 问题:仅考虑车辆容量限制的 VRP(CVRP)、带时间窗的VRP(VRPTW)、带有回收的VRP(VRP with backhauls)、带有集派的VRP(VRPPD)。除此以外,还有许多其它 CVRP 的延伸问题,如顾客有优先权,考虑卸货时间、装卸时间、等待时间等,甚至综合了以上不同的特征。这些问题的相关信息均已知且保持不变[3]。 (2)动态VRP问题描述 所谓DVRP,是指在安排初始路线时,并不是和路线相关的所有信息都为已知,并且初始路线安排以后,其相关信息可能发生改变。DVRP 研究范围较广,需求不确定、动态网络、服务车辆不确定、提供数据有偏差等都属于DVRP 的研究范畴。从网络性能角度,DVRP 可以分为以下三种类型:1)时间依赖型VRP (TDVRP)。2)概率VRP (PVRP)。车辆运行时间以离散

静态优先权优先算法的进程调度程序

静态优先权优先算法的进程调度程序 学院 专业 学生姓名 学号 指导教师姓名 21014年3 月19 日

目录 1.系统需求分析 (1) 1.1问题描述 (1) 1.2功能要求 (1) 2.总体设计 (1) 2.1总体设计图 (2) 2.2各模块功能 (2) 2.3相关数据结构设计 (3) 3.详细设计 (3) 3.1采用C语言定义的相关数据类型 (3) 3.2调度算法的主要实现 (4) 4.运行结果 (4) 4.1系统调试 (4) 4.2功能实现界面 (5) 5.使用说明 (7) 6.心得体会 (8) 7.附录 (8) 7.1 源代码 (8) 7.2 参考文献 (17)

1.系统需求分析 1.1问题描述 1)设计并实现一个采用静态优先权算法的进程调度演示程序。并且求出每个进程的周转时间以及带权周转时间。 2)静态优先权是在创建进程时确定的,且在进程的整个运行期间保持不变. 一般地,优先权是利用某一范围内的一个整数来表示的,例如,0~7或0~255中的某一整数, 又把该整数称为优先数.只是具体用法各异:有的系统用"0"表示最高优先权,当数值愈大时,其优先权愈低;而有的系统恰恰相反. 确定进程优先权的依据有如下三个方面: a.进程类型.(系统进程/用户进程) b.进程对资源的需求.(需求量的大小) c.用户要求.(用户进程紧迫程度) 3)本程序采用优先级数字大的优先权大。 1.2功能要求 1)每一个进程有一个PCB,其内容可以根据具体情况设定。 2)进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定。3)可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、进程优先级的初始化。 4)可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间的同步关系,故只有两种状态)。 5)具有一定的数据容错性。

非抢占式高优先级调度算法

/* 非抢占式高优先级调度算法(优先数越大级别越高) 算法思想:在按进程达到时间由小到大的顺序输入进程信息后,先对其优先数进行排列,将最先到达的进程的到达时间设为开始时间,计算结束时间, 然后对后面到达的时间与该进程的结束时间进行比较,如若小于该进程的结束时间,记录进程的个数,再对其优先数逐个进行比较,将优 先数最大的提到前面,每次进程结束都要进行比较,得到执行序列,在依次输出结果 */ #include<> #define MAX 100 struct hrfs { char name[10]; float arrvitetime; float starttime; float servietime; float finishtime; int priority;riority; j=1; while((jp[i].priority){ max_priority=p[j].priority; i=j; } j++; } k=i; p[k].starttime=p[k].arrvitetime;inishtime=p[k].starttime+p[k].servietime; p[k].run_flag=1; temp_time=p[k].finishtime; p[k].order=1; temp_count=1; while(temp_countmax_priority){ max_priority=p[j].priority; k=j; } } p[k].starttime=temp_time; p[k].finishtime=p[k].starttime+p[k].servietime;

