搜档网
当前位置:搜档网 › 分子的立体构型及杂化方式的判断方法

分子的立体构型及杂化方式的判断方法

分子的立体构型及杂化方式的判断方法

分子的立体构型及杂化方式的判断方法

四川省旺苍中学 杨全光 628200

A 表示分子的中心原子(为短周期元素),

B 表示A 所结合的原子。 1、知道δ键电子对数目就是A 结合B 的数目x 。 2、会计算孤电子对数目y :=

)(2

1

xb a -(a 为A 的最外层电子数目,x 为A 结合B 的数目,b 为B 最外层达到稳定结构结合的电子数目)。则A 的价层电子对数目N=x+y 。如HCHO 中以C 为中心原子,H 、O 为C 所结合的原子,则N=3+)21124(2

1

?-?-=3;又如SO 2中以S 为中心原子,O 为S 所结合的原子,则N=2+

)226(2

1

?-=3。 3、明确A 形成分子时,其周围价层电子对排斥后的空间构型:○表示A 。

若N=2,则为直线形,即 ;若N=3,则为平面三角形,即 ;

若N=4,则为正四面体形,即 。

4、知道A 价层电子对数目N 等于A 的杂化轨道数目。N=2为sp 杂化,N=3为sp 2杂化,N=4为sp 3杂化。

高考连接:

2012年6月28日星期四

中药化学习题集第二章糖与苷 吴立军

第二章糖和苷 一、写出下列糖的Fisher投影式和Haworth投影式 (寡糖只写Haworth投影式) 1.β-D-葡萄吡喃糖 2.α-L-鼠李吡喃糖 3.β-D-甘露吡喃糖 4.α-L-阿拉伯呋喃糖 5.β-D-木吡喃糖 6.β-D-核呋喃糖 7.β-D-半乳吡喃糖8.β-D-果呋喃糖 9.α-L-呋吡喃糖10.β-D-葡萄吡喃糖醛酸11.β-D-半乳吡喃糖醛酸12.新橙皮糖 13.芦丁糖14.蔗糖 15.樱草糖16.麦芽糖 17.槐糖18.海藻糖 19.棉子糖20.槐三糖 投影式如下: 1.β-D-葡萄吡喃糖 2.α-L-鼠李吡喃糖 3.β-D-甘露吡喃糖 4.α-L-阿拉伯呋喃糖 5.β-D-木吡喃糖 6.β-D-核呋喃糖 7.β-D-半乳吡喃糖8.β-D-果呋喃糖

9.α-L-呋吡喃糖10.β-D-葡萄吡喃糖醛酸11. β-D-半乳吡喃糖醛酸12.新橙皮糖 13.芦丁糖14.蔗糖 15.樱草糖

16.麦芽糖 17.槐糖18.海藻糖 19.棉子糖 20.槐三糖

二、名词解释 1. 1C和C1构象式 2.N和A构象式 3.1C4和4C1构象式 4.β构型、α构型 5.D构型、L构型 6.相对构型、绝对构型 7.吡喃型糖、呋喃型糖8.低聚糖、多糖 9.Molish反应10.还原糖、非还原糖 11.乙酰解反应12. 酶解反应 13.β-消除反应14.Smith降解(过碘酸降解)15.苷化位移16.端基碳 17.前手性碳18.Bio-gel P 19.苷化位移中的同五异十其余七 解析: 1、2、3 吡喃型糖在溶液或固体状态时,其优势构象是椅式,以C2、C3、C5、O四个原子构成的平面为准,当C4在面上,C1在面下时,称为4C1,简称为C1式或N式;当C4在面下,C1在面上时,称为1C4,简称为1C式或A式。 4、α、β表示相对构型,当C1-OH和C5(六元氧环糖-吡喃糖)或C4(五元氧环糖-呋喃糖)上的大取代基为同侧的为β型,为异侧的为α型。 5、D、L表示绝对构型,在Haworth式中,看不对称碳原子C5(吡喃糖)或C4(呋喃糖)上大取代基的方向,向上的为D,向下的为L。 6、相对构型:与包含在同一分子实体的任何其他手性中心相关的任何手性中心的构型。 绝对构型:当一个构型式按规定表达一个立体异构体时,若确定的立体异构体的真正构型与构型式所表达的构型相同时,则这种构型式所表示的构型称为绝对构型。 7、呋喃型糖:糖在形成半缩醛或半缩酮时,五元氧环的糖称为呋喃型糖。 吡喃型糖:糖在形成半缩醛或半缩酮时,六元氧环的糖称为吡喃型糖。 8、低聚糖:由2-9个单糖通过苷键结合而成的直链或支链聚糖称为低聚糖。 多糖:由十个以上单糖通过苷键连接而成的糖称为多糖。 9、Molish反应:糖在浓H2SO4(硫酸)或浓盐酸的作用下脱水形成糠醛及其衍生物与α-萘酚作用形成紫红色复合物,在糖液和浓H2SO4的液面间形成紫环,因此又称紫环反应。 10、还原糖:具有游离醛基或酮基的糖。 非还原糖:不具有游离醛基或酮基的糖。 11、乙酰解反应:乙酰解所用的试剂是醋酐和酸,反应机制与酸催化水解相似,但进攻的基团是CH3CO+而不是质子,乙酰解反应可以确定糖与糖的连接位置。 12、酶解反应:酶催化水解具有反应条件温和,专属性高,根据所用酶的特点可确定苷键构型,根据获得的次级苷、低聚糖可推测苷元与糖及糖与糖的连接关系,能够获得原苷元。 13、β-消除反应:在一个有机分子里消去两个原子或者基团的反应。根据两个消去基团的相对位置分类,若在同一个碳原子上,称为1,1消除或者α-消除。如果

