搜档网
当前位置:搜档网 › MATLAB非线性最小二乘lsqnonlin和lsqcurvefit的使用

MATLAB非线性最小二乘lsqnonlin和lsqcurvefit的使用

MATLAB非线性最小二乘lsqnonlin和lsqcurvefit的使用
MATLAB非线性最小二乘lsqnonlin和lsqcurvefit的使用

MA TLAB非线性最小二乘lsqnonlin和lsqcurvefit的使用

2010-07-29 08:51

临时用到了,从网上找到了简明的说明。函数要写在M文件中。

感谢网友闪电小鬼

还有另外一篇,包括非线性最小二乘拟合函数:

min

s.t. v 1x v2

求解程序名为lsqnonlin,其最简单的调用格式为:

x=lsqnonlin(@F,x0, v1,v2)

其最复杂的调用格式为:

[x,norm,res,ef,out,lam,jac] = lsqnonlin(@F,x0,v1,v2,opt,P1,P2, ... ) l 非线性拟合问题

min

s.t. v1x v2

求解程序名为lsqcurvefit,其最简单的调用格式为:

x=lsqcurvefit(@F, x0,t,y,v1,v2)

其最复杂的调用格式为:

[x,norm,res,ef,out,lam,jac] =

lsqcurvefit(@F,x0,t,y,v1,v2,opt,P1,P2,...)

输出参数输入参数注意事项

2.3.1 程序lsqnonlin和lsqcurvefit的输出参数

其中输出变量的含义为:

1) x :最优解

2) norm :误差的平方和

3)res: 误差向量

4) ef :程序结束时的状态指示:

· >0:收敛

· 0:函数调用次数或迭代次数达到最大值(该值在options中指定)

· <0:不收敛

5) out: 包含以下数据的一个结构变量

· funcCount 函数调用次数

· iterations 实际迭代次数

· cgiterations 实际PCG迭代次数(大规模计算用)

· algorithm 实际使用的算法

· stepsize 最后迭代步长(中等规模计算用)

· firstorderopt 一阶最优条件满足的情况(大规模计算用)

6) lam:上下界所对应的Lagrange乘子

7) jac:结果(x点)处的雅可比矩阵

2.3.2程序lsqnonlin和lsqcurvefit的输入参数

其中输入变量的含义为:

· x0为初始解(缺省时程序自动取x0=0)

· F给出目标函数的M文件,当Jacobian='on时必须给出其Jacobi矩阵,一般形式为:

function [F,J] = Fun(x)(对程序lsqcurvefit为Fun(x,t))

F = ... % objective function values at x

if nargout > 1 % two output arguments

J = ... % Jacobian of the function evaluated at x

end

· t,y: 拟合数据

· v1,v2: 上下界

· options:包含算法控制参数的结构

设定(或显示)控制参数的命令为Optimset,有以下一些用法:

Optimset //显示控制参数

optimset optfun //显示程序'optfun的控制参数

opt=optimset //控制参数设为[](即缺省值

opt=optimset(optfun)// 设定为程序'optfun的控制参数缺省值

Opt=optimset('par1',val1,'par2',val2,...)

Opt=optimset(oldopts,'par1',val1,...)

opt=optimset(oldopts,newopts)

可以设定的参数比较多,对lsqnonlin和lsqcurvefit,常用的有以下一些参数:Diagnostics 是否显示诊断信息( 'on' 或'off)

Display 显示信息的级别('off' , 'iter' , 'final,'notify)LargeScale 是否采用大规模算法( 'on' 或'off)缺省值为on

MaxIter 最大迭代次数

TolFun 函数计算的误差限

TolX 决策变量的误差限

Jacobian 目标函数是否采用分析Jacobi矩阵('on' ,'off)

MaxFunEvals 目标函数最大调用次数

LevenbergMarquardt 搜索方向选用LM法(‘on’), GN法(‘off’,缺省值)

LineSearchType 线搜索方法(‘cubicpoly’,’quadcubic’(缺省值))

2.3.3 注意事项

· fminunc中输出变量、输入参数不一定写全,可以缺省。

·当中间某个输入参数缺省时,需用[]占据其位置。

%编写M文件:文件中的

a(1)=a,a(2)=b,a(3)=c,a( 4)=d

function E=fun(a,x,y) x=x(:);

y=y(:);

Y=a(1)*(1-exp(-a(2)*x)) + a(3)*(exp(a(4)*x)-1);

E=y-Y;

%M文件结束

%用lsqnonlin调用解决: x=[3 4 5 7 9 15];

y=[1 2 4 6 8 10];

a0=[1 1 1 1];

options=optimset('lsqno nlin');

a=lsqnonlin(@fun,a0,[], [],options,x,y)