作业调度之最短作业优先算法5例题解析.doc

作业调度之最短作业优先算法5例题解析 例题一、某系统采用不能移动已在主存储器中作业的可变分区方式管理主存储器,现有供用户使用的主存空间100K,系统配有4台磁带机,有一批作业见下表: 作业序号进输入井时间要求计算时间需要主存容量申请磁带机数 1 10:00 25分钟15K 2台 2 10:20 30分钟60K 1台 3 10:30 10分钟50K 3台 4 10:3 5 20分钟10K 2台 5 10:40 15分钟30K 2台 按计算时间最短者优先算法如下表: 我的解释:系统首先装入1、2、4,但1结束时4沿未到达,因此先执行2;2执行完毕后,资源可以分配给3或5,考虑5的时间短优先分配5并执行,执行完5后,主存中只有4已就绪并等待执行,因此开始执行4,执行4的同时系统会将作业3装入主存,最后自然执行作业3;因此最后的顺序是: 1\2\5\4\3 作业序号进输入井时间进入主存时间开始计算时间结束计算时间周转时间解释 1 10:00 10:10 10:00 10:25 25 此时输入井中只有一个作业且满足资源要求,因此被选中运行。 2 10:20 10:20 10:25 10:55 35 作业2到达输入井,满足资源要求,装入主存,等到作业1运行完毕进入运行。 5 10:40 10:55 10: 55 11:10 30 由于作业3要求主存空间无法满足,因此作业4先行一步装入主存,当作业2让出处理器的同时,作业5满足资源要求进入主存就绪。根据算法作业5先进入处理器运行。

4 10:3 5 10:35 11:10 11:30 55 3 10:30 11:30 11:30 11:40 70 最后作业3装入主存并运行 平均周转时间:(25+35+30+55+70)/5=43 分钟 [分析]解答本题时应注意如下几个问题: 第一,系统采用的是多道程序设计技术,但没有限定并行工作的道数,因此,只要当前尚未分配的资源可以满足在输入井中等待的某些作业的要求时,作业调度可以按照给定的算法从中选择一个或多个作业装人主存储器; 第二,采用可变分区方式管理主存储器,但没给出主存空间的分配算法,因而,只要有合适的空间就可分配,题中还规定可用移动技术来合并分散的空闲区; 第三,对磁带机采用静态分配; 第四,进程调度采用可抢占的最高优先级调度算法,即对已被装人主存储器的作业而言优先级高的作业可抢占处理器执行; 第五,虽然作业需要使用磁带机,但题意中已提示忽略磁带机和调度所花的时间,所以,解题时不必考虑外围设备的启动二八D中断等复杂情况,只需把它们当作纯计算型的作业; 第六,由于没有规定什么时候开始进行作业调度,故在一般情况下只要输入井中有等待处理的作业就可按选定的算法去选择满足必要条件的作业。 根据本题的要求列表分析如下:

UCOS优先级调度算法最详解

UCOS优先级调度算法最详解 经过一个上午时间,终于明白UCOS系统的按优先级调度就绪任务的算法,以个人见解展示给各位,希望各位提出意见uponzw630@https://www.sodocs.net/doc/fe14490717.html,。 首先说明,解释两个表格的含义。 说明 OSMapTbl就是0-7这8个数值用二进制的BIT位来表示。 OSUnMapTbl就是将0x00-0xff每个数据中最低位为1的位号全部列举出来 INT8U const OSMapTbl[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}; INT8U const OSUnMapTbl[] = { 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x00 to 0x0F*/ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x10 to 0x1F*/ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x20 to 0x2F*/ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x30 to 0x3F*/ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x40 to 0x4F*/ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x50 to 0x5F*/ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x60 to 0x6F*/ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x70 to 0x7F*/ 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x80 to 0x8F*/ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x90 to 0x9F*/ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xA0 to 0xAF*/ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xB0 to 0xBF*/ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xC0 to 0xCF*/ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xD0 to 0xDF*/ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xE0 to 0xEF*/ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 /* 0xF0 to 0xFF*/ }; Y处于BIT5-BIT3,X处于BIT2-BIT0。 我们知道优先级prio的值越小,prio的优先级越高。 X和Y的范围均为000-111,十进制数里0-7,更8个级别,为了判断X或Y的大小,我们就引入了表格OSMapTbl[]= {0x01, 0x02, 0x04, 0x08, 0x10, 0x20,

