搜档网
当前位置:搜档网 › 彩色图片进行傅里叶变换小波变换、重构

彩色图片进行傅里叶变换小波变换、重构

彩色图片进行傅里叶变换小波变换、重构
彩色图片进行傅里叶变换小波变换、重构

找一张彩色图片,进行傅里叶、小波分解和重构。

操作过程:

1.傅里叶变换

[X,map]=imread('c:\10.jpg','jpg'); %读入原图

>> imshow(X); %显示原图

>> title('original pic'); %命名原图

>> r=X(:,:,1); %提取red原色

>> g=X(:,:,2); %提取green原色

>> b=X(:,:,3); %提取blue原色

>> fr=fft2(r); %对red原色进行傅里叶变换

>> fg=fft2(g); %对green原色进行傅里叶变换

>> fb=fft2(b); %对blue原色进行傅里叶变换

>> sfr=fftshift(fr); %将red原色的直流分量移到频谱中心>> sfg=fftshift(fg); %将green原色的直流分量移到频谱中心>> sfb=fftshift(fb); %将blue原色的直流分量移到频谱中心

>> RRr=real(sfr); %取red原色的傅里叶变换实部>> RRg=real(sfg); %取green原色的傅里叶变换实部>> RRb=real(sfb); %取blue原色的傅里叶变换实部

>> IIr=imag(sfr); %取red原色的傅里叶变换虚部>> IIg=imag(sfg); %取green原色的傅里叶变换虚部>> IIb=imag(sfb); %取blue原色的傅里叶变换虚部

>> Ar=sqrt(RRr.^2+IIr.^2); %计算red原色的频谱幅值

>> Ag=sqrt(RRg.^2+IIg.^2); %计算green原色的频谱幅值

>> Ab=sqrt(RRb.^2+IIb.^2); %计算blue原色的频谱幅值

>> Ar=(Ar-min(min(Ar)))/(max(max(Ar))-min(min(Ar)))*225; %归一化>> Ag=(Ag-min(min(Ag)))/(max(max(Ag))-min(min(Ag)))*225; %归一化>> Ab=(Ab-min(min(Ab)))/(max(max(Ab))-min(min(Ab)))*225; %归一化

>> figure; %设定窗口

>> imshow(Ar); %显示red原色图像频谱

>> axis square; %显示为正方形

>> figure; %设定窗口

>> imshow(Ag); %显示green原色图像频谱

>> axis square; %显示为正方形

>> figure; %设定窗口

>> imshow(Ab); %显示blue原色图像频谱

>> axis square; %显示为正方形

>> or=ifft2(fr); %对red原色进行傅里叶逆变换>> og=ifft2(fg); %对green原色进行傅里叶逆变换>> ob=ifft2(fb); %对blue原色进行傅里叶逆变换

>> out(:,:,1)=real(or); >> out(:,:,2)=real(og); >> out(:,:,3)=real(ob); >> out = uint8(out);

>> imshow(out); %显示原图

2.小波函数

换成灰色图像再进行小波变换

[X,map]=imread('c:\10.jpg','jpg'); %读入原图

subplot(221);image(X);colormap(map); %显示原图

title('original pic'); %命名原图

global X; %设全局变量X

L=X; %将X赋给L

L=double(L); %强制转换L为double格式

Xrgb=0.2990*L(:,:,1)+0.5870*L(:,:,2)+0.1140*L(:,:,3); Nbcolors=255;

W=wcodemat(Xrgb,Nbcolors);

map1=gray(Nbcolors);

subplot(222);image(W);colormap(map1); %显示灰度转换图

[c,s]=wavedec2(W,2,'sym4'); %对灰度图进行2层小波分解sizec=size(c);

for i=1:sizec(2)

if (c(i)>350)

c(i)=2*c(i);

else c(i)=0.5*c(i);

end

end%循环对灰度图像分解系数进行处理,通过处理,突出轮廓部分,弱化细节部分

xx=waverec2(c,s,'sym4'); %对灰度图像处理后的系数进行重构

subplot(223);image(xx); %显示重构后灰度图像

结果显示如下:

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi 标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不?,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件?后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件???,就是?