关于a0,可以通过所知道的几组x和y的值来估算系数a、b、c、d的值,我这里没有估计,直接代入了1。

如果估计的较准确,最小二乘算出的系数更加精确。

lsqnonlin函数采用的是迭代法,a0则是迭代初始值。由于程序的局限性,不可能搜索无穷大的区间,这样一来,初始值的选择就很重要

了。如果最优解离所给初始值比较近,迭代求出该最优解的概率就很高;如果初始值提供的不理想,离最优解较远,而matlab对于迭代次数及迭代精度都有个默认的设定,这种情况下很可能没有搜到最优解便给出了结果,当然这个结果是在所搜索区间上的最优解而不是全局最优的。

至于怎样估计初始值,我也没有肯定的办法,总之通过所知的x和y尽量使初始值接近就好了,毕竟matlab 还是很强大的。

另外一个办法是,得到解后,画出函数的图形,看看那几个点是不是都在曲线附近,如果相差太大,就得考虑重新给初始值再计算一次。

用matlab实现最小二乘递推算法辨识系统参数

用matlab实现最小二乘递推算法辨识系统参 数 自动化系统仿真实验室指导教师: 学生姓名班级计082-2 班学号撰写时间: 全文结束》》-3-1 成绩评定: 一.设计目的 1、学会用Matlab实现最小二乘法辨识系统参数。 2、进一步熟悉Matlab的界面及基本操作; 3、了解并掌握Matlab中一些函数的作用与使用;二.设计要求最小二乘递推算法辨识系统参数,利用matlab编程实现,设初始参数为零。z(k)-1、5*z(k-1)+0、7*z(k-2)=1*u(k-1)+0、5*u(k-2)+v(k); 选择如下形式的辨识模型:z(k)+a1*z(k- 1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k);三.实验程序 m=3;N=100;uk=rand(1,N);for i=1:Nuk(i)=uk(i)*(-1)^(i-1);endyk=zeros(1,N); for k=3:N yk(k)=1、5*yk(k-1)-0、 7*yk(k-2)+uk(k-1)+0、5*uk(k-2); end%j=100;kn=0;%y=yk(m:j);%psi=[yk(m-1:j-1);yk(m-2:j-2);uk(m-1:j-1);uk(m-2:j- 2)];%pn=inv(psi*psi);%theta=(inv(psi*psi)*psi*y);theta=[0 ;0;0;0];pn=10^6*eye(4);for t=3:Nps=([yk(t-1);yk(t-

2);uk(t-1);uk(t-2)]);pn=pn- pn*ps*ps*pn*(inv(1+ps*pn*ps));theta=theta+pn*ps*(yk(t)-ps*theta);thet=theta;a1=thet(1);a2=thet(2);b1=thet(3);b2= thet(4); a1t(t)=a1;a2t(t)=a2;b1t(t)=b1;b2t(t)=b2;endt=1:N;plot(t,a 1t(t),t,a2t(t),t,b1t(t),t,b2t(t));text(20,1、 47,a1);text(20,-0、67,a2);text(20,0、97,b1);text(20,0、47,b2);四.设计实验结果及分析实验结果图:仿真结果表明,大约递推到第步时,参数辨识的结果基本到稳态状态,即a1=1、5999,b1=1,c1=0、5,d1=-0、7。五、设计感受这周的课程设计告一段落了,时间短暂,意义重大。通过这次次练习的机会,重新把matlab课本看了一遍,另外学习了系统辨识的有关内容,收获颇丰。对matlab的使用更加纯熟,也锻炼了自己在课本中搜索信息和知识的能力。在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。同时我也进一步认识了matlab软件强大的功能。在以后的学习和工作中必定有很大的用处。

Matlab最小二乘法拟合笔记

最小二乘法拟合 在科学实验的统计方法研究中,往往要从一组实验数据中寻找出自变量x 和因变量y之间的函数关系y=f(x) 。由于观测数据往往不够准确,因此并 不要求y=f(x)经过所有的点,而只要求在给定点上误差 按照某种标准达到最小,通常采用欧氏范数作为误差量度的标准。这就是所谓的最小二乘法。在MATLAB中实现最小二乘法拟合通常采用polyfit函数进行。 函数polyfit是指用一个多项式函数来对已知数据进行拟合,我们以下列数据为例介绍这个函数的用法: >> x=0:0.1:1; >> y=[ -0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2 ] 为了使用polyfit,首先必须指定我们希望以多少阶多项式对以上数据进行拟合,如果我们指定一阶多项式,结果为线性近似,通常称为线性回归。我们选择二阶多项式进行拟合。 >> P= polyfit (x, y, 2) P= -9.8108 20.1293 -0.0317 函数返回的是一个多项式系数的行向量,写成多项式形式为: 为了比较拟合结果,我们绘制两者的图形: >> xi=linspace (0, 1, 100); %绘图的X-轴数据。 >> Z=polyval (p, xi); %得到多项式在数据点处的值。 当然,我们也可以选择更高幂次的多项式进行拟合,如10阶: >> p=polyfit (x, y, 10); >> xi=linspace (0, 1,100);