静态优先级调度算法

__ 成绩(五级制):________ 武汉科技大学城市学院 《操作系统》实验报告 院系武汉科技的大学城市学院 学生专业_信科________ 年级班_大三________ 课程名称_操作系统_ 实验题目_进程调度________ 学生姓名__宋骋_______ 指导教师__郭冀生____ 2013年11 月 4 日

实验二进程调度 一、实验目的 进程是操作系统最重要的概念之一,进程调度又是操作系统核心的重要内容。通过该实验,要求同学们了解各进程在执行过程中的状态和参数的变化情况,以便于观察诸进程的调度过程。 二、实验内容及要求 按剥夺式优先数法对三个进程P1,p2,p3进行模拟调度,各进程的优先数静态设置,其中P1的优先数最高,P3的优先数最低。每个进程都处于执行E(execute),就绪R(ready)和等待W(wait)三种状态之一,并假定初始状态均为R.。 三个进程有如下同步关系:P1因等待事件1被阻塞后由P2发现并唤醒之,P2因等待事件2被阻塞后由P3发现并唤醒之。 当系统进入运行,在完成必要的初始化工作以后便进入进程调度,首先选择优先数最高的进程使其进入执行(分配CPU)。当执行进程因等待某个事件被阻塞或唤醒某个等待进程时,转入进程调度。 如果被唤醒的进程的优先数大于现行的执行进程,则剥夺现行进程的执行权,而将CPU分配给被唤醒的进程。当系统处于死锁或三个进程都执行 完毕时系统退出运行。 系统中应用到如下数据结构: *进程控制块PCB; *信号量sem; *其它需要的数据结构。由自己设计。 三、实验原理及步骤 根据现代操作系统的特征 1.并发性(concurrence); 2.共享性(sharing); 3.虚拟性(virtual); 4.异步性(asynchronism) 。 模拟出进程在执行中的状态变化过程; 体会进程申请资源、使用资源、归还资源; 体会死锁。 步骤(参考框图)

操作系统短作业优先调度算法

课程设计 采用短作业优先调度算法调度程序 学号: 姓名: 专业: 指导老师: 日期:

目录 一、实验题目 (3) 二、课程设计的目的 (3) 三、设计内容 (3) 四、设计要求 (3) 五、主要数据结构及其说明 (4) 六、程序运行结果 (5) 七、流程图 (7) 八、源程序文件 (9) 九、实验体会 (13) 十、参考文献 (13)

摘要 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。在多道程序系统中,一个作业被提交后必须经过处理机调度后,方能获得处理机执行。对于批量型作业而言,通常需要经历作业调度和进程调度两个过程后方能获得处理机。作业调度是对成批进入系统的用户作业,根据作业控制块的信息,按一定的策略选取若干个作业使它们可以去获得处理器运行的一项工作。而对每个用户来说总希望自己的作业的周转时间是最小的,短作业优先(SJF)便是其中一种调度方法。本次课程设计主要是模拟短作业优先(SJF)调度算法。

一、实验题目 采用短作业优先算法的的进程调度程序 二、课程设计的目的 ●操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动 手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 ●进一步巩固和复习操作系统的基础知识。 ●培养学生结构化程序、模块化程序设计的方法和能力。 ●提高学生调试程序的技巧和软件设计的能力。 ●提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三、设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 四、设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定 3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化 4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态) 5. 采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相应的阻塞队列

