搜档网
当前位置:搜档网 › 流量延误函数(VDF函数)

流量延误函数(VDF函数)

流量延误函数(VDF函数)
流量延误函数(VDF函数)

1.美国公路局(BPR )函数

t i ? 1+αi x i c i

βi 这里:

t i =路段i 上的自由流行驶时间

c i =路段i 的通行能力

x i =路段i 的实际流量

αi =常量

βi =常量

α,β为待标定参数,若没有数据进行标定,一般α=0.15,β=4.0; 对路段阻抗函数进行参数标定之前,对BRP 函数公式进行对数化处理,得 ln 1ln ln f t v t c αβ????-=+ ? ? ?????

其中:t ,f t ,v ,c 都是常数,可以从调查中得到; 设ln 1f t t ??- ? ???=b ,ln α=y ,ln v c ?? ???=k ,β=x ,则有y kx b =+;

即可转化为一元回归分析,利用最小二乘法求出待标定参数 α,β。 利用公式:1

112211n n n i i i i i i i n n i i i i n x y x y n x x β=====????- ???????=??- ???∑∑∑∑∑,y x αβ--=-即可求出待标定参数。

2.锥形流量延误函数(Spless ,1990)

1990年Spless 定义的用于替代广泛使用的BPR 函数的方程式:

f x =2+ α2 1?x c +β2?α 1?x c

?β 这里:

β=2α?1

2α?2,x =v/c 和α是大于1的常量

3.基于Logit 的流量延误函数

以色列交通规划研究院校准了基于Logit 的流量延误函数。这一函数具有同时包括路段延误或交叉口延误的特点。计算的路段总的延误时路段延误和交叉口延误的总合。

d =D l +I l

这里:

D l=t0?c1?

1

1?

c2

1+exp c3?c4

x

c

D l=路段延误

t0=自由流行驶时间x=交通流量

c=路段通行能力

c1,c2,c3,c4=参数

I l=d0p11+

p2

1+exp p3?p4?

x

X

这里:

I l=交叉口延误

d0=交叉口自由流行驶时间

x=交通流量

X=交叉口通行能力

p1,p2,p3,p4=参数

4.Akcellk延误函数(HCM2000)

R=R0+D0+0.25T x?1+x?12+16J?X?L2

2

这里:

R=路段行驶时间

R0=自由流路段行驶时间

D0=零交通流量控制延误

T=预期需求持续时间

X=饱和流率

J=标定参数

L=路段长度

5.广义费用延误函数

这一函数以BPR延误函数为基础,但是其提供了在某些路段单位长度上用固定成本和运营成本的功能。(美元/英里)

c i x=k i+δ?L i+φ?t i?1+αi x i

C i

βi

这里:

c i=路段i的广义费用

k i=路段i的美元成本

δ=像单位长度的运营成本这样的常量

L i=路段i的长度

φ=时间价值常量

t i=路段i上自由流行驶时间α=常量

x i=路段i上的交通流量

C i路段i的通行能力

β=常量

离心泵的流量控制方法

离心泵流量控制方法探讨 前言 离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。 离心泵流量常用控制方法 方法一:出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 方法二:旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 方法三:调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 方法四:调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为 60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何

(1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。(2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。 总结 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用。 泵的流量调节方法一览表 本文详细介绍了泵(离心泵、往复泵)的流量调节方法,如改变泵的装置特性曲线(如可以进行出口阀调节、旁路调节、转速调节、切割叶轮外径、更换叶轮、堵死几个叶轮流道等)、改变泵的特性曲线,并对每种调节方法进行了阐述及对其使用的特点进行了分析。 表1——1 泵的流量调节方法

流量控制系统设计

目录 第一章过程控制仪表课程设计的目的意义 (2) 1.1 设计目的?2 1.2课程在教学计划中的地位和作用?2 第二章流量控制系统(实验部分)?3 2.1控制系统工艺流程.........................................3 2.2 控制系统的控制要求?4 2.3 系统的实验调试 (5) 第三章流量控制系统工艺流程及控制要求......................... 63.1 控制系统工艺流程.............................................. 6 3.2设计内容及要求?7 第四章总体设计方案?8 4.1 设计思想 (8) 4.2 总体设计流程图........................................... 8第五章硬件设计..................................................... 95.1 硬件设计概要?9 5.2 硬件选型 ......................................................... 9 5.3 硬件电路设计系统原理图及其说明 (13) 第六章软件设计..................................................... 146.1 软件设计流程图及其说明 (14) 6.2 源程序及其说明............................................... 16第七章系统调试及使用说明?17 第八章收获、体会?20 参考文献 (21)

1第一章 空气动力学基础知识复习过程

1第一章空气动力学 基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组 成成分保持不变。 仅供学习与交流,如有侵权请联系网站删除谢谢1

从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 仅供学习与交流,如有侵权请联系网站删除谢谢2

1第一章 空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。

基于PLC 的流量控制系统

辽宁工业大学 电气控制与PLC技术课程设计(论文)题目:基于PLC的流量控制系统设计 院(系):电气工程学院 专业班级:自动化112 学号: 110302032

学生姓名:王毅 指导教师:(签字) 起止时间:2014.6.30~2014.7.11 本科生课程设计(论文) 课程设计(论文)任务及评语 自动化:电气工程学院教研室:

I 本科生课程设计(论文) 摘要 随着科技的飞速发展,自控系统的应用正在不断深入,同时代替传统控制检测技术日益更新。自动控制技术可谓无所不能。 本文提出一种对液体流量进行实时精确控制的设计方案。该方案以PLC控制为基础,由上位机、PL C、电动调节阀组成。它不仅适用于流量控制,在改变动作设备后同样适用于对温度、液位、速度、高度等模拟量的控制。 论文采用文字叙述与图表相结合的方式,逐步做出解释,从而得出具体结论。更清晰的展示了设计的全过程与每个细节之间的处理方式。 关键词:PLC;自动控制;流量控制 II 本科生课程设计(论文)

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.2系统组成总体结构 (2) 2.2.1 控制方案比较和确定 (2) 2.2.2 流量控制系统的组成及原理图 (3) 2.2.3 水流量系统控制流程 (4) 第3章硬件设计 (5) 3.1PLCS7-200介绍 (5) 3.2主机CPU224 (6) 3.3变频器的选择 (8) 3.4水泵电机的选择 (9) 3.5流量变送器的选择 (10) 第4章软件设计 (11) 4.1PLC程序设计 (11) 4.2系统流程图 (11) 4.3程序 (13) 第5章课程设计总结 (16) 参考文献 (17) III 本科生课程设计(论文) 第1章绪论 PLC 是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它 采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC 及其有关的外围设备都应该按易于与工业控制系

液压挖掘机的三种流量控制方式-田少民

液压挖掘机的三种流量控制方式 成都小松检测技术研究所田少民摘要:在液压挖掘机的负载适应控制策略中,负流量(Negative Flow Control)、正流量控制(Positive Flow Control)及负荷传感器控制(Load Sensing Control)三种流量控制方式的流行称谓,是按其泵控特性来分类的。本文通过对多种厂牌型号挖掘机的比较分析,提出了旁通流量控制(By-pass Flow Control)、先导传感控制(Pilot Sensing Control)及负荷传感控制的分类。这一分类方法,对于设计时比较不同控制系统的性能和维修时理解不同控制系统结构和功能的特点,都有所裨益。 1.流量控制 在挖掘机的液压系统内,流量Q、压力P及能耗(流量损失ΔQ、压力损失ΔP)等参数的变化,反映了液压传动过程的控制特性。液压系统工作时,压力P不是系统的固有参数,而是由外负荷决定的。因此,当发动机转速n e一定时,要对液压系统的功率进行调节,其实是对液压缸、液压马达等执行元件的进油量Q a进行调节(参看图1)。 图1.流量调节 如图2所示,有两种方法调节系统流量。第一种方法是泵控方式,通过改变主泵的每转排量q来调节主泵的输出流量Q p,称为容积调速。常见的容积调速方式包括:①利用主泵出口压力P P与主泵排量q的乘积保持不变的恒扭矩控制;②利用发动机转速传感(ESS)使主泵吸收的扭矩p P q与主泵转速n的乘积保持不变的恒功率控制;③

在临近系统溢流压力时,减小主泵排量的压力切断控制;④配用破碎头等作业附件时,由外部指令限定主泵最大排量的最大流量二段控制;⑤双泵系统中,利用两泵出口压力的平均值与主泵流量乘积保持不变的交叉功率控制(相加控制或总功率控制);⑥多泵系统中,因主泵组的液压总功率大于发动机的输出功率,为防止发动机出现失速,采用了极限负荷控制。 除了容积调速,还有一种泵控方式是通过动力模式下的变功率控制,利用外部指令设定不同工况下不同的发动机输出功率来改变主泵转速n e,从而调节主泵输出流量Q=nq。 调节系统流量的第二种方法是阀控方式,可对主泵输出的流量进行二次调节。这种通过改变主控阀开度来调节执行元件的进油量,称为节流调速。常见的节流调速采用操作手柄(踏板)先导阀输出的二次先导压力来调节主控阀的开度。 除了节流调速,还有其他多种阀控方式来调节执行元件的进油量,例如:在不同作业模式下,利用外部指令对双泵合流与分流的控制;动臂再生控制与斗杆再生控制;直线行走控制;复合作业时的动臂优先控制或回转优先控制等等。 容积调速的传动效率高,但是动特性差。节流调速动特性好,但是传动效率低。因此,在液压挖掘机上同时采用了容积调速与节流调节,以适应作业中执行元件对流量的需求。不唯如此,为实现节能,还要使容积调速时对主泵的控制与节流调速时对主控阀的控制协调起来,泵控对阀控实时响应。就是说,当主控阀的节流开度关小时,主泵的排量也要立即关小,反之亦然。这种按需供油的泵阀联合控制被称为流量控制。 在液压挖掘机上,采用了三种流量控制方式:旁通流量控制、先导传感控制及负荷传感控制。表1列出了部分厂牌机型采用的流量控制方式。