>> z=ployval (p, xi); 读者可以上机绘图进行比较,曲线在数据点附近更加接近数据点的测量值了,但从整体上来说,曲线波动比较大,并不一定适合实际使用的需要,所以在进行高阶曲线拟合时,“越高越好”的观点不一定对的。

matlab最小二乘法的非线性参数拟合

matlab最小二乘法的非线性参数拟合 首先说一下匿名函数:在创建匿名函数时,Matlab记录了关于函数的信息,当使用句柄调用该函数的时候,Matlab不再进行搜索,而是立即执行该函数,极大提高了效率。所以首选匿名函数。具体拟合时可以使用的方法如下: 1 曲线拟合工具箱提供了很多拟合函数,使用简单 非线性拟合nlinfit函数 clear all; x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]'; x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]'; x=[x1 x2]; y=[0.517 0.509 0.44 0.466 0.479 0.309]'; f=@(p,x) 2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^ (-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5).*x(:,2); p0=[8 0.5]'; opt=optimset('TolFun',1e-3,'TolX',1e-3);% [p R]=nlinfit(x,y,f,p0,opt) 2 最小二乘法在曲线拟合中比较普遍。拟合的模型主要有 1.直线型 2.多项式型 3.分数函数型 4.指数函数型 5.对数线性型 6.高斯函数型 一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。 “\”命令 1.假设要拟合的多项式是:y=a+b*x+c*x^ 2.首先建立设计矩阵X: X=[ones(size(x)) x x^2]; 执行: para=X\y para中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这种方法对于系数是线性的模型也适应。 2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为 X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y 3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等! para=X\y

非线性最小二乘法

非线性最小二乘法 编辑词条分享 ?新知社新浪微博腾讯微博人人网QQ空间网易微博开心001天涯飞信空间MSN移动说客 非线性最小二乘法 非线性最小二乘法是以误差的平方和最小为准则来估计非线性静态模型参数的一种参数估 计方法。 编辑摘要 目录 1 简介 2 推导 3 配图 4 相关连接 非线性最小二乘法 - 简介 以误差的平方和最小为准则来估计非线性静态模型参数的一种参数估计方法。设非线性系统的模型为y=f(x,θ) 式中y是系统的输出,x是输入,θ是参数(它们可以是向量)。这里的非线性是指对参数θ的非线性模型,不包括输入输出变量随时间的变化关系。在估 计参数时模型的形式f是已知的,经过N次实验取得数据(x1,y1),(x2,y1), ,(xn,yn)。估计参数的准则(或称目标函数)选为模型的误差平方和非线性最小二乘法就是求使Q达到极小的参数估计值孌。 推导 非线性最小二乘法 - 推导 以误差的平方和最小为准则来估计非线性静态模型参数的一种参数估计方法。设非线 性系统的模型为 y=f(x,θ) 式中y是系统的输出,x是输入,θ是参数(它们可以是向量)。这里的非线性是指对参数θ的非线性模型,不包括输入输出变量随时间的变化关系。在估计参数时模型的形式f是已知的,经过N次实验取得数据(x1,y1),(x2,y1), ,(x n,y n)。估计参数的准则(或称目标函数)选为模型的误差平方和

非线性最小二乘法就是求使Q达到极小的参数估计值孌。 由于f的非线性,所以不能象线性最小二乘法那样用求多元函数极值的办法来得到参 数估计值,而需要采用复杂的优化算法来求解。常用的算法有两类,一类是搜索算法,另 一类是迭代算法。 搜索算法的思路是:按一定的规则选择若干组参数值,分别计算它们的目标函数值并 比较大小;选出使目标函数值最小的参数值,同时舍弃其他的参数值;然后按规则补充新 的参数值,再与原来留下的参数值进行比较,选出使目标函数达到最小的参数值。如此继 续进行,直到选不出更好的参数值为止。以不同的规则选择参数值,即可构成不同的搜索 算法。常用的方法有单纯形搜索法、复合形搜索法、随机搜索法等。 迭代算法是从参数的某一初始猜测值θ(0)出发,然后产生一系列的参数点θ(1)、θ(2) ,如果这个参数序列收敛到使目标函数极小的参数点孌,那么对充分大的N就可用θ(N)作为孌。迭代算法的一般步骤是: ① 给出初始猜测值θ(0),并置迭代步数i=1。 ② 确定一个向量v(i)作为第i步的迭代方向。 ③ 用寻优的方法决定一个标量步长ρ(i),使得 Q(θ(i))=Q(θ(i)),其中θ(i)=θi-1+ρ(i)v(i)。 ④ 检查停机规则是否满足,如果不满足,则将i加1再从②开始重复;如果满足,则 取θ(i)为孌。 典型的迭代算法有牛顿-拉夫森法、高斯迭代算法、麦夸特算法、变尺度法等。 非线性最小二乘法除可直接用于估计静态非线性模型的参数外,在时间序列建模、连 续动态模型的参数估计中,也往往遇到求解非线性最小二乘问题。 非线性最小二乘法 - 配图 非线性最小二乘法