分子的几何构型优化计算

分子的几何构型优化计算(2)Molecular Modelling Experiments (2) (Gaussian98) 1.优化目的: 对分子性质的研究是从优化而不是单点能计算开始。这是因为我们认为在自然情况下分子主要以能量最低的形式存在。只有能量最低的构型才能具有代表性,其性质才能代表所研究体系的性质。在建模过程中,我们无法保证所建立的模型有最低的能量,所以所有研究工作的起点都是构型优化,要将所建立的模型优化到一个能量的极小点上。只有找到合理的能够代表所研究体系的构型,才能保证其后所得到的研究结果有意义。 分子性质研究的一般模式: 2 高斯中所用到的一些术语的介绍 Gaussian98的界面

2.1势能面 在不分解的前提下,分子可以有很多个可能的构型,每个构型都有一个能量值,所有这些可能的结构所对应的能量值的图形表示就是一个势能面,势能面描述的是分子结构和其能量之间的关系,以能量和坐标作图。根据分子中的原子数和相互作用形式,有可能是二维的,也有可能是多维的。势能面上的每一个点对应一个具有一个能量的结构。能量最低的点叫全局最小点,局域最小点是在势能面上某一区域内能量最小的点,一般对应着可能存在的异构体。鞍点是势能面上在一个方向有极大值而在其他方向上有极小值的点,通常对应的都是过渡态。优化的目的就是找到势能面上的最小点,因为这个点所对应的构型能量最低,是最稳定的。 2.2确定能量最小值 构型优化就是找体系的最小点或鞍点。能量的一阶导(也就是梯度,注意在数学中,一阶导表示着函数的变化趋势,一阶导为零就表明找到了极值点,这是确定最小值的数学基础)是零,这表明在这个点上的力也是零(因为梯度的负值是力)。我们把势能面上这样的点称为静态点(也就是上面所说的极小点)。所有成功的优化都会找到一个静态点,虽然有时找到的静态点并不是想要的静态点。 程序从输入的分子构型开始沿势能面进行优化计算,其目的是要找到一个梯度为零的点。计算过程中,程序根据上一个点的能量和梯度来确定下一步计算的方向和步幅。梯度其实就是我们所说的斜率,表示从当前点开始能量下降最快的方向。以这种方式,程序

化学分子杂化轨道与构型

1、现代价键理论要点: (1)自旋相反的成单电子相互接近时,核间电子密度较大,可形成稳定的共价键 (2)共价键有饱和性。一个原子有几个未成对 电子,便可和几个自旋相反的电子配对成 键。 例如:H-H N≡N (3)共价键有方向性。这是因为,共价键尽可 能沿着原子轨道最大重叠的方向形成,叫做最大重叠原理。 2.按原子轨道的重叠方式分:键和键 键:原子轨道“头碰头”重叠 键:原子轨道“肩并肩”重叠 杂化轨道理论的基本要点 原子轨道在成键的过程中并不是一成不变的。同一原子中能量相近的某些轨道,在成键过程中重新组合成一系列能量相等的新轨道而改变了原有的状态。这一过程称为“杂化”。所形成的新轨道叫做“杂化轨道”。 杂化轨道的要点:

原子形成分子时,是先杂化后成键 同一原子中不同类型、能量相近的原子轨道参与杂化 杂化前后原子轨道数不变 杂化后形成的杂化轨道的能量相同 杂化后轨道的形状、伸展方向发生改变 杂化轨道参与形成σ键,未参与杂化的轨道形成π键 sp3 一个s轨道与三个p轨道杂化后,得四个sp3杂化轨道,每个杂化轨道的s成分为1/4,p成分为3/4,它们的空间取向是四面体结构,相互的键角θ=109o28′CH4,CCl4 C原子与H原子结合形成的分子为什么是CH4,而不是CH2或CH3?CH4分子为什么具有正四面体的空间构型(键长、键能相同,键角相同为109°28′)? 它的要点是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道和3个2p轨道会发生混杂,混杂时保持轨道总数不变,得到4个能量相等、成分相同的sp3杂化轨道,夹角109°28 ′,表示这4个轨道是由1个s轨道和3个p轨道杂化形成的如下图所示:

多糖高级结构研究方法

1. 红外光谱法(IR) 红外光谱在多糖的结构分析上的应用主要是确定糖苷键的构型以及常规官能团。如:多糖化合物在890cm- 1处吸收是β-吡喃糖苷键特征峰,而820 cm- 1和850cm- 1则是α-吡喃糖苷键特征峰。 2.核磁共振法( NMR) 主要用于确定多糖结构中糖苷键的构型以及重复结构中单糖的数目。 3. 原子力显微镜(AFM) 该技术是在扫描隧道显微镜( STM )基础上发展起来的一种新颖的物质结构分析方法。其用很尖的探针扫描待测样品表面, 探针附在一根可活动的微悬臂的底端上, 当探针与样品接触时, 产生的微小作用力引起微悬臂的偏转, 通过光电检测系统对微悬臂的偏转进行检测和放大, 信号经过转换可得到样品的三维立体图像。 如:该技术研究了香菇多糖在不同浓度NaOH 溶液下构型和构象的转变。 4. X- 射线衍射法(XRD) X - 射线衍射法可得到晶体的晶胞参数和晶格常数, 再加上立体化学方面的信息,包括键角、键长、构型角和计算机模拟, 就可以准确的确定多糖的构型。 5. 圆二色谱( CD) 从CD 可以知道绝对构型、构象等信息, 是研究多糖的三维结构的有效办法。中性多糖因缺少一般紫外区可提供信息的结构, 难以直接得到由CD 谱提供的结构信息,通常可进行衍生化或者将多糖与刚果红络合后测定。 6. 快原子轰击质谱( FAB - M S) FAB- MS适合于分析极性大、难挥发、热不稳定的样品。在快原子轰击过程中, 样品通过正离子方式增加一个质子或阳离子, 或通过负离子方式失去一个质子产生准分子离子作为谱图的主要信号, 并给出反映连接顺序等信息的碎片。因此FAB- MS可用来测定寡糖链的分子量。通过FAB- MS形成[M - H ] - 离子是确定寡糖中单糖组成的一种方便的方法。 7. 气质联用(GC - M S) 气相色谱与质谱联用可以得到有关单糖残基类型、链的连接方式、糖的序列和糖环形式、聚合度等多种结构信息。气相色谱要求试样具有良好的挥发性和热

判断分子的构型

二、判断分子构型——价层电子对互斥理论(VSEPR) 现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。所谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。这样就决定了CH4的正四面体结构。 利用VSEPR推断分子或离子的空间构型的具体步骤如下: ①确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,当作3对电子看待。 ②确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示:

(完整版)分子的立体结构杂化轨道与配位键习题及答案.docx

第二节《分子的立体结构》 (3) 杂化轨道理论 班级学号姓名等第 1.最早提出轨道杂化理论的是() A.美国的路易斯 B.英国的海特勒 C.美国的鲍林 D.法国的洪特 2.下列分子中心原子是sp2杂化的是() A.PBr 3 B.CH4 C.BF3 D.H2O 3.关于原子轨道的说法正确的是() A. 凡是中心原子采取sp3杂化轨道成键的分子其几何构型都是正四面体 3杂化轨道是由 4 个 H原子的 1s轨道和 C 原子的2p 轨道混合起来而形成 B.CH 分子中的 sp 4 的 C.sp 3杂化轨道是由同一个原子中能量相近的s 轨道和 p 轨道混合起来形成的一组能量相近 的新轨道 D.凡 AB3型的共价化合物,其中中心原子 A 均采用 sp3杂化轨道成键 4.用 Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是() A.C 原子的四个杂化轨道的能量一样 B.C 原子的 sp3杂化轨道之间夹角一样 C.C 原子的 4 个价电子分别占据 4 个 sp3杂化轨道 D.C 原子有 1 个 sp 3杂化轨道由孤对电子占据 5.下列对 sp3、 sp2、 sp 杂化轨道的夹角的比较,得出结论正确的是() A.sp 杂化轨道的夹角最大 B.sp 2杂化轨道的夹角最大 C.sp 3杂化轨道的夹角最大 D.sp 3、 sp2、sp 杂化轨道的夹角相等 6.乙烯分子中含有 4 个 C— H 和 1 个 C=C双键, 6 个原子在同一平面上。下列关于乙烯分子 的成键情况分析正确的是() A. 每个 C 原子的 2s 轨道与2p 轨道杂化,形成两个sp 杂化轨道 B. 每个 C 原子的 1 个 2s轨道与 2 个 2p 轨道杂化,形成 3 个 sp 2杂化轨道 C.每个 C 原子的 2s 轨道与 3 个 2p轨道杂化,形成 4 个 sp3杂化轨道 D.每个 C 原子的 3 个价电子占据 3 个杂化轨道, 1 个价电子占据 1 个 2p 轨道 7. 下列含碳化合物中,碳原子发生了sp3杂化的是() A.CH4 B.CH2=CH2 C.CH≡CH D. 8. 已知次氯酸分子的结构式为H— O— Cl ,下列有关说法正确的是() A.O 原子发生 sp 杂化 B.O 原子与 H、 Cl 都形成σ键 C.该分子为直线型分子 D.该分子的电子式是H︰ O︰ Cl 9. 下列关于杂化轨道理论的说法不正确的是() A.原子中能量相近的某些轨道,在成键时,能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分等性杂化轨道和不等性杂化轨道

杂化轨道与分子构型

第二节杂化轨道与空间构型 【学习目标】 1、复习巩固电子式、共价键、σ键、π键、键参数。 2、理解掌握杂化轨道、价层电子对、会计算价层电子对数,理解中心原子轨道与分子构型 的关系。 重难点:杂化轨道理解计算,杂化轨道与分子构型的关系 【回顾旧知识】 1、共价键的实质: 2、σ键、π键的形成过程 3、单键双键三键的组成 4、写出下列物质的电子式 N2HCl CO2H2O NH3BF3CH4 【开启新知识】 一、活动探究 发挥自己的想象,各小组用橡皮泥把下列物质可能的形状捏出来 CO2H2O NH3BF3CH4 提示:原子用球,键用牙签 成果展示