交换机流量控制原理

交换机流控机制 网络拥塞一般是由于速率不匹配(如100M向10M端口发送数据)和突发的集中传输而产生的,它可能导致这几种情况:延时增加、丢包、重传增加,网络资源不能有效利用。 IEEE 802.3x规定了一种64字节的“PAUSE”MAC控制帧的格式。当端口发生阻塞时,交换机向信息源发送“PAUSE”帧,告诉信息源暂停一段时间再发送信息。在实际的网络中,尤其是一般局域网,产生网络拥塞的情况极少,所以有的厂家的交换机并不支持流量控制。高性能的交换机应支持半双工方式下的反向压力和全双工的IEEE802.3x流控。有的交换机的流量控制将阻塞整个LAN的输入,降低整个LAN的性能;高性能的交换机采用的策略是仅仅阻塞向交换机拥塞端口输入帧的端口,保证其他端口用户的正常工作。 后退压力算法(backpressure) 桥接式或交换式半双工以太网利用CSMA/CD机制处理速度不同的站之间的传输问题,它采用一种所谓的“后退压力(backpressure)”概念。例如,如果一台高速100Mbps服务器通过交换机将数据发送给一个10Mbps的客户机,该交换机将尽可能多地缓冲其帧,一旦交换机的缓冲区即将装满,它就通知服务器暂停发送。 有两种方法可以达到这一目的:交换机可以强行制造一次与服务器的冲突,使得服务器退避;或者,交换机通过插入一次“载波检测”使得服务器的端口保持繁忙,这样就能使服务器感觉到交换机要发送数据一样。利用这两种方法,服务器都会在一段时间内暂停发送,从而允许交换机去处理积聚在它的缓冲区中的数据 IEEE802.3x -发送PAUSE帧 在全双工环境中,服务器和交换机之间的连接是一个无碰撞的发送和接收通道。由于没有碰撞检测,且不允许交换机通过产生一次冲突而使得服务器停止发送,那么服务器将一直发送到交换机的帧缓冲器溢出。因此,IEEE制定了一个组合的全双工流量控制标准802.3x。IEEE802.3x标准定义了一种新方法,在全双工环境中去实现流量控制。交换机产生一个PAUSE 帧,PAUSE帧使用一个保留的组播地址:01-80-C2-00-00-01,将它发送给正在发送的站,发送站接收到该帧后,就会暂停或停止发送。 PAUSE帧利用了一个保留的组播地址,它不会被网桥和交换机所转发,这样,PAUSE帧不会产生附加信息量。 IEEE802.3X定义了一种64字节的暂停帧,当端口阻塞时,交换机将会发送一个暂停帧告诉对方,现在繁忙。暂停一段时间在发送。 在实际的网络中,因为出现端口阻塞的情况很少,所以一般厂家的交换机都不匹配该功能。高性能的交换机应该支持退后压力和IEEE802.3x流控。普通交换机的流量控制将会阻塞整个LAN的输入,而高性能交换机仅阻止一个端口的输入。半双工的交换机或者桥都采用1种方式来避免阻塞,一种是后退压力。

基于单片机的流量控制系统设计

过程控制系统 课程设计 设计题目:基于单片机的流量控制系统设计 学生姓名: 专业:测控技术与仪器 班级学号: 指导教师 设计时间:

《过程控制系统》课程设计任务书 专业测控技术与仪器班级姓名 设计题目:基于单片机的流量控制系统设计 一、设计实验条件 过程控制系统实验室实验系统 二、设计任务 1、设计电磁流量计为流量传感器,单片机为核心流量控制系统。系统主要由水泵、水泵电机、流量传感器、电动阀门、阀门电机、单片机控制系统等组成。 2、写出流量控制过程,绘制控制系统组成框图 3、利用单片机对流量进行控制 (1)系统硬件电路设计 单片机采用89S52;设计键盘及显示电路,电机控制电路(可控硅,光电耦合器)。(2)编制流量控制程序 三、设计说明书的内容 1、设计题目与设计任务(设计任务书) 2、前言(绪论)(设计的目的、意义等) 3、主体设计部分 4、参考文献 5、结束语 四、设计时间与设计时间安排 1、设计时间: 2 周 2、设计时间安排: 熟悉实验设备、实验、收集资料:4天 设计计算、绘制技术图纸:4天 编写课程设计说明书:5天 答辩:1天