matlab 最小二乘最优问题

最小二乘最优问题(转) 默认分类2009-05-21 14:56:33 阅读62 评论1 字号:大中小 1.约束线性最小二乘 有约束线性最小二乘的标准形式为 sub.to 其中:C、A、Aeq 为矩阵;d、b、beq、lb、ub、x 是向量。 在MA TLAB5.x 中,约束线性最小二乘用函数conls 求解。 函数lsqlin 格式x = lsqlin(C,d,A,b) %求在约束条件下,方程Cx = d 的最小二乘解x。 x = lsqlin(C,d,A,b,Aeq,beq) %Aeq、beq 满足等式约束,若没有不等式约束,则设A=[ ],b=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) %lb、ub 满足,若没有等式约束,则Aeq=[ ],beq=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) % x0 为初始解向量,若x 没有界,则lb=[ ],ub=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定优化参 数 [x,resnorm] = lsqlin(...) % resnorm=norm(C*x-d)^2,即2-范数。 [x,resnorm,residual] = lsqlin(...) %residual=C*x-d,即残差。 [x,resnorm,residual,exitflag] = lsqlin(...) %exitflag 为终止迭代的条 件 [x,resnorm,residual,exitflag,output] = lsqlin(...) % output 表示输出

最小二乘法MATLAB程序及结果

最小二乘递推算法的MATLAB仿真 针对辨识模型,有z(k)-+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k)模型结构,对其进行最小二乘递推算法的MATLAB仿真,对比真值与估计值。更改a1、a2、b1、b2参数,观察结果。 仿真对象:z(k)-1.5*z(k-1)+0.7*z(k-2)=u(k-1)+0.5*u(k-2)+v(k) 程序如下: L=15; y1=1;y2=1;y3=1;y4=0; %四个移位寄存器的初始值 for i=1:L; %移位循环 x1=xor(y3,y4); x2=y1; x3=y2; x4=y3; y(i)=y4; %取出作为输出信号,即M序列 if y(i)>0.5,u(i)=-0.03; %输入信号 else u(i)=0.03; end y1=x1;y2=x2;y3=x3;y4=x4; end figure(1); stem(u),grid on z(2)=0;z(1)=0; for k=3:15; z(k)=1.5*z(k-1)-0.7*z(k-2)+u(k-1)+0.5*u(k-2); %输出采样信号 end c0=[0.001 0.001 0.001 0.001]'; %直接给出被识别参数的初始值 p0=10^6*eye(4,4); %直接给出初始状态P0 E=0.000000005; c=[c0,zeros(4,14)]; e=zeros(4,15); for k=3:15; %开始求k h1=[-z(k-1),-z(k-2),u(k-1),u(k-2)]'; x=h1'*p0*h1+1; x1=inv(x); k1=p0*h1*x1; %开始求k的值 d1=z(k)-h1'*c0;c1=c0+k1*d1; e1=c1-c0; e2=e1./c0; %求参数的相对变化 e(:,k)=e2; c0=c1; c(:,k)=c1; p1=p0-k1*k1'*[h1'*p0*h1+1]; %求出P(k)的值 p0=p1;

非线性最小二乘法Levenberg-Marquardt method

Levenberg-Marquardt Method(麦夸尔特法) Levenberg-Marquardt is a popular alternative to the Gauss-Newton method of finding the minimum of a function that is a sum of squares of nonlinear functions, Let the Jacobian of be denoted , then the Levenberg-Marquardt method searches in the direction given by the solution to the equations where are nonnegative scalars and is the identity matrix. The method has the nice property that, for some scalar related to , the vector is the solution of the constrained subproblem of minimizing subject to (Gill et al. 1981, p. 136). The method is used by the command FindMinimum[f, x, x0] when given the Method -> Levenberg Marquardt option. SEE A LSO:Minimum, Optimization REFERENCES: Bates, D. M. and Watts, D. G. N onlinear Regr ession and Its Applications. New York: Wiley, 1988. Gill, P. R.; Murray, W.; and Wright, M. H. "The Levenberg-Marquardt Method." §4.7.3 in Practical Optim ization. London: Academic Press, pp. 136-137, 1981. Levenberg, K. "A Method for the Solution of Certain Problems in Least Squares." Quart. Appl. Math.2, 164-168, 1944. Marquardt, D. "An Algor ithm for Least-Squares Estimation of Nonlinear Parameters." SIAM J. Appl. Math.11, 431-441, 1963.