疑问:CO 2 H 2O 的组成都就是一个中心 原子,两个被结 合原子,分子组 成一样,构型为 什么不一样? 问题分析: 分子构 型就是由共价 键 的 与 决定的 共价 键的实质就是 也就就是说,分子长什么样与共用电子对所处的轨道夹角有关系 二、 杂化轨道理论 1.用杂化轨道理论解释甲烷分子的形成 在形成CH 4分子时, 碳原子的一个 轨道与三个 轨道发生混杂,形成四个能量相等的 杂化轨道。四个 杂化轨道分别与四个H 原子的1s 轨道重叠成键形成CH 4分子,所以四个C —H 键就是等同的。可表示为 2.杂化轨道的类型 杂化类型 sp sp 2 sp 3 参与杂化的旧的n s 化学式 立体构型 结构式 键角 比例模型 球棍模型 CO 2 O =C =O 180° H 2O 105° BF 3 120° NH 3 107° CH 4 109°28′

(1)观察上述杂化过程,分析原子轨道杂化后,数量与能量有什么变化? (2)2s轨道与3p轨道能否形成sp2杂化轨道? 三、确定杂化轨道数目及类型 对AB m形分子来说 杂化轨道数目=σ键+ 孤电子对数 练练手

有机化学中绝对构型的确定(新方法)

立体化学中确定R/S构型的一种方法 引:首先申明一点,这是我在一本杂志上看到的一种确定构型的办法。作者是南京信息工程大学的一位教授。我看着觉得不错,就简单记在了纸上。然后制作成PDF格式。初学立体化学,对立体结构在脑子中还不是很熟悉,立体感较差。如按书本上的方法来,将最小基团放在最后面,,然后根据基团由大到小,假设顺时针,则为R,逆时针则为S。但给你的结构式最小基团不在最后面是很正常的事情。所以还要进行旋转,画成fisher结构来确定。故绝对构型弄错是常有的事情(特别对于透视式来说,我学的时候经常弄错)。但本方法简单明了,绝对好用。(否则也不会我花了大概一个半小时整理,结构用chemdraw画的,平时不大画,很慢)。 常见用来表示立体构型的的方法有:①费舍尔投影式②锯架式③透视式(或伞形式)④纽曼式。 具体方法: ①用次序规则将四个基团由高到低排序,并依次编号为4,3,2,1。 ②对于费舍尔式,可任意取三个基团;对于其他构型式,取就近的三个基团(即将离观察者最远的那个基团排除) ③按优先顺序将选取的三个基团由高到低旋转,当未选基团为奇数,且顺时针时,则为R,逆时针则为S;基团为偶数时则相反。 (对于纽曼式,锯架式,当后面的那个C有手型需要确定绝对构型时,显然,未选取基团是靠近观察者的那个,此时观察另外三个基团的旋转顺序较为方便,但与上述方法恰好相反,故有上述方法确定构型后,真实构型应相反。)

注:原文在表达选取三个基团时,如此描述,【任意选取三个就近而便于观察旋转的基团】。我将其理解为:先使三基团就近,但基团大小是无所谓的,故有任意一说。任意是指基团任意,而非选取基团时可以任意选。这在下面的例子中可以看出来。 原文有八个例子,现举典型的五个。(有几个是我改编的,解析是我写的简单分析,不是很好。但勉强可以理解) 例一: 解析:根据以上所述,4,3,2,1,分别为氨基,羧基,甲基和氢原子。任意的选三个。这里例如选4,2,1。则未选基团为3,为奇数。4,2,1旋转为逆时针,故为S。 例二: 解析:首先确定4,3,2,1,分别为羟基,氨基,甲基和氢。按就近原则,未选基团为羟基(偶数),旋转为顺时针,故为S。 例三: 解析:先分析前面那个手型碳。选取氢,羧基和氯原子。R。重点看后面那个。以羟基羧基,

有机化学分子杂化轨道理论

分子杂化轨道理论 2010-5-8 化材学院 化学(1)李向阳 价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方面却遇到了困难。例如CH 4分子的形成,按照价键理论,C 原子只有两个未成对的电子,只能与两个H 原子形成两个共价键,而且键角应该大约为90°。但这与实验事实不符,因为C 与H 可形成CH 4分子,其空间构型为正四面体,∠HCH = 109.5°。为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林提出了杂化轨道理论(hybrid orbital theory ),丰富和发展了现代价键理论。1953年,我国化学家唐敖庆等统一处理了s-p-d-f 轨道杂化,提出了杂化轨道的一般方法,进一步丰富了杂化理论的内容 1.杂化轨道理论的基本要点 杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心原子所用的原子轨道(即波函数)不是原来纯粹的s 轨道或p 轨道,而是若干不同类型、能量相近的原子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的原子轨道——杂化轨道(hybrid orbital),以满足化学结合的需要。这一过程称为原子轨道的杂化(hybridization )。 下面以CH 4分子的形成为例加以说明。 基态C 原子的外层电子构型为2s 2 2p x 1 2p y 1 。在与H 原子结合时,2s 上的一个电子被激发到2p z 轨道上,C 原子以激发态2s 12p x 12p y 12p z 1参与化学结合。当然,电子从2s 激发到2p 上需要能量,但由于可多生成二个共价键,放出更多的能量而得到补偿。 在成键之前,激发态C 原子的四个单电子分占的轨道2s 、2p x 、2p y 、2p z 会互相“混杂”,线性组合成四个新的完全等价的杂化轨道。此杂化轨道由一个s 轨道和三个p 轨道杂化而成,故称为sp 3杂化轨道。经杂化后的轨道一头大,一头小,其方向指向正四面体的四个顶角,能量不同于原来的原子轨道(图1.6)。 形成的四个sp 3 杂化轨道与四个H 原子的1s 原子轨道重叠,形成(sp 3-s )σ键,生成CH 4分子。 杂化轨道成键时,同样要满足原子轨道最大重叠原理。由于杂化轨道的电子云分布更为集中,杂化轨道的成键能力比未杂化的各原子轨道的成键能力强,故形成CH 4分子后体系能量降低,分子的稳定性增强。 CH 4分子形成的整个杂化过程可示意如下 图1. sp 3杂化轨道示意图 激发 杂化 sp 3杂化轨道 4 个电子能量相等 2 s 2p 基态C 原子 2 s 2p 1个2s 电子激发到2p 轨道 与4 个H 原子的1 s 电子结合 sp 3-s 重叠成键