短时傅立叶变换试验

短时傅立叶变换试验 为了克服傅立叶变换的时频局部化方面的不足,也是为了对时域信号作局部分析,D.Gabor 于1946年提出了窗口傅立叶变换(简记为WFT )。 WFT 的公式形式 ()(,)()()j w t R G f w b f t w t b e d t -=-?()(,)()()j w t R G f w b f t w t b e d t -=-? 其中,实函数w(t)为是时窗函数,窗函数w(t)具有较强的衰减性,所以要精心选择窗函数。 下面是一个短时傅立叶变换的代码程序 function timefreq(x,Nw,window) % 待分析信号,行向量,Nw 时窗宽度 subplot(2,2,1); plot(real(x));%描绘待分析信号 X=fft(x);%快速傅里叶变换 X=fftshift(X);%调整0频位置 subplot(2,2,2); plot(abs(X));%描绘幅度谱 Lap=Nw/2;%重叠宽度 Tn=(length(x)-Lap)/(Nw-Lap);%计算分段数目 nfft=2^ceil(log2(Nw));%做fft 的点数 TF=zeros(Tn,nfft);%时频矩阵 for i=1:Tn if(strcmp(window,'rec')) Xw=x((i-1)*10+1:i*10+10);%加窗矩形处理 elseif(strcmp(window,'Hamming')) Xw=x((i-1)*10+1:i*10+10).*Hamming(Nw)';%加hamming 处理 elseif(strcmp(window,'Blackman')) Xw=x((i-1)*10+1:i*10+10).*Blackman(Nw)';%加black 处理 elseif(strcmp(window,'Gauss')) Xw=x((i-1)*10+1:i*10+10).*Gauss(Nw)';%加Gauss 处理 else return; end temp=fft(Xw,nfft);%求fft temp=fftshift(temp);%调整0频位置 TF(i,:)=temp;%保存分段fft 结果 end %绘制时频分析结果 subplot(2,2,3); fnew=((1:nfft)-nfft/2)/nfft; tnew=(1:Tn)*Lap; [F,T]=meshgrid(fnew,tnew); mesh(T,F,abs(TF)); xlabel('n');ylabel('w');zlabel('Gf');

短时傅里叶变换matlab程序

function [Spec,Freq]=STFT(Sig,nLevel,WinLen,SampFreq) %计算离散信号的短时傅里叶变换; % Sig 待分析信号; % nLevel 频率轴长度划分(默认值512); % WinLen 汉宁窗长度(默认值64); % SampFreq 信号的采样频率(默认值1); if (nargin <1), error('At least one parameter required!'); end; Sig=real(Sig); SigLen=length(Sig); if (nargin <4), SampFreq=1; end if (nargin <3), WinLen=64; end if (nargin <2), nLevel=513; end nLevel=ceil(nLevel/2)*2+1; WinLen=ceil(WinLen/2)*2+1; WinFun=exp(-6*linspace(-1,1,WinLen).^2); WinFun=WinFun/norm(WinFun); Lh=(WinLen-1)/2; Ln=(nLevel-1)/2; Spec=zeros(nLevel,SigLen); wait=waitbar(0,'Under calculation,please wait...'); for iLoop=1:SigLen, waitbar(iLoop/SigLen,wait); iLeft=min([iLoop-1,Lh,Ln]); iRight=min([SigLen-iLoop,Lh,Ln]); iIndex=-iLeft:iRight; iIndex1=iIndex+iLoop; iIndex2=iIndex+Lh+1; Index=iIndex+Ln+1; Spec(Index,iLoop)=Sig(iIndex1).*conj(WinFun(iIndex2)); end; close(wait); Spec=fft(Spec); Spec=abs(Spec(1:(end-1)/2,:));

基于傅里叶变换和小波变换的图像稀疏表示

基于二维傅里叶变换和小波变换的图像稀疏表示 一、基于二维傅里叶变换的图像稀疏表示 傅里叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析。一幅静止的数字图像可以看成是矩阵,因此,数字图像处理主要是对包含数据的矩阵进行处理。 经过对图像进行二维离散傅里叶变换可以得到它的频谱,进而得到我们所需要的特征。二维离散傅里叶变换及逆变换可以表示为: 其中u=0,1,2,...,M-1和v=0,1,2,...,N-1。其中变量u和v用于确定它们的频率,频域系统是由F(u,v)所张成的坐标系,其中u和v用做(频率)变量。空间域是由f(x,y)所张成的坐标系。 傅立叶频谱图上我们看到的明暗不一的亮点,其意义是指图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。下图为cameraman原图像及其频谱分布图: cameraman原图像大小为256*256,其傅里叶变换频谱图大小为256*256。 图像从频域到时域的变换过程称为重构过程,通过峰值信噪比(PSNR)对图像进行评价,公式如下: PSNR=10*log10((2^n-1)^2/MSE)