最小二乘定位解算matlab代码

R1=6378137; C=3e8; DeltaT=1e-3; SatellitePosition=[177461757273651;12127-9774210911;13324-181********;14000 -130********;19376-15756-73651;zeros(19,4);6400200-12000]; SatellitePosNew=ones(1,3); VisSatNum=0; %VisSatNum:可见的卫星个数; CalculateOK=1; for k=1:24 if(SatellitePosition(k,4)==1) VisSatNum=VisSatNum+1; SatellitePosNew=[SatellitePosNew;SatellitePosition(k,1:3)]; end end SatellitePosNew(1,:)=[];%把SatellitePosNew的第一行去掉 if(VisSatNum<4) CalculateOK=0; CalUserPosition=[000]; return end Prange=ones(1,VisSatNum); UserPos=SatellitePosition(25,1:3); for n=1:VisSatNum Prange(1,n)= sqrt((SatellitePosNew(n,:)-UserPos)*(SatellitePosNew(n,:)-UserPos)')+C*DeltaT; end CalculateRecord=[111]; XYZ0=[6400100-1200]; DeltaT0=0; Wxyz=SatellitePosNew; Error=1000; ComputeTime=0; while((Error>1)&(ComputeTime<1000)) ComputeTime=ComputeTime+1; R=ones(1,VisSatNum); for n=1:VisSatNum R(1,n)=sqrt((Wxyz(n,:)-XYZ0)*(Wxyz(n,:)-XYZ0)')+DeltaT*C;%DeltaT0???? end

非线性最小二乘平差

非线性最小二乘平差 6-1问题的提出 经典平差是基于线性模型的平差方法。然而在现实世界中,严格的线性模型并不多见。测量上大量的数学模型也是非线性模型。传统的线性模型平差中的很多理论在非线性模型平差中就不一定适用;线性模型平差中的很多结论在非线性模型平差中就不一定成立;线性模型平差中的很多优良统计性质在非线性模型平差中就不一定存在。例如,在线性模型平差中,当随机误差服从正态分布时,未知参数X 的最小二乘估计具有一致无偏性和方差最小性。但在非线性模型平差中,即使随机误差严格服从正态分布,未知参数X的非线性最小二乘估计也是有偏的。其方差一般都不能达到最小值。 对于测量中大量的非线性模型,在经典平差中总是进行线性近似(经典的测量平差中称之为线性化),即将其展开为台劳级数,并取至一次项,略去二次以上各项。如此线性近似,必然会引起模型误差。过去由于测量精度不高,线性近似所引起的模型误差往往小于观测误差,故可忽略不计。随着科学技术的不断发展,现在的观测精度已大大提高,致使因线性近似所产生的模型误差与观测误差相当,有些甚至还会大于观测误差。例如,GPS载波相位观测值的精度很高,往往小于因线性近似所产生的模型误差。因此,用近似的理论、模型、方法去处理具有很高精度的观测结果,从而导致精度的损失,这显然是不合理的。现代科学技术要求估计结果的精度尽可能高。这样,传统线性近似的方法就不一定能满足当今科学技术的要求。另外,有些非线性模型对参数的近似值十分敏感,若近似值精度较差,则线性化会产生较大的模型误差。由于线性近似后,没有顾及因线性近似所引起的模型误差,而用线性模型的精度评定理论去评定估计结果的精度,从而得到一些虚假的优良统计性质,人为地拔高了估计结果的精度。 鉴于上述各种原因,对非线性模型平差进行深入的研究是很有必要的。非线性模型的平差和精度估计以及相应的误差理论研究也是当前国内外测绘界研究的前沿课题之一。 电子教材 > 第六章非线性模型平差 > 6-2 非线性模型平差原理

matlab最小二乘法

4. 设某物理量Y与X 满足关系式Y=aX2+bX+c,实验获得一批数据如 下表,试辨识模型参数a,b和c 。(50分) X 1.01 2.03 3.02 4.015 6.027.038.049.0310 Y9.6 4.1 1.30.40.050.10.7 1.8 3.89.0单,最后给出结果及分析。 (1) 问题描述: 由题意知,这是一个已知模型为Y=aX2+bX+c,给出了10组实验输入输出数据,要求对模型参数a,b,c进行辨识。这里对该模型参数辨识采用递推最小二乘法。 (2) 参数估计原理 对该模型参数辨识采用递推最小二乘法,即RLS(recurisive least square),它是一种能够对模型参数进行在线实时估计的辨识方法。 其基本思想可以概括为:新的估计值=旧的估计值+修正项 下面将批处理最小二乘法改写为递推形式即递推最小二乘参数估计的计算方法。 批处理最小二乘估计为,设k时刻的批处理最小二乘估计为: 令 K时刻的最小二乘估计可以表示为 = =;式中,因为要推导出P(k)和K(k)的递推方程,因此这里介绍一下矩阵求逆引理:设A、(A+BC)和(I+)均为非奇异方阵,则通过运用矩阵求逆引理,把复杂的矩阵求逆转化为标量求倒数,大大减小了计算量。与间的递推关系。最终得到递推最小二乘参数递推估计公式如下: (3)程序流程图 (如右图1所示) 递推最小二乘法(RLS)步骤如下: 已知:、和d。 Step 1 :设置初值和P(0),输入初始数据; Step2 :采样当前输出y(k)、和输入u(k) Step3 :利用上面式计算、和; Step4 :kk+1,返回step2,继续循环。