杂化轨道理论(现用图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz 2 dx 2-y 2 dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k ?u`veilent]bond[b ?nd])。用黑点代表价电子(即最外层s ,p 轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l ?un]pair[p ε?]electron[i`lektr ?n])。Lewis 结构式的书写规则又称八隅规则(即8电子结构)。 评价 贡献:Lewis 共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其 与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外很多。 PCl 5 SF 6 BeCl 2 BF 3 NO ,NO 2 …

中心原子周围价电子数10 12 4 6 含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件下它们具有等价性。 O2 :2 O原子电子组态1s22s22p4 →O2,8×2=16个电子,外层电子:12个电子, KK(σ2s)2(σ*2s)2(σ2pz)2 (π2px)2(π2py)2(π*2px)1 (π*2py)1 MO理论认为价电子为12,其中 成键电子,(σ2s)2(σ2pz)2(π2px)2(π2py)2共8个电子 反键电子,(σ*2s)2(π*2px)1 (π*2py)1共4个电子 ------------ ----------- ----------- σ单键,3电π键,3电子π键 σ+π3+π3,由于每个π3只相当于半个键,故键级=2。尽管该键级与传统价键理论的结论一致,但分子轨道理论圆满解释了顺磁性(由于分子中存在未成对电子引起的),价键理论则不能解释。

中药化学习题集第二章糖与苷吴立军

第二章糖与苷 一、写出下列糖得Fisher投影式与Haworth投影式 (寡糖只写Haworth投影式) 1.β-D-葡萄吡喃糖2、α-L-鼠李吡喃糖 3.β-D-甘露吡喃糖4、α-L-阿拉伯呋喃糖5.β-D-木吡喃糖6、β-D-核呋喃糖 7.β-D-半乳吡喃糖8、β-D-果呋喃糖 α-L-呋吡喃糖10、β-D-葡萄吡喃糖醛酸11.β-D-半乳吡喃糖醛酸12、新橙皮糖 13.芦丁糖14、蔗糖 15.樱草糖16、麦芽糖 17.槐糖18、海藻糖 19.棉子糖20、槐三糖 投影式如下: 1.β-D-葡萄吡喃糖2、α-L-鼠李吡喃糖 3.β-D-甘露吡喃糖4、α-L-阿拉伯呋喃糖

5、β-D-木吡喃糖 6、β-D-核呋喃糖 7、β-D-半乳吡喃糖8、β-D-果呋喃糖 9、α-L-呋吡喃糖10、β-D-葡萄吡喃糖醛酸11、β-D-半乳吡喃糖醛酸12、新橙皮糖 13.芦丁糖14、蔗糖

15、樱草糖 16、麦芽糖 17、槐糖18、海藻糖 19.棉子糖

20、槐三糖 二、名词解释 1、1C与C1构象式 2、N与A构象式 3、1C4与4C1构象式 4、β构型、α构型 5.D构型、L构型6、相对构型、绝对构型 7、吡喃型糖、呋喃型糖8、低聚糖、多糖 9.Molish反应10、还原糖、非还原糖 11.乙酰解反应12、酶解反应 β-消除反应14、Smith降解(过碘酸降解)15.苷化位移16、端基碳 17.前手性碳18、Bio-gel P

19.苷化位移中得同五异十其余七 解析: 1、2、3 吡喃型糖在溶液或固体状态时,其优势构象就是椅式,以C2、C3、C5、O四个原子构成得平面为准,当C4在面上,C1在面下时,称为4C1,简称为C1式或N式;当C4在面下,C1在面上时,称为1C4,简称为1C式或A式。 α、β表示相对构型,当C 1-OH与C5(六元氧环糖-吡喃糖)或C4(五元氧环糖-呋喃糖)上得大取代基为同侧得为β型,为异侧得为α型。 D、L表示绝对构型,在Haworth式中,瞧不对称碳原子C5(吡喃糖)或C4(呋喃糖)上大取代基得方向,向上得为D,向下得为L。 6、相对构型:与包含在同一分子实体得任何其她手性中心相关得任何手性中心得构型。 绝对构型:当一个构型式按规定表达一个立体异构体时,若确定得立体异构体得真正构型与构型式所表达得构型相同时,则这种构型式所表示得构型称为绝对构型。秽腡鄶肿课宮兴。 7、呋喃型糖:糖在形成半缩醛或半缩酮时,五元氧环得糖称为呋喃型糖。 吡喃型糖:糖在形成半缩醛或半缩酮时,六元氧环得糖称为吡喃型糖。 8、低聚糖:由2-9个单糖通过苷键结合而成得直链或支链聚糖称为低聚糖。 多糖:由十个以上单糖通过苷键连接而成得糖称为多糖。 Molish反应:糖在浓H 2SO4(硫酸)或浓盐酸得作用下脱水形成糠醛及其衍生物与α-萘酚作用形成紫红色复合物,在糖液与浓H2SO4得液面间形成紫环,因此又称紫环反应。锟阉瓏醬閭殘際。 10、还原糖:具有游离醛基或酮基得糖。

Gaussian中分子的几何构型.