MSE是原图像与处理后图像之间均方误差,n是每个采样值的比特数。通过取不同的大系数个数观察图像变化,单独取第1个大系数时: N=1 PSNR=12.2353所取频谱系数对应图 单独取第9个系数时: N=1 PSNR=6.3108第9个频谱系数对应图

N=2 PSNR= 13.1553所取频谱系数对应图 N=10 PSNR=15.4961 所取频谱系数对应图 N=50 PSNR=17.1111 所取频谱系数对应图

拉氏变换和傅里叶变换的关系

拉氏变换和傅里叶变换的关系 一、拉氏变换 1、拉氏变换的定义: 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞-0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2、拉氏变换的意义 工程数学中常用的一种积分变换。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。 在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用 二、傅里叶变换 1、傅里叶变换的定义: f(t )是t 的函数,如果t 满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t )的傅立叶变换, ②式的积分运算叫做F (ω)的傅立叶逆变换。F (ω)叫做f(t )的像函数,f(t )叫做 F (ω)的像原函数。F (ω)是f(t )的像。f(t )是F (ω)原像。 ① 傅里叶变换 ②

详解傅里叶变换与小波变换

详解傅里叶变换与小波变化 希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代

数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n= av_n,a是eigenvalue)。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。

傅里叶变换

研究生课程论文(作业)封面 ( 2014 至 2015 学年度第 1 学期) 课程名称:__________________ 课程编号:__________________ 学生姓名:__________________ 学号:__________________ 年级:__________________ 提交日期:年月日 成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周 评阅日期:年月日 东北农业大学研究生部制

积分变换在工程上的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的积分变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用,并在分离变数法中对齐次方程及非齐次方程进行了区分。傅里叶变换在不同的领域有不同的形式,诸如现代声学,语音通讯,声纳,地震,核科学,乃至生物医学工程等信号的研究发挥着重要的作用。 关键词:傅里叶变换;偏微分方程;数字信号处理 1 概要介绍 积分变换无论在数学理论或其应用中都是一种非常有用的工具。最重要的积分变换有傅里叶变换、拉普拉斯变换。由于不同应用的需要,还有其他一些积分变换,其中应用较为广泛的有梅林变换和汉克尔变换,它们都可通过傅里叶变换或拉普拉斯变换转化而来。傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。傅里叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅里叶反变换将这些频域信号转换成时域信号。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 1.傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。——(1) 2.傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。 ()()()()()()?? ? ??-++=-? ? ∞ +∞ +∞ -.,200,]cos [1 其它连续点处, 在t f t f t f t f d d t f ωττωτπ 当()t f 满足一定条件时,在()t f 的连续点处有:

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换 的对比异同 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL 定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b 是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢b取多少才合适呢于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件,就是

几种时频分析综述1——傅里叶变换和小波变换

几种时频分析方法综述1——傅里叶变换和小波变换 夏巨伟 (浙江大学空间结构研究中心) 摘要:传统的信号理论,是建立在Fourier 分析基础上的,而Fourier 变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier 变换进行各种改进,小波分析由此产生了。小波变换与Fourier 变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier 变换不能解决的许多困难问题。本文对傅里叶变换和小波变换进行了详细介绍,并用算例分析指出了两者的差别。 关键词:傅里叶变换;小波变换;时频分析技术; 1 傅里叶变换(Fourier Transform ) 1 2/201 22/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞ --∞∞--∞?=??=??????????→????=?=??? ∑??∑离散化(离散取样) 周期化(时频域截断) 2 小波变换(Wavelet Transform ) 2.1 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t ∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t ∈[a,b]与函数[][]11,t ,()0,t ,a b t a b χ?∈?=? ∈??,然后考察1()()h t t χ傅里叶变换。但是由 于1()t χ在t= a,b 处突然截断,导致中1()()h t t χ出现了原来h (t )中不存在的不连 续,这样会使得1()()h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点, D.Gabor 在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 22(,)()()()()(,)ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T ππτττττ +∞ --∞ +∞+∞ -∞ -∞ =-=-??? ::