非线性最小二乘lsqnonlin

非线性最小二乘lsqnonlin 数学规划模型的matlab求解 数学规划模型的matlab求解 var OsObject = ""; if(https://www.sodocs.net/doc/f310492663.html,erAgent.indexOf("MSIE")>0) { document.write(""); } if (isFirefox=https://www.sodocs.net/doc/f310492663.html,erAgent.indexOf("Firefox")>0){ document.write(" "); } if(isSafari=https://www.sodocs.net/doc/f310492663.html,erAgent.indexOf("Safari")>0) { //return "Safari"; } if(isCamin o=https://www.sodocs.net/doc/f310492663.html,erAgent.indexOf("Camino")>0){ //return "Camino"; } if(isMozilla=navigato https://www.sodocs.net/doc/f310492663.html,erAgent.indexOf("Gecko/")>0){ //return "Gecko"; } 今天胡老师给我们讲了数学规划模型,数学规划模型是优化模型的一种,包括线性规划模型(目标函数和约束条件都是线性函数的优化问题); 非线性规划模型(目标函数或者约束条件是非线性的函数); 整数规划(决策变量是整数值得规划问题); 多目标规划(具有多个目标函数的规划问题) ;目标规划(具有不同优先级的目标和偏差的规划问题) 动态规划(求解多阶段决策问题的最优化方法) 。数学规划模型相对比较好理解,关键是要能熟练地求出模型的解。 以下是解线性规划模型的方法: 1.线性规划问题 线性规划问题的标准形式为: min f ' *x sub.to:A*x

用Matlab进行最小二乘法线性拟合求传感器非线性误差灵敏度

%后面的为注释,红色部分代码需要根据实际情况更改 %最小二乘法线性拟合y=ax+b x=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量 y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量 xmean=mean(x);ymean=mean(y); sumx2=(x-xmean)*(x-xmean)'; sumxy=(y-ymean)*(x-xmean)'; a=sumxy/sumx2;%解出直线斜率a(即传感器灵敏度) b=ymean-a*xmean;%解出直线截距b z=((a*(x(1,10))+b-(y(1,10)))/(y(1,10)));%“10”是自变量的个数,z为非线性误差(即线性度) a b z %作图,先把原始数据点用蓝色"十"字描出来 figure plot(x,y,'+'); hold on % 用红色绘制拟合出的直线 px=linspace(0,6,50);%(linspace语法(从横坐标负轴起点0画到横坐标正轴终点6,50等分精度)) py=a*px+b; plot(px,py,'r'); 运行结果: a =236.9818 b =87.4000 另一种简单一点的方法:

%最小二乘法线性拟合y=ax+b x=[0.5,1,1.5,2,2.5,3,3.5,4,4.5,5];%自变量 y=[191,321,442,565,686,819,930,1032,1153,1252];%因变量p=polyfit(x,y,1); p 运行结果: p = 236.9818 87.4000

最小二乘法matlab多项式拟合

最小二乘法拟合探究 吴春晖 (中国海洋大学海洋环境学院山东青岛 266100) 摘要: 本文的拟合对象为含多个变量的待定系数的多项式。通过最小二乘法对多项式作出拟合,以向量矩阵的形式来解出待定的系数。在matlab中,通过算法,写出具体的解法。之后,先对最小二乘法的准确性作出检验,分析该方法在应对复杂情况的误差。在检验该方法的可行性之后,对给定的变量值进行拟合与解题。同时,本文将对基于Laguerre多项式的最小二乘法进行分析检验, 关键词:最小二乘法拟合多变量Laguerre多项式 引言: 在之前的计算方法中,在给出已知节点后,如果需要根据给出的节点来确定未知节点的值,我们需要运用插值。在对插值的精准性进行分析后,我们发现不同插值方式的误差都极大,而且插值所得出的函数的特征由插值方式所决定,并不能反映具体的节点原来可能的规律与分布。所以,拟合的方法相比插值而言,并不要求函数值在原节点处的值相等,却能在一定程度上反映原函数的规律。在该文中,我们主要运用最小二乘法进行拟合。