一,流量控制系统设计意义 工业生产中过程控制是流量测量与仪表应用的一大领域,流量与温度、压力和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。流量的检测和控制在化工、能源电力、冶金、石油等领域应用广泛。【1】 在天然气工业蓬勃发展的现在,天然气的计量引起了人们的特别关注,因为在天然气的采集、处理、储存、运输和分配过程中,需要数以百万计的流量计,其中有些流量计涉及到的结算金额数字巨大,对测量和控制准确度和可靠性要求特别高。此外,在环境保护领域,流量测量仪表也扮演着重要角色。人们为了控制大气污染,必须对污染大气的烟气以及其他温室气体排放量进行监测;废液和污水的排放,使地表水源和地下水源受到污染,人们必须对废液和污水进行处理,对排放量进行控制。于是数以百万计的烟气排放点和污水排放口都成了流量测量对象。同时在科学试验领域,需要大量的流量控制系统进行仿真与试验。流量计在现代农业、水利建设、生物工程、管道输送、航天航空、军事领域等也都有广泛的应用。 二,系统方案 1、方案整体思路 液体流量控制通常采用电动调节阀实现,近年来,电动调节阀的结构和控制方式发生了很大的变化,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控制的开关功率元件进行脉宽调制(pulse width modulation ,简称PWM)控制方式得到了广泛的应用。这种控制方式很容易在单片机中实现,从而为电动调节阀的控制数字化提供了基础。将偏差的比例(proportion)、积分(integral)、微分(differential)通过线性组合构成数字控制量,构成数字PID控制器,它具有非常强的灵活性,可以根据试验和经验在线调整参数,因此可以得到更好的控制性能。 本系统采用C51系列的89S52单片机为核心,通过设置89S52单片机的定时器产生脉宽可调的PWM波【2】,对阀门电机的输入电压进行调制,实现阀门开度的变化,进而实现了对液体流量的控制。单片机通过电磁流量计采集实际流量信号,根据该信号对其内部采用数字PID算法对PWM变量的值进行修改,从而达到对流量的闭环精确控制。 2、实现流程 流量控制系统是一个过程控制系统,在设计的过程中,必须明确它的组成部分。过程控制系统的组成部分有:控制器、执行器、被控对象和测量变送单元,其框图如图1所示。 直流电机PID控制阀门 设定值流量输出

ABR流量控制技术

第27卷第8期 Iio1.27 他8 计算机工程 Computer Engineering 2001年8月 August 2001 ·基金项目论文·文童编号:lflllD 3428 001 8—0蚪7—03 文献标识码:A 中图分类号:TP393 面向拥塞控制的显式速率流量控制机制 孔竞飞,吴介一,张孝林 (东南大学CINIS叶『心南京210096) 播要:研究和分析了基于速率的流量控制模型.针对已有屁式速率(EPRCA)机制存在的不是,提出了一种新的控制机 ~']eRFCM 通过广域 NWAN和局域网LAN中的仿真研究表明,在反映控制机制性能的瓣时参数振荡性和栩制的鲁棒性方面,EP~Cbl要优于EPRCA。 关键词:ATM网络;拥塞控制;流量控制 An Explicit Rate Flow C0ntr0l M echanism for Congestion Control K0NG JJngfel, WU Jieyi.蜀[王^NGXiaolin (cI s Ce~er ofSouthe~tUniversi ,Naniing 21 0096)

l Abstract】In this paper,a rat~based 11o~,contmI model is s d attd a n w mech~aism ERFCM is put lbrward for insuf1%iencs,of the emsting mechanisnls gueh EPRCA.Underthe staroundings ofW AN and LAX,"simuIatiotls sh w that p -0rman。亡ofERFCM a /i advantage ol&?r one of EPRCA attwo points ofo i】I ofI and robtLsti~itv 【K w0rds】ATM network,r,c ofI Unn control; F1ow control 在局域网LAN和广域网w 环境中,ATM (异步传输 模式)都是一个重要的协议,在变化着的阿络基本结构中,它将起到一个主要的作用。在相同的物理阿络中,它支持多种业务类型和比特率j这些业务具有不同的服务质量(QoS] 需求,如信元传输延迟(CTD)、延迟变化(cDV)班及信元丢 失率(CLR)等。然而,在未来的高速多媒体通信环境中,并不清楚哪种类型的服务和应用会占主导地位。因此,对于将来的多媒体服务,作为基础结构~gATM网络应能适应于不 同的通信比特率、服务种类、通信模式等对此,ATM论 坛业务量(truffic)管理规范4 1[1。定义了5种服务类型:常比特 速率(CB R]服务、可变比特速率[VBR)服务、可用比特速率(ABR)服务、未指定比特速率CUBR)服务和受保证帧速率

泵流量控制方法

离心泵流量控制方法探讨 泵的流量调节方法一览表 本文详细介绍了泵(离心泵、往复泵)的流量调节方法,如改变泵的装置特性曲线(如可以进行出口阀调节、旁路调节、转速调节、切割叶轮外径、更换叶轮、堵死几个叶轮流道等)、改变泵的特性曲线,并对每种调节方法进行了阐述及对其使用的特点进行了分析。 具体的泵的流量调节方法见下表1——1。

表1——1 泵的流量调节方法

请问泵的流量是怎么调节的 请问高速泵的流量是怎么调节的我发现泵的额定流量比如为10m3,最小稳定流量为2m3,比如我现在后面装置需要6m3的量,这个时候是通过出口阀门调节呢还是打10m3走4m3的旁路阿谢谢各位!!