短时傅里叶变换

短时距傅里叶变换(英文:short-time Fourier transform, STFT,又称short-term Fourier transform)是和傅里叶变换相关的一种数学变换关系,用以决定时变信号其局部段落之弦波成份的频率与相位。 简单来说,在连续时间的例子,一个函数可以先乘上仅在一段时间不为零的窗函数(window function)再进行一维的傅里叶变换。再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。数学上,这样的操作可写为: 其中w(t)是窗函数,通常是翰氏窗函数(Hann window)或高斯函数的“丘型”分布,中心点在零,而x(t)是待变换的信号。X(τ,ω)本质上是x(t)w(t?τ)的傅里叶变换,乃一个复函数代表了信号在时间与频率上的强度与相位。 短时傅里叶变换(STFT,short-time Fourier transform,或 short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。 它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优。

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z变换三者之间的关系

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z 变换三者之间的关系 一 傅里叶级数展开与傅里叶变换 之所以要将一个信号f(t)进行傅里叶级数展开或傅里叶变换是因为一般自然界信号都非常复杂,且表面上并不能直观的表现出频率与幅值的关系,而一个信号的大部分有效信息恰藏于其频谱上,即其幅频关系和相频关系上。通过傅里叶级数展开或傅里叶变换,可将自然界中复杂的信号分解成简单的,有规律的基本信号之和或积分的形式,并且可以明确表达出周期信号的离散频谱和非周期信号的连续频谱函数。 傅里叶级数展开是对于周期信号而言,如果该周期信号满足狄利克雷条件(在电子和通讯中大部分周期信号均满足),周期信号就能展开成一组正交函数的无穷级数之和,三角函数集在一个周期内是完备的正交函数集,使用三角函数集的周期函数展开就是傅里叶级数展开,而欧拉公式是将三角函数和复指数连接了起来,所以傅里叶级数可展开成三角函数或复指数两种形式,此时就可画出信号的频谱图,便可直观的看到频率与幅值和相位的关系。 既然是级数和展开,则上述频谱图中横轴表示n 倍的角频率,是一个离散频谱图,那么由离散频谱的间隔与周期的反比关系知当f(t)的周期T 趋近于无穷大时,周期信号变成了非周期信号,谱线间隔趋近于无穷小,谱线无限的密集而变成为连续频谱,该连续频谱即为频谱密度函数,简称频谱函数,该表达式即是我们熟悉的傅里叶变换,傅里叶变换将信号的时间函数变为频率函数,则其反变换是将频率函数变为时间函数,所以傅里叶变换建立了信号的时域与频域表示之间的关系,而傅里叶变换的性质则揭示了信号的时域变换相应地引起频域变换的关系。 二 傅里叶变换与拉氏变换 上述的傅里叶变换必须是在一个信号满足绝对可积的条件下才成立,那么对于不可积的信号,我们要将它从时域移到频域上,就要将原始信号乘上一个衰减信号将其变为绝对可积信号再做傅里叶变换,即为 f t e ?σt e ?j ωt ∞?∞dt = f(t)e ?(σ+j ω)t dt ∞?∞= f(t)e ?st ∞ ?∞ dt s=σ+j ω 变为拉氏变换,如令σ=0则拉氏变换就变成了傅里叶变换,所以傅里叶变换是S 域仅在虚轴上取值的拉氏变换,拉氏变换是傅里叶的推广,拉氏变换的收敛域就是f t e ?σt 满足绝对可积条件的σ值的范围,在收敛域内可积,拉氏变换存在,在收敛域外不可积,拉氏变换不存在。拉氏变换针对于连续时间信号,主要用于连续时间系统的分析中,对一个线性微分方程两边同时进行拉氏变换,可将微分方程转化成简单的代数运算,可方便求出系统的传递函数,简化了运算。

短时傅里叶变换的有关资料

短时傅里叶变换短时傅里叶变换(STFT,short-time Fourier transform,或short-term Fourier transform))是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频信号,则要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率不能同时达到最优。 短时距傅里叶变换 维基百科,自由的百科全书 汉漢▼