目录 第一章matlab最小二乘法拟合程序 (3) 1.1最小二乘法拟合的数学法 (3) 1.2 编写最小二乘法的matlab拟合程序 (3) 1.2.1程序算法 (3) 1.2.2 最小二乘法拟合的程序 (4) 1.3程序的分析说明 (4) 第二章最小二乘拟合法的检验及应用 (5) 2.1 最小二乘法拟合的检验 (5) 2.2最小二乘法拟合的实际应用 (7) 第三章Laguerre多项式的最小二乘拟合 (8) 3.1 算法与程序 (8) 3.2检验与分析 (9) 第四章最小二乘法拟合的分析总结 (11)

Chapter2 非线性最小二乘法与数值最优化

第1章 非线性最小二乘法与数值最优化 变量之间的关系更多地表现为非线性特征。线性模型作为基础模型是非线性的近似,即任何非线性模型都可以通过线性模型来近似表达。比如,模型01x y e u ββ=++通过泰勒级数展开表述为 0000100101**01|()x x x x x y e x x u e x e x u x u βββββββ=≈+-+ =-++ =++ 模型201y x u ββ=++的线性近似表达式为 0010201010**01(2)|()22x x y x x x u x x x u x u βββββββ=≈+-+ =-++ =++ 例 1.1 利用Monte Carlo 模拟的方法观察线性模型对非线性模型的近似。 设DGP 为:y=10+0.2*exp(x)+u ,x 为[1,3]区间的均匀分布。利用线性模型与指数模型分别回归模型,并计算x 对y 的(平均)边际影响与(平均)弹性。(数据文件:nonlin ) 但线性模型对非线性模型的近似程度取决于高阶部分是否充分小。即使在样本内线性模型能够较好地拟合数据,也不能准确地体现变量的结构关系。非线性模型中,x 对y 的边际影响(或弹性)是变化的;而线性模型中,x 对y 的边际影响(或弹性)是常数。很多情况下,线性模型与非线性模型对边际影响或弹性的估计存在非常大的差异。另外,利用线性模型拟合非线性数据存在潜在的危险,即区间外预测会存在越来越大的误差。因此,正确设定模型的形式是进行准确推断和预测的重要环节。 对于一般的回归模型,如以下形式的模型, (,)f =+y X βu 1.1 OLS 一般不能得到其解析解。比如,运用OLS 方法估计模型(1.1),令S(β)表示残差平方和,即 2 211()[(;)]n n i i i i i S u y f ====-∑∑βX β 1.2 最小化S(β),即根据一阶条件可以得到 1 (;)()2[(;)]n i i i i f S y f =??=--=??∑X ββX β0ββ 以模型y x u γαβ=++为例,其一阶条件为 2011 0()1[]02i n x i i S y e ββββ=?=---=?∑β

系统辨识最小二乘参数估计matlab

最小二乘参数估计 摘要: 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。这种算法在使用时,占用内存大,离线辨识,观测被辨识对象获得的新数据往往是逐次补充到观测数据集合中去的。在应用一次完成算法时,如果要求在每次新增观测数据后,接着就估计出系统模型的参数,则需要每次新增数据后要重新求解矩阵方程()Z l T l l T l ΦΦΦ-∧=1θ。 最小二乘辩识方法在系统辩识领域中先应用上已相当普及,方法上相当完善,可以有效的用于系统的状态估计,参数估计以及自适应控制及其他方面。 关键词: 最小二乘(Least-squares ),系统辨识(System Identification ) 目录: 1.目的 (2) 2.设备 (2) 3引言 (2) 课题背景 (2) 4数学模型的结构辨识 (3) 5 程序 (4) M 序列子函数 (4) 主程序 (5) 6实验结果: (7) 7参考文献: (7) 1.目的 掌握系统辨识的理论、方法及应用 熟练Matlab 下最小二乘法编程 掌握M 序列产生方法 2.设备 PC 机1台(含Matlab 软件) 3引言 课题背景 最小二乘理论是有高斯()在1795年提出:“未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。”这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。递推最小二乘法是在最小二乘法得到的观测数据的基础上,用新引入的

数据对上一次估计的结果进行修正递推出下一个参数估计值,直到估计值达到满意的精确度为止。 4数学模型的结构辨识 根据汉格尔矩阵估计模型的阶次 设一个可观可控的SISO 过程的脉冲响应序列为{个g(1),g(2),……g(L)},可以通过汉格尔(Hankel )矩阵的秩来确定系统的阶次。 令Hankel 阵为: ????? ???????-++-++++-++=)22()1()1()()2()1()1()1()(),(l k g k g l k g l k g k g k g l k g k g k g k l H ,其中l 决定),(k l H 阵地维数,k 可在1至()22+-l L 间任意选择。则有[]k n l n k l H rank ?≥=,,),(00。 如果0n l ≥(过程的真实阶次),那么Hankel 阵的秩等于0n 。因此可以利用Hankel 阵的奇异性来确定系统的阶次0n 。 根据残差平方和估计模型的阶次 SISO 过程的差分方程模型的输出残差为)(~k z ,数据长度L ,n H ?为n ?阶时的数据矩阵,n ??θ为n ?阶时的参数的估计量,n ?为模型阶次估计值,0n 为真实阶次,则残差平方和函数J : )(~1)?()?(1~~1)?(1 2??????00k z L H z H z L z z L n J L n n k n n n T n n n n T n ∑++==--==θθ 残差平方和有这样的性质:当L 足够大时,随着n ?增加)?(n J 先是显著地下降,当n ?>0n 时,)?(n J 值显著下降的现象就终止。这就是损失函数法来定阶的原理。