优先级法、非强占式短进程优先算法

学号: 课程设计 题目进程调度模拟设计——优先级法、非强占式短进程优先算法 学院计算机 专业 班级 姓名 指导教师吴利军 2013年1月16日

课程设计任务书 学生姓名:指导教师:吴利军工作单位:计算机科学与技术学院 题目: 进程调度模拟设计——优先级法、非强占式短进程优先算法初始条件: 1.预备内容:阅读操作系统的处理机管理章节内容,对进程调度的功能以及进程调度算法有深入的理解。 2.实践准备:掌握一种计算机高级语言的使用。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写 等具体要求) 1.模拟进程调度,能够处理以下的情形: ⑴能够选择不同的调度算法(要求中给出的调度算法); ⑵能够输入进程的基本信息,如进程名、优先级、到达时间和运行时间等; ⑶根据选择的调度算法显示进程调度队列; ⑷根据选择的调度算法计算平均周转时间和平均带权周转时间。 2.设计报告内容应说明: ⑴需求分析; ⑵功能设计(数据结构及模块说明); ⑶开发平台及源程序的主要部分; ⑷测试用例,运行结果与运行情况分析; ⑸自我评价与总结: i)你认为你完成的设计哪些地方做得比较好或比较出色; ii)什么地方做得不太好,以后如何改正; iii)从本设计得到的收获(在编写,调试,执行过程中的经验和教训); iv)完成本题是否有其他方法(如果有,简要说明该方法); 时间安排: 设计安排一周:周1、周2:完成程序分析及设计。 周2、周3:完成程序调试及测试。 周4、周5:验收、撰写课程设计报告。 (注意事项:严禁抄袭,一旦发现,一律按0分记) 指导教师签名:年月日

系主任(或责任教师)签名:年月日 进程调度模拟设计 --优先级法、非强占式短进程优先算法一.问题描述 设计一程序模拟进程调度,能够选择优先级和非抢占短作业两种算法对进程调度。可以输入相关进程信息(进程名,达到时间,执行时间,优先级),最终能显示进程调度的序列。并能显示这些进程的平均周转时间和带权平均周转时间。 二.需求分析 通过设计一个模拟进程调度的系统,来实现进程调度,对进程调度的功能以及进程调度算法有一个更加深入的理解。 进程PCB(包含进程名、到达时间、预计运行时间) 调度算法(优先级、非强占式短进程优先) 模拟进程调度,能够处理以下的情形: ⑴能够选择不同的调度算法(要求中给出的调度算法); ⑵能够输入进程的基本信息,如进程名、到达时间和运行时间等; ⑶根据选择的调度算法显示进程调度队列; ⑷根据选择的调度算法计算平均周转时间和平均带权周转时间。 此次做的进程调度模拟系统,用户可以输入各进程信息(包含进程名、到达时间、运行时间)。输入进程数,然后输入进程的提交时间和运行时间,显示优先级和非强占式短进程优先调度算法的进程名、提交时间、运行时间、开始时间、结束时间、周转时间、带权周转时间、执行时间、平均周转时间和平均带权周转时间。 优先级法: 优先级法可被用做作业或进程的调度策略。首先,系统或用户按某种原则为作业或进程指定一个优先级来表示该进程或作业所享有的优先权。改算法的核心是确定进程或作业的优先级。确定优先级的方法可分为两类。即静态法和动态法。 静态法根据作业的或进程的静态特性,在作业或进程开始执行前就确定它们的优先级,一旦开始执行之后就不能改变。动态法则不然,它把作业或进程的静态特性结合起来确定作业或进程的优先级,随着作业或进程的执行过程,其优先级不断变化。 非抢占短作业优先法:

优先级调度算法

优先级调度算法

优先级调度算法

算法设计思想: (1) 假定系统有五个进程,每一个进程用一个进程控制块PCB来代表,进程控制块的格式为: 进程名 指针 要求运行时间 等待时间 响应比 状态 其中,进程名——作为进程的标识,假设五个进程的进程名分别为P1,P2,P3,P4,P5。 指针——按优先数的大小把五个进程连成队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程中的指针为“0”。 要求运行时间——假设进程需要运行的单位时间数。 等待时间——自最近一次调度运行至今等待的时间数,当进程被调度时等待时间清零。 响应比——进程调度程序运行前计算每个进程的响应比,调度时总是选取响应比大的进程先执行,每次执行一个固定的时间片。 状态——可假设有两种状态,“就绪”状态和“结束”状态。五个进程的初始状态都为“就绪”,用“R”表示,当一个进程运行结束后,它的状态为“结束”,用“E”表示。 (2) 在每次运行你所设计的处理器调度程序之前,为每个进程任意确定它的“等待时间”和“要求运行时间”。 (3) 为了调度方便,把五个进程按给定的响应比从大到小连成队列。用一单元指出队首进程,用指针指出队列的连接情况。例: 队首标志 K2 K1 P1 K2 P2 K3 P3 K4 P4 K5 P5 0 K4 K5 K3 K1 2 3 1 2 4 1 5 3 4 2 R R R R R PCB1 PCB2 PCB3 PCB4 PCB5 (4) 处理器调度总是选队首进程运行。采用动态改变响应比的办法,进程每运行一次重新计算各进程的响应比。由于本实验是模拟处理器调度,所以,对被选中的进程并不实际的启动运行,而是执行:要求运行时间-1、等待时间为0。其它进程等待时间+1,重新计算各进程的响应比,并从大到小排序。 提醒注意的是:在实际的系统中,当一个进程被选中运行时,必须恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行结束。在这里省去了这些工作。 0,则再将它加入队尾(因其响应比最小。);若要求运行时间=0,则把它的状态修改成“结束”(E),且退出队列。 (5) 进程运行一次后,若要求运行时间 (6) 若“就绪”状态的进程队列不为空,则重复上面(4)和(5)的步骤,直到所有进程都成为“结束”状态。 (7) 在所设计的程序中应有显示或打印语句,能显示或打印每次被选中进程的进程名以及运行一次后进程队列的变化及各进程的参数。 (8) 为五个进程任意确定一组“等待时间”和“要求运行时间”,启动所设计的进程调度程序,显示或打印逐次被选中进程的进程名以及进程控制块的动态变化过程。

设计一个按优先数调度算法实现处理器调度的程序

题目:设计一个按优先数调度算法实现处理器调度 的程序 提示: (1) 假定系统有5个进程,每个进程用一个 PCB 来代表。PCB 的格式为 进程名——P1~P5。 指针一一按优先数的大小把5个进程连成队列,用指针指出下一个进程 PCB 的首地 址。 设进程需要运行的单位时间数。 的优先数,调度时总是选取优先数大的进 程先执行。 态,就绪,用R 表示,和结束,用 E 表示。初始状态都为就绪 (2) 每次运行之前,为每 个进程任意确定它的“优先数”和“要求 运行时间”。 (3) 处理器总是选队首进 程运行。采用动态改变优先数的办法,进 程每运行1次,优先 数减1,要求运行时间减1。 (4) 进程运行一次后,若 要求运行时间不等于 0,则将它加入队列,否则,将 状态改为 “结束”,退出队列。 (5) 若就绪队列为空,结 束,否则,重复(3)。 2 ?程序中使用 的数据结构及符号说明: #define num 5〃假定系统中进程个数为 5 struct PCB{ char ID;//进程名 int runtime;//要求运行时间 int pri;//优先数 char state; //状态,R-就绪,F-结束 }; struct PCB pcblist[num];//定义进程控制块数组 3?流程图: (1)主程序流程图: 进程名、指针、要求 运行时间、优先数、状态。 要求运行时间一一假 优先数一一赋予进程 状态一一假设两种状 状态。

结束

pcblist[key].state=='F' * return key return -1 结束

开始

相关主题