Gaussian中分子的几何构型 分子的几何构型 ************************************ 分子的几何构型(Molecular Geometry) ************************************ 分子的平衡构型(molecular equilibrium geometry)是分子电子能量和核间排斥能 量最小时分子的核排列。 分子势能 一个含有N个原子核的非线性分子的几何构型可以用3N-6个独立的核坐标决定,分子 的电子能量,U(q1,q2,…,q3N-6)是这些坐标的函数。 U = Ee +VNN 注意到3个平移和3个转动自由度(线性分子的转动自由度为2)对U是没有贡献的,因 此对一个双原子分子,U的表达式中仅仅保护一个变量,即两个核之间的距离,U?。 对一个多原子分子,U是每两个原子核之间距离的函数,是分子势能面(potential energy surface, PES)的一部分。对某一特定的分子核排列下U的计算被成为单点 (single-point)计算,因为这一计算仅仅涉及到分子PES上的一个点。 一个大分子可能在其PES上有多个极小点,对应于不同的平衡构象和鞍点。 分子构象(molecular conformation)可以通过指定围绕单键的二面角的指得到。在 能量极小点处的分子构象称为构型(conformer)。 几何构型优化 从初始几何构型出发寻找U的极小值的过程称几何构型优化(geometry optimization) 或者能量极小化(energy minimization)。极小化的算法同时计算U和U梯度。 在一个局部最小点,U的3N-6个偏微分都是0。PES上▽U = 0的点称为稳定点(statio nary point)或者判据点(critical point),它可以是极小点,极大点或者鞍点。 除了▽U之外,一些最小化方法使用到U的二阶偏微分,从而生成Hessian矩阵,又称为 力常数(force constant)矩阵,因为d^2U/Qi^2 = fi为力常数。 如果一个稳定点是电子能量面上的一个极小点,其力常数矩阵的所有特征值都是正值 。然而,若一个稳定点是过渡态(transition state, TS),其中一个特征值是负值。 Newton-Rapson Newton-Rapson方法是一种非常有效的寻找多变量函数的局部极小点的算法,它将函 数用Taylor展开到二次项,包括函数的一次和二次微分,并以此作为函数的近似。 Quasi-Newton-Rapson 计算自洽场(self consistent field, SCF)能量的二阶微分是非常耗时的,因此在 优化时经常使用一种修正的方法,即quasi-Newton(或quasi-Newton-Rapson)方法。 这种方法在每一步优化中通过计算梯度对Hessian值进行初始估算。 优化方法 为了优化几何构型,要先对平衡构型做一个估算,通常使用键长和键角的经验值。此外,我们还要选择

杂化轨道理论解释部分分子的结构

1.BF3分子的结构: 硼原子的电子层结构为1s22s22p x1,当硼与氟反应时,硼原子的一个2s电子激发到一个空的2P轨道中,使硼原子的电子层结构变为1s22s22p x12p y1。硼原子的2s轨道和两个2p轨道杂化组合成sp2杂化轨道,硼原子的三个sp2杂化轨道分别与三个F原子的各一个2P轨道重叠形成三个sp2-p的σ键,由于三个sp2杂化轨道在同一平面上,而且夹角为120°,所以BF3分子具有平面三角形结构。 2.气态的BeCl2分子的结构: Be原子的电子结构1s22s2,从表面上看Be原子似乎不能形成共价键,但是在激发状态下,Be的一个2s 电子可以进入2p轨道,经过杂化形成2个sp杂化轨道,与氯原子中的3p轨道重叠形成两个sp-pσ键。由于杂化轨道间的夹角为180°,所以形成的BeCl2分子的空间结构是直线型。 BeCl2分子杂化态 3.乙烯、乙炔分子的结构: 乙烯分子中碳原子的原子轨道采用SP2杂化。形成乙烯分子时,两个碳原子各用一个sp2杂化轨道上的电子相互配对,形成一个σ键;每个碳原子的另外两个sp2杂化轨道上的电子分别与两个氢原子的1s轨道的电子配对形成共价键;每个碳原子的一个未参与杂化的2P轨道(均含有一个未成对电子)能够以“肩并肩”的方式重叠,该轨道上的电子配对形成一个π键。三个sp2杂化轨道的对称轴在同一平面上,对称轴夹角为1200,这样,在乙烯分子中的碳原子间,存在一个σ键和一个π键。类似地,乙炔分子中的碳原子采取sp1杂化,两个sp杂化轨道的对称轴在同一直线上,夹角为180o,两个碳原子间存在一个σ键和两个π键。 注意:杂化轨道只能形成σ键,不能形成π键。 例1.有关甲醛分子的说法正确的是() A.C原子采取sp杂化 B.甲醛分子为三角锥形结构 C.C原子采取sp2杂化 D.甲醛分子为平面三角形结构 4.氨分子的结构: 在形成氨分子时,氮原子中的原子轨道也发生了sp3杂化,生成四个SP3杂化轨道,但所生成的四个sp3杂化轨道中,只有三个轨道各含有一个未成对电子,可分别与一个氢原子的1s电子形成一个σ键,另一个sp3杂