还有些疑问:1、旁路怎么防止泵产生憋压不是很明白---我现在设置的是泵流量达到泵厂家要求的最小稳定流量的时候旁路阀门才打开,平时是关着的! 2、现在一家国外的泵厂家返回的资料是这样子的,我要求的是2.61m3,可是他给我的泵却是4.5M3的,而他的最小稳定流量竟然在2.3m3,那我平常不是只能在最小流量线附近操作了这样子对高速泵肯定不好,现在泵厂家要求平常一直开旁路,让我很郁闷 3、我想的是一旦泵流量到达最小稳定流量,泵就有两个去向,可是我怎么知道这两条线的各自流量,因为我要保证我后续设备的物料量啊,不能全被打回流阿!! 4、还有就是泵出口关闭压力怎么确定阿 5、我们计算泵的H的时候,给出了HA,厂家给的HR,指的是水那转化成介质是不是也应该乘密度 请各位说的仔细一点,我对这个不是很清楚呢 ]lexuan_0211 发表于2008-6-13 13:44 一般来说,通过阀门调节能够达到效果。 lz需要的量在此泵的流量范围内,没有问题。llttjj2850 发表于2008-6-13 13:45 通过出口调节阀来控制流量,走旁路只是改变管径,并没有改变流量,只是增加了管道阻力和流速。 如果有变频器可以调节频率,也可调节流量。rongyang504 发表于2008-6-13 14:05 我的泵不是变频的,变频的用的很平常吗我觉得变频的机泵一般用在重要的地方! 还有一个问题,就是当泵流量接近最小稳定流量的时候,泵的最小回流线就打开,可是我就不知道当最小回流线打开以后,这两条管线的流量分配会怎么样啊smilezcx 发表于2008-6-13 15:32 通过出口阀调节。只有达不到最小流量时才走旁路,以防止憋泵bo lxg 发表于2008-6-13 16:00 当然是出口调节阀调节了! 听你的描述旁路线应该是回流线,是提供最小回流用的!pengineer 发表于2008-6-13 19:05 从你提供的泵应该是离心泵,可以直接在出口用阀门调节,如果要求较高,可以采用流量控制,如果要求不严格,直接用截止阀调节即可。w xrbob 发表于2008-6-14 07:57 只要在泵的调节范围内,还是使用节流阀较好。wing 发表于2008-6-14 08:22

单闭环流量定值控制系统样本

第二节单闭环流量定值控制系统 一.实验目的: 1.了解单闭环流量控制系统的结构组成与原理。 2.掌握单闭环流量控制系统调节器参数的整定方法。 3.研究P、 PI、 PD和PID四种控制分别对流量系统的控制作用。 二.实验原理: 离心泵恒流量控制系统图如图5.3-1所示, 控制系统方框图如图5.3-2所示。 图5.3-1 离心泵恒流量控制系统图 图5.3-2 离心泵恒流量控制系统方框图 离心泵恒流量控制系统为单回路简单控制系统, 安装在离心泵出口管路上涡轮流量传感器TT将离心泵出口流量转换成脉冲信号, 其脉冲频率经频率/电压转换器转换成电压信号后输出至流量调节器TC, TC将流量信号与流量给定值比较后, 按PID调节规律输出4—20mA信号, 驱动电动调节阀改变调节阀的开度, 达到恒定离心泵出口流量的目的。离心泵恒流量控制系统方框图如图十三所示。 控制参数如下: 1.控变量y: 离心泵出口流量Q。 2.定值(或设定值)ys: 对应于被控变量所需保持的工艺参数值 3.测量值ym: 由传感器检测到的被控变量的实际值 4.操纵变量(或控制变量): 实现控制作用的变量, 在本实验中为离心泵出口流

量。使用电动调节阀作为执行器对离心泵出口流量进行控制。电动调节阀的输入信号范围: 4—20mA 。 5.干扰(或外界扰动)f: 干扰来自于外界因素, 将引起被控变量偏离给定值。在 本实验中采用突然改变离心泵转速的方法, 改变离心泵出口压力, 人为模拟外界扰动给控制变量造成干扰。 6.偏差信号e:被控变量的实际值与给定值之差, e=ys-ym 。 ym---离心泵出口流量值Q 。 ys---离心泵出口流量设定值。 7.控制信号u: 工业调节器将偏差按一定规律计算得到的量。 离心泵恒流量控制系统采用比例积分微分控制规律(PID)对离心泵流量进行控制。比例积分微分控制规律是比例、 积分与微分三种控制规律的组合, 理想的PID 调节规律的数学表示式为: 01()()()()t P D I de t u t K e t e t dt T T dt ???=++??? ?? 三.实验方法: 1.向V103中注入2/3以上清水 2.打开设备总电源, 检查各仪表, 执行器是否正常 3.打开阀门VA110或VA111, A112, A117, 其余阀门关闭 4.松动离心泵放气螺丝, 直到有水流出, 拧紧螺丝 5.将离心泵出口压力测量表( PI-03) 设为手动输出且输出值为100, 变频 器的频率即设为50.00Hz 6.打开实验软件, 进入流量曲线界面点击菜单栏中的”曲线 流量控制曲线” 开始记录液位变化 7.将流量测量表( FI-01) 设为自动输出且SV 值为4.00, P=3, I=5, D=1.5 FILE=5 8.打开立式离心泵向观察曲线变化情况, 待流量稳定后, 点击菜单栏中的”