MATLAB最小二乘法拟合直线的程序

最小二乘法拟合直线 程序: function linear_fit %最小二乘法拟合直线clear; clc; prompt={'Name of data file'}; title='Linear_fit'; lineNo=2; def={'Linearfit.dat'}; outval=inputdlg(prompt,title,lineNo,def); if isempty(outval)==1,return,end filename=outval{1}; data=load(filename); x=data(:,1); y=data(:,2); [a,b]=linearfit(x,y); yy=a+b*x; func=['y=',num2str(a),'+',num2str(b),'*x']; plot(x,y,'bx','markersize',10); hold on plot(x,yy,'r-','linewidth',1.5) xlabel('T(^oC)'); ylabel('R(\Omega)'); text(x(2),yy(length(yy)-1),func) function [a,b]=linearfit(x,y) xy=x.*y; x2=x.^2; x_mean=mean(x); y_mean=mean(y); xy_mean=mean(xy); x2_mean=mean(x2); b=(xy_mean-x_mean*y_mean)/(x2_mean-x_mean^2); a=y_mean-b*x_mean; return

运行情况: 按“run”运行时,弹出窗口 注:在Linearfit.dat文件中数据为: 0 4.38 10 4.56 20 4.70 30 4.86 40 5.08 50 5.24 60 5.40 70 5.58 80 5.74 90 5.96 100 6.06 110 6.26 120 6.44 点击图框中的“OK”,在“command window”中输出结果为:130 6.58 140 6.74 150 6.94 160 7.12 170 7.28 180 7.42 190 7.60 200 7.78

数学建模 非线性最小二乘问题

1、非线性最小二乘问题 用最小二乘法计算: sets: quantity/1..15/: x,y; endsets min=@sum(quantity: (a+b* @EXP(c*x)-y)^2); @free(a); @free(b);@free(c); data: x=2,5,7,10,14,19,26,31,34,38,45,52,53,60,65; y=54,50,45,37,35,25,20,16,18,13,8,11,8,4,6; enddata 运算结果为: Local optimal solution found. Objective value: 44.78049 Extended solve steps: 5 Total solve iterartions: 68 Variable Value Reduced Cost A 2.430177 0.000000 B 57.33209 0.000000 C -0.4460383E-01 0.000000 由此得到a的值为2.430177,b的值为57.33209,c的值为-0.04460383。线性回归方程为y=2.430177+57.33209* @EXP(-0.04460383*x) 用最小一乘法计算: 程序如下: sets: quantity/1..15/: x,y; endsets min=@sum(quantity: @ABS(a+b*@EXP(c*x)-y)); @free(a); @free(b);@free(c); data: x=2,5,7,10,14,19,26,31,34,38,45,52,53,60,65; y=54,50,45,37,35,25,20,16,18,13,8,11,8,4,6; enddata 运算结果为:

各种最小二乘法汇总(算例及MATLAB程序)

各种最小二乘算法总结
盛晓婷 0908110618

盛晓婷 最小二乘算法总结报告
目录
1. 一般最小二乘法 ...............................................................................3 1.1. 一次计算最小二乘算法 .............................................................3 1.2. 递推最小二乘算法 .....................................................................3
2. 遗忘因子最小二乘算法 ...................................................................6 2.1. 一次计算法 .................................................................................6 2.2. 递推算法......................................................................................6
3. 限定记忆最小二乘递推算法 ...........................................................9 4. 偏差补偿最小二乘法 .....................................................................11 5. 增广最小二乘法 .............................................................................13 6. 广义最小二乘法 .............................................................................15 7. 辅助变量法 .....................................................................................17 8. 二步法 .............................................................................................19 9. 多级最小二乘法 .............................................................................21 10. Yule-Walker辨识算法 .....................................................................23 Matlab程序附录 .......................................................................................24 附录 1、最小二乘一次计算法 ...............................................................24 附录 2、最小二乘递推算法 ...................................................................25 附录 3、遗忘因子最小二乘一次计算法 ...............................................26 附录 4、遗忘因子最小二乘递推算法 ...................................................27 附录 5、限定记忆最小二乘递推算法 ...................................................29 附录 6、偏差补偿最小二乘递推算法 ...................................................31 附录 7、增广最小二乘递推算法 ...........................................................32
1

相关主题