化学分子杂化轨道及构型

1、现代价键理论要点: (1)自旋相反的成单电子相互接近时,核间电子密度较大,可形成稳定的共价键 (2)共价键有饱和性。一个原子有几个未成对电子,便可和几个自旋相反的电子配对成键。 例如:H-H N≡N (3)共价键有方向性。这是因为,共价键尽可能沿着原子轨道最大重叠的方向形成,叫做最大重叠原理。 2.按原子轨道的重叠方式分:键和键 键:原子轨道“头碰头”重叠 键:原子轨道“肩并肩”重叠 杂化轨道理论的基本要点 原子轨道在成键的过程中并不是一成 不变的。同一原子中能量相近的某些轨道, 在成键过程中重新组合成一系列能量相等 的新轨道而改变了原有的状态。这一过程称 为“杂化”。所形成的新轨道叫做“杂化轨道”。 杂化轨道的要点: 原子形成分子时,是先杂化后成键 同一原子中不同类型、能量相近的原子轨道参与杂化 杂化前后原子轨道数不变 杂化后形成的杂化轨道的能量相同 杂化后轨道的形状、伸展方向发生改变 杂化轨道参与形成σ键,未参与杂化的轨道形成π键 sp3 一个s轨道与三个p轨道杂化后,得四个sp3杂化轨道,每个杂化轨道的s成分为1/4,p成分为3/4,它们的空间取向是四面体结构,相互的键角θ=109o28′CH4,CCl4C原子与H原子结合形成的分子为什么是CH4,而不是CH2或CH3?CH4分子为什么具有正四面体的空间构型(键长、键能相同,键角相同为109°28′)? 它的要点是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道和3个2p轨道会发生混杂,混杂时保持轨道总数不变,得到4个能量相等、成分相同的sp3杂化轨道,夹角109°28 ′,表示这4个轨道是由1个s轨道和3个p轨道杂化形成的如下图所示:

四化学键理论与分子几何构型

四、化学键理论与分子几何构型 1. (1) ,(I)的稳定性大于(Ⅱ)。 (2) C O O O N O C O O O N O O (I) O C O O N O O C O O O N O O (II) O N O O C O O O N O O C O O (III) O N O O C O N O O C O O (IV) 第(III)式最稳定。 (3) Cu + + NO 2–+ 2H + Cu 2+ + NO + H 2O (4) 若压强降到原来的2/3,则说明3 mol NO 变成2 mol 气态物质: 3NO NO 2 + N 2O ,又由于2NO 2N 2O 4,所以最后的气体总压还要略小于原压的2/3。 2. N N N N N N N N N (IV) (V) (II)、(V)不稳定,舍去,(I)比(III)、(IV)稳定。 N (a)N (b)N (c) N (d)N (e) N (a)—N (b)的键级为5/2~3, N (b)—N (c)的键级为1~3/2, N (c)—N (d)的键级为1~3/2,N (d)—N (e)的键级为5/2~3。 N 5+有极强的氧化性。应在液态HF 中制备N 5+。 3. ArCl + OF + NO + PS + SCl + 键级: 1 2 3 3 2 ArCl +键级最小,最不稳定;虽然NO +与PS +的键级都是3,但NO +是2p —2p 轨道重叠的π键,而PS +是3p —3p 轨道重叠的π键。前者重叠程度大,E π大,所以NO +比PS +稳定,即NO +离子最稳定。 4. (1) B 3N 3H 6 N H H H H H N B N B B H H H H H H N B B H N B N O N O O O N O O (I)(II) N N N N N N N N N N (I) (II) N N N N N (III)

化学键理论与分子几何构型例题

170℃ 四、化学键理论与分子几何构型 1. NO 的生物活性已引起科学家高度重视,它与O 2- 反应,生成A 。在生理pH 条件下, A 的t 1/2= 1~2秒。 (1) 写出A 的可能的Lewis 结构式,标出形式电荷。判断它们的稳定性。 (2) A 与水中的CO 2迅速一对一地结合,试写出此物种可能的路易斯结构式,表示 出形式电荷,判断其稳定性。 (3) 含Cu +的酶可把NO 2- 转化为NO ,写出此反应方程式。 (4) 在固定器皿中,把NO 压缩到100atm ,发现气体压强迅速降至略小于原压强的 2/3,写出反应方程式,并解释为什么最后的气体总压略小于原压的2/3。 2. 试画出N 5+离子的Lewis 所有可能结构式,标出形式电荷,讨论各自稳定性,写出各 氮原子之间的键级。你认为N 5+的性质如何?它应在什么溶剂中制得。 3. 在地球的电离层中,可能存在下列离子:ArCl +、OF +、NO +、PS +、SCl +。请你预测 哪一种离子最稳定?哪一种离子最不稳定?说明理由。 4. 硼与氮形成类似苯的化合物,俗称无机苯。它是无色液体,具有芳香性。 (1) 写出其分子式,画出其结构式并标出形式电荷。 (2) 写出无机苯与HCl 发生加成反应的方程式 (3) 无机苯的三甲基取代物遇水会发生水解反应,试判断各种取代物的水解方程式, 并以此判断取代物可能的结构式。 (4) 硼氮化合物可形成二元固体聚合物,指出这种聚合物的可能结构,并说明是否具 有导电性。 (5) 画出Ca 2(B 5O 9)Cl·2H 2O 中聚硼阴离子单元的结构示意图,指明阴离子单元的电 荷与硼的哪种结构式有关。 5. 用VSEPR 理论判断下列物种的中心原子采取何种杂化类型,指出可能的几何构型。 (1)IF 3 (2)ClO 3- (3)AsCl 3(CF 3)2 (4)SnCl 2 (5)TeCl 4 (6)GaF 63 - 6. 试从结构及化学键角度回答下列问题:一氧化碳、二氧化碳、甲醛、甲酸等分子 (1) 画出各分子的立体构型,并标明各原子间成键情况(σ、π、Πm n ) (2) 估计分子中碳—氧键的键长变化规律 7. 近期报导了用二聚三甲基铝[Al(CH 3)3]2 (A)和2, 6—二异丙基苯胺(B)为原料,通过 两步反应,得到一种环铝氮烷的衍生物(D): 第一步:A + 2B === C + 2CH 4 第二步:□C □D + □CH 4(□中填入适当系数)请回答下列问题: (1) 分别写出两步反应配平的化学方程式(A 、B 、C 、D 要用结构简式表示 (2) 写出D 的结构式 (3) 设在第一步反应中,A 与过量B 完全反应,产物中的甲烷又全部挥发,对反应后