流量控制解决方案

Hillstone QoS流量控制解决方案 QoS介绍 QoS(Quality of Service)即“服务质量”。它是指网络为特定流量提供更高优先服务的同时控制抖动和延迟的能力,并且能够降低数据传输丢包率。当网络过载或拥塞时,QoS 能够确保重要业务流量的正常传输。 QoS的实现 通常来讲,实现QoS管理功能的工具包括: ?分类和标记工具 ?管制和整形工具 ?拥塞管理工具 ?拥塞避免工具 图22-1描绘了QoS的体系结构。 图22-1:QoS体系结构 如图22-1所示,数据包通过入接口进入系统后,首先会被分类和标记。在这一过程中,系统会通过管制机制丢弃一些数据包。然后,根据标记结果,数据包会被再次分类。系统会通过拥塞管理(Congection Management)机制和拥塞避免(Congection Avoidence)机制对数据包进行管理,为数据包排列优先次序并且在发生拥塞时保证高优先级数据包的顺利通过。最后,系统会将经过QoS管理的数据

包通过出接口发送出去。 分类和标记 分类和标记的过程就是识别出需进行不同处理(优先或者区分)的流量的过程。 分类和标记是执行QoS管理的第一步。分类和标记应该在和源主机尽量接近的地方进行。 分类 通常来讲,分类工具依据封装报文的头部信息对流量进行分类。为做出分类决定,分类工具需要对头部信息进行逐层深入检查。图22-2显示出头部信息的分类字段,而表22-1列出不同字段的分类标准。 图22-2:分类字段 表22-1:分类标准

标记 可携带标记的字段如下: ?第2层标记字段:802.1Q/p。 ?第3层标记字段:IP优先权和DSCP。 802.1Q/p 通过设置802.1Q头的802.1p用户优先级位(CoS)来标记以太网帧。在以太网第2层以太网帧中至于8种服务类别(0到7)可以标记。数值的分配请参阅表22-2。 表22-2:应用类型值 IP优先权和DSCP IP优先权与CoS相同,有8种服务(0到7)可以标记,请参考表22-2。 DSCP(DiffServ Code Point)是区分服务代码点。DSCP提供6位字段用于QoS标记,这6位字段是与IP优先权相同的3位,再加上接下来的ToS字段的3位。因此,DSCP值的范围是0到63。图22-3为DSCP和IP优先权位示意图。 图22-3为DSCP和IP优先权位示意图 DSCP值有两种表达方法,数字形式和关键字形式。关键字形式的DSCP值称为逐跳行为(PHB)。目前有三类已定义的PHB,分别是尽力服务(BE或者DSCP 0)、

流量控制方式

流量控制方式 在挖掘机的液压系统内,流量Q、压力P及能耗(流量损失ΔQ、压力损失ΔP)等参数的变化,反映了液压传动过程的控制特性。液压系统工作时,压力P不是系统的固有参数,而是由外负荷决定的。 因此,当发动机转速ne一定时,要对液压系统的功率进行调节,其实是对液压缸、液压马达等执行元件的进油量Qa进行调节 有两种方法调节系统流量。第一种方法是泵控方式,通过改变主泵的每转排量q来调节主泵的输出流量Qp,称为容积调速。 除了容积调速,还有一种泵控方式是通过动力模式下的变功率控制,利用外部指令设定不同工况下不同的发动机输出功率来改变主泵转速ne,从而调节主泵输出流量Q=nq。 调节系统流量的第二种方法是阀控方式,可对主泵输出的流量进行二次调节。这种通过改变主控阀开度来调节执行元件的进油量,称为节流调速。常见的节流调速采用操作手柄(踏板)先导阀输出的二次先导压力来调节主控阀的开度。 一.旁通流量控制 典型的旁通流量控制如图3所示。要实现旁通流量控制,液压系统在结构上应同时具备以下三个条件:①主控阀为中位开路的三位六通阀,主控阀的各叠加阀的进油路为串并联;②在主控阀中位旁通回油路的底端设置有节流元件,同时并联有低压溢流阀。在节流元件进油口设置取压口,提取该点压力,作为流量控制的信号压力Pi。用于旁通流量控制的主控阀有如川崎的KMX系列控制阀、东芝的DX22/28型和UDX36

型控制阀;③主泵的控制特性一般应为负流量控制(日立EX—5系列除外),即主泵的流量变化ΔQP与信号压力的变化ΔPi成反比,而且主泵的负流量控制阀(NC阀)在主泵调节器上的位置,应确保恒扭矩控制(TVC)优先。用于旁通流量控制的主泵有如川崎的K3V和K5V系列柱塞泵。 2.1 旁通流量控制的原理如图3所示,旁路节流阀的节流口前后压差ΔP=Pi=QR2/KA 式中Pi—回油节流口前的压力。略去回油的背压时,ΔP=Pi。QR —主控阀中位回油流量(m3 /s)。A—回油节流口通流面积(m2 ). K—常数,与节流口的收缩系数、速度系数、油液重度等有关,K由实验决定。对于具体的回油节流阀结构,A、K为一定数,旁通流量QR与Pi的关系如图4第四象限所示:QR越大,Pi越大,QR与Pi呈抛物线的函数关系。 当主控阀各阀芯均处于中位时,QR最大,控制压力Pi也最大,其值由旁路溢流阀调定(参看图3),此时主泵流量QP最小为Qpo,如图4第一象限所示。以装用川崎精机KMX15R主阀的系统为例,旁通流量QR 最大为30L/min,此时旁通溢流阀开启,控制压力Pi达到最大值3.5MPa。当主控阀的阀芯开度达到执行元件进油量QA与主泵供油量QP相等时,中位旁通回油流量QR接近于0,控制压力Pi变得很小,主泵流量QP已调到最大,如图4第二象限所示。主控阀芯行程改变时,控制压力Pi随动变化,执行元件的进油量

深信服流量控制功能说明

流量控制技术说明 1.带宽管理 1.1流量可视化 带宽有限,应用无限——组织不断地扩展互联网出口带宽,但仍然感觉不充裕,一旦内网存在网络行为不规范、滥用带宽资源的用户,IT管理员的工作就会饱受抱怨:网络太慢、业务系统访问迟缓、页面迟迟打不开、邮件发送缓慢等。 对此,AC为IT管理员提供了网络流量可视化方案,登陆AC控制台后,管理员可以查看出口流量曲线图、当前流量TOP N应用、用户流量排名、当前网络异常状况(包括DOS 攻击、ARP欺骗等)等信息,直观了解当前网络运行状况。 此外,数据中心(Network Database Center,NDC)对内网用户的各种网络行为流量进行记录、审计,借助图形化报表直观显示统计结果等,帮助管理员了解流量TOP N用户、TOP N应用等,并自动形成报表文档,定时发送到指定邮箱,让IT管理员轻松掌控用户网络行为分布和带宽资源使用等情况,了解流控策略效果,为带宽管理的决策提供准确依据。 如果您是一位大型机构的CIO或CEO,您需要面对的问题将远不止这些,而AC数据中心的功能需要您亲身体验和掌握。当您面对数据中心的Web页面,通过几次鼠标点击就发现网络及管理中存在的问题时,您将感受到领先技术带来的极富乐趣的用户体验。 1.2流量管理 当您了解了带宽的使用情况,并对带宽进行优化和分配后,我们即将对用户(组)的上网行为做进一步的管理和控制。 1.2.1多线路复用和智能选路 很多组织拥有电信、网通等两条以上互联网出口链路,如何同时复用多条链路并做到流量的负载均衡与智能分担?通过AC特有的多线路复用及带宽叠加技术,AC复用多条链路形成一条互联网总出口,提升整体带宽水平。再结合多线路智能选路专利技术(专利号:ZL200610061591.9),AC将出网流量自动匹配最佳出口。

正流量和负流量液压控制系统解读

正流量和负流量液压控制系统 在我们常见的挖掘机中,除了小松使用LS控制外,大部分都使用负流量控制。近年来有部分的公司推出正流量控制,并且如此这般地说正流量有诸多好处,那么正流量真的有那么神吗? 挖掘机上为了更有效地利用发动机的功率通常都采用恒功率变量泵,所谓的恒功率变量泵通俗一点说就是泵的压力与泵的流量的乘积是一个常数,如果这个数值大于发动机的功率时就会出现我们常说的憋车。所以每个设计者就其设计思想来说,都必须是使整个液压系统的功率无限接近发动机的功率而又绝对不能大于发动机的功率。 挖掘机的恒功率控制 在挖掘机的恒功率控制上分为两个部分:一是泵内部的功率控制:他是根据本泵的输出压力和他泵(另一个泵)的输出压力对泵的排量进行的控制,当压力升高时,泵的排量随之减小;当压力降低时,泵的排量随之增大;如果系统的压力低于先导压力时则引入先导压力对其排量进行控制.无论是对于正流量还是负流量,就此一部分而言,不管是从理论上还是从结构上都没有什么不同,也就是说在此部分没有什么正流量和负流量之分.这是液压泵恒功率控制的主体,在此不作讨论.二是外部信号对泵的功率的控制:这里说的外部信号是指先导操作系统,主压力系统,发动机系统等等等等一切与泵的功率控制有关的信息的综合.在负流量中是负压信号和其它信号的综合,在正流量中是正压信号和其它信号的综合.这两个其它信号也没有什么不同,关键就在于负压信号和正压信号的区别. 我们知道,在挖掘机上,各执行元件的速度会随操作手柄的行程的变化而变化,液压系统会根据这种变化对其排量进行控制,负流量和正流量的区别就在于这种变化的信号采集位置的不同. 什么是负流量控制系统? 手柄行程越大,对应的二次先导压力也会越大,由二次先导压力控制的主阀芯的开启度也会越大, 与之对应, 主阀芯的开启度越大,主油路分向执行元件的油越多,执行元件的速度就会越快,通过中位流经负压信号发生装置的油越少,负压信号的压力值就会越小;反之如果手柄行程越小,对应的二次先导压力也会越小,由二次先导压力控制的主阀芯的开启度也会越小, 与之对应, 主阀芯的开启度越小,主油路分向执行元件的油越少,执行元件的速度就会越慢, 通过中位流经负压信号发生装置的油就越多,负压信号的压力值就会越大.液压泵根据负压信号的压力值的大小来对其排量进行控制.这就是负流量控制.他的信号采集点是主油路中主控制阀的出口处 什么是正流量控制系统? 正流量控制系统,是力士乐上世纪80年代的技术,主要特点是:操纵手柄的先导压力不仅控制换向阀,还用来调节油泵的排量。执行元件不工作的时候,油泵上没有先导压力,斜盘摆角最小,油泵只输出少量的备用流量。操纵先导手柄,则液压先导回路中建立起与手柄偏转量成比例的压力来控制换向阀阀芯的位移和泵的排量。油泵的流量和由此产生的执行元件的工作速度与先导压力-控制压力成正比例。在正流量的主控制阀上没有负压信号发生装置,他的信号采集于二次先导.其它部分与负流量没有什么区别. 与负流量相比正流量为什么操作敏感性好? 由于负压控制的信号采集点在主挖掘阀的出口处,只有主控制阀有动作时此负压信号才会发生变化,从而使泵的排量发生变化,这就使得液压泵的控制永远滞后于主控制阀的控制. 而在正流量中,由于泵的控制信号采集于二次先导压力,此压力信号同时发送液压泵和主控制阀,这就是使的两者的动作可以同步进行.这就是“与负流量相比正流量操作敏感性好”的主要原因. 与负流量相比正流量为什么节油?