糖的构型及其画法

、单糖的结构 表示单糖结构式的三种方法:Fischer 投影式、Haworth 投影式和优势构象 1 、葡萄糖(Fischer 投影式)D, L 表示相对构型 结构式中,位号最大、离羰基最远的手性碳原子的羟基在右侧为 D 型;羟基 在左侧的为L 型 CH 2OH D-葡萄糖 2、Fischer 投影式不能表示单糖在水溶液中的真实存在形式,因此有了 Haworth 投影式。 Haworth 投影式中,C4位羟基在面下为D 型,在面上则为L 型 单糖成环后形成了一个新的手性碳原子,形成一对端基差向异构体,有 a 、B 二种构型 3 、虽然Haworth 式表示方法较Fischer 式有所改进,但它仍然是一种简化 了的方式,尚不能完全表达糖的真实存在状态。经实验证明葡萄糖在溶液或固体 状态时其优势构象是椅式 当C 4在面上,G 在面下,称C1式(通常绝大多数单糖的优势构象是 C1式) 当C 4在面下,C 在面上,称1C 式 CHO H --------- OH CHO HO --------- H —— OH 5 H HO H HO OH —H —OH 5 H CH 2OH L-葡萄糖 端基碳上的羟基与 C4羟基在同侧称 CH 2OH 3 -D-葡萄糖 CH 2OH a -D-葡萄糖

处于横键上,1C 式时,在竖键 然后通过GC 比较与标准单糖D 和L 型单糖衍生物的比移值,比移植相同的即为 构型相同,反之亦然。 2、 H PLC 法 3、 手性柱色谱法 4、 手性检测器法 5、旋光比较法 将苷或糖类化合物全水解后,采用各种分离手段得到单体 对于B D 型和a -L 型葡萄糖 , 对于a -D 型和俟L 型葡萄糖,当优势构象为 C1式时, G-OH 在环的面下, 处于竖键上,1C 式时,在横键 竖键和横键的具体写法:1、横键与环上的键隔键平行; 2、横键与竖键在环 的面上面下交替排列。 例: (E)-2,3,5,4 '-四羟基二苯乙烯-2- O-B -D-葡萄糖苷 1、GC 法将单糖与手性试剂反应, (相当于在糖中引入一个新的手性中心) 5 4 2 1C 式 G-OH 在环的面上, 单糖的绝对构型如何测定

判断分子空间几何构型的简单方法

判断分子空间几何构型的简单方法 电子对数目成键电子对 数目孤电子对数 目 分子的空间 构型 实例 2 2 0 直线型二氧化碳 3 3 0 三角形三氟化硼 2 1 V型二溴化锌4 4 0 四面体甲烷 3 1 三角锥氨气 2 2 V型水 5 5 0 三角双锥五氯化磷 4 1 变形四面体四氟化硫 3 2 T型三氟化溴 2 3 直线型二氟化氙6 6 0 八面体六氟化硫 5 1 四角锥五氟化碘 4 2 正方形四氟化氙以下用G表示电子对数目,V表示分子中所有原子最外层电子数的和,n表示配位原子中除了氢原子以外的其它原子的个数,m表示孤电子对数目,r表示配

位原子中氢原子的个数。 当配位原子中没有氢原子且V≥16时:V=8n+2m,G=m+n 例:CO2分子构型的判断 V=4+6×2=8n+2m,这里n=2,∴m=0, ∴G=m+n=0+2=2,所以CO2的分子构型为直线型 BF3分子构型的判断 V=3+7×3=8n+2m,这里n=3,∴m=0, ∴G=m+n=0+3=3,所以BF3的分子构型为三角形 PCl5分子构型的判断 V=5+7×5=8n+2m,这里n=5,∴m=0, ∴G=m+n=0+5=5,所以PCl5的分子构型为三角双锥 SF4分子构型的判断 V=6+7×4=8n+2m,这里n=4,∴m=1, ∴G=m+n=1+4=5,所以SF4的分子构型为变形四面体 BrF3分子构型的判断 V=7+7×3=8n+2m,这里n=3,∴m=2, ∴G=m+n=2+3=5,所以BrF3的分子构型为T型 SF6分子构型的判断 V=6+7×6=8n+2m,这里n=6,∴m=0, ∴G=m+n=0+6=6,所以SF6的分子构型为八面体 XeF4分子构型的判断

相关主题