压差式流量控制原理

AISE--PFS系列压差开关是AISE公司长期从事中央空调研发和工程施工的技术人员洞悉目前HVAC水系统流量控制产品的诸多弊端而开发的,它是AISE公司整套HVAC水流量控制产品的一个重要系列,它具有紧凑的外形、卓越的性能和具竞争性的价格是取代任何形式的靶式流量开关的最佳选择。 压差式流量控制原理 对于水流量的测量,可通过测量阀门、孔板等两端的压降,再通过查阀门或孔板的压降和流量曲线即可得到准确的流量,通过压降的方法得到流量目前已广泛用在HVAC的水侧系统及流量测量仪表。压差开关在HVAC系统中的应用主要是根据HVAC设备的阻力与流量曲线进行控制的,HVAC中的水侧换热器(套管式、壳管式、管板式和常用的板式换热器)、水过滤器、阀门和水泵等都有其压降与流量的性能曲线,只要将压差开关两侧的测量压差与预先设定值进行比较,就可以准确控制流量。压差开关用作HVAC中的流量控制具有流量控制准确,对水系统不再额外增加阻力,又对水管管径没有要求以及无水流扰动干扰等特性,可取代任何形式的靶式流量开关作为HVAC水系统的流量控制,相对于靶式流量开关它可以避免水泵气蚀引起的假流量,又有非常准确的复位流量和断开流量,因而可广泛应用在使用板式换热器、套管式换热器和壳管式换热器的大中小型风冷或水冷冷水机组中作水流量控制及水泵和水过滤器状态的监控。 产品特性 ?外壳防护等级:IP54 ?最大允许静压:10bar ?保存温度:-29~82℃ ?最大允许压差:5bar ?使用环境温度:-20~71℃ ?设定点重复性偏差:±1% ?使用介质温度:-20~93℃ ?电缆细节:105℃阻燃护套线2×0.75mm2,3×0.75mm2 ?输出形式:10A;125/250VAC; ?工作介质:水和空气(其它介质请在订货时说明) ?高低压侧连接口:1/4〞 SAE(7/16〞-20UNF),1/4〞NPT等可选 外形尺寸图

智能化流量控制系统设计要点

东北大学秦皇岛分校控制工程学院《过程控制系统》课程设计 设计题目:智能化流量控制系统设计 学专生:业: 班级学号: 指导教师: 设计时间:2013.7.1-2013.7.6

目录 一. 设计任务 (3) 二.前言 (3) 四.系统硬件设计 (5) 4.1设备的选型 (5) 4.1.1 控制器的选型 (5) 4.1.2 变频器的选型 (6) 4.1.3 流量传感器变送器的选型 (6) 4.2 硬件电路 (7) 五.软件设计 (8) 5.1控制规律的选择 (8) 5.2 MATLAB 仿真 (8) 5.2.1 传递函数的确定 (8) 5.2.2 5.2.3采用数字PID控制的系统框图 (9) 基于临界比例度法的PID参数整定 (9) 5.3 程序编写 (12) 六.结束语 (16) 七.参考文献 (17) 附页.Matlab 仿真程序及原始图表 (17)

一. 设计任务 1、系统构成:系统主要由流量传感器,PLC控制系统、对象、执行器(查找资料自己选 择)等组成。传感器、对象、控制器、执行器可查找资料自行选择,控制器选择PLC 为控制器。PLC类型自选。 2、写出流量测量与控制过程,绘制流量控制系统组成框图。 3、系统硬件电路设计自选。 4、编制流量测量控制程序:软件采用模块化程序结构设计,由流量采集程序、流量校准程序、流量控制程序等部分组成 二.前言 本课程设计来源于工业工程中对于流量的监测和控制过程,其目的是利用PLC来实现过程自动控制。目前,PLC使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制,应用领域极为广泛,涉及到所有与自动检测、自动化控制有关的工业及民用领域。PLC 通过模拟量I/O 模块和A/D、D/A 模块实现模拟量与数字量之间的转换,并对模拟量进行闭环控制。 三.系统控制方案设计 图3.1 控制系统工艺流程图

相关主题