[编辑]与傅里叶转换在概念上的区别 将信号做傅里叶变换后得到的结果,并不能给予关于信号频率随时间改变的任何信息。以下的例子作为说明: 傅里叶变换后的频谱和短时距傅里叶转换后的结果如下: 傅里叶转换后, 横轴为频率(赫兹) 短时距傅里叶转换, 横轴为时间( 秒 ) , 纵轴 为频率(赫兹) 由上图可发现,傅里叶转换只提供了有哪些频率成份的信息,却没有提供时间信息;而短时傅里叶转换则清楚的提供这两种信息。这种时频分析的方法有利于频率会随着时间改变的信号(例如:音乐信号、语音信号等)分析。 [编辑]定义 [编辑]数学定义 简单来说,在连续时间的例子,一个函数可以先乘上仅在一段时间不为零的窗函数再进行一维的傅里叶变换。再将这个窗函数沿着时间轴挪移,所得到一系列的傅里叶变换结果排开则成为二维表象。数学上,这样的操作可写为: 另外也可用角频率来表示:

和输出 y[n] 的傅里叶变换关系如下

马萨诸塞州技术学院 电气工程与计算机科学系 6.341:离散时间信号处理 开放课程课件 2006 第2讲 背景知识复习 相位、群延迟和广义线性相位 ——————————————————————————————————————— 阅读: Oppenheim ,Schafer & Buck (OSB )中的5.1,5.3和5.7部分。 ——————————————————————————————————————— 相位 一个 LTI 系统的频率响应 H (e )(z H j ω ) 可在单位圆 z = 1 上求得。 H (e j ω ) = ω j e z z H =)(系统输入x [n ] 和输出 y [n ] 的傅里叶变换关系如下 Y (e j ω ) = H (e j ω ) X (e j ω ) 通过观察幅度-相位表达式,可以更详细地理解输入-输出关系。 幅度/相位表示 例子: 在幅度/相位表示中,频率响应是实数不能充分意味着系统是零相位。 利用这个表达式, 且 则)(ωj e H 和 一般分别指系统增益和相移。

在幅度和相位图中,当ω通过单位圆上的零点时,幅度为零,相位跳变π,如下图所示。 椭圆型低通滤波器的幅度和相位响应 如果H(e jω )是实数且双极性的,经常更简单自然地用另一种表达式来移除相位图中π的 这些跳变。 振幅/相位表示 A(e jω ) 是实数但不一定是正数,这样θ2(ω) 不同于上面的θ1(ω)。A(e jω ) 存在符号的变 化,且在θ2(ω) 不存在π的跳变。 例子: 考虑下图给出的h[n]。 在幅度/相位表示中,θ1(ω) 在符号变化处有π的跳变。 在振幅/相位表示中,θ2(ω) = -ω(N-1)/2,斜率为-(N-1)/2的直线,而且在这个表达式中,无论A

FFT 与小波变换的区别---FFT的缺陷

分段平稳信号 这两种波形的FFT完全一样!完全分不出信号出现的位置,说明傅里叶变换缺乏时间对频率的定位功能。小波则可以还原。经过傅里叶变换

之后得到的是频域的信息,时间信息完全丢失,很多人会问那为什么逆变换可以完全恢复原始信号?其实,这个可以理解为三维空间离得变换,这里涉及到泛函的一些知识,其通俗理解方法也将在下边进行解释。傅里叶逆变换同样可以理解为相关,只是此时需保证变换时t不变,也就是计算某时刻不同频率波形与傅里叶变换之后的频域信号之间的相关,积分后得到该时刻各频率分量在该时刻的总贡献。可以知道所有有关时间的信息都是由e^(ift)导出的。

傅里叶变换: 1)首先傅里叶变换是傅里叶级数(有限周期函数)向(无限周期函数)的扩展,将该函数展开成无限多个任意周期的正弦或余弦函数的和(或积分)。 2)傅里叶级数中各项系数例如cosx项系数是原函数与其在某一定义域内的积分,显然我们可以将该过程理解为对这两个函数进行相关,将相关系数作为该频率处的强度。 3)经过傅里叶变换之后得到的是频域的信息,时间信息完全丢失,很多人会问那为什么逆变换可以完全恢复原始信号?其实,这个可以理解为三维空间离得变换,这里涉及到泛函的一些知识,其通俗理解方法也将在下边进行解释。傅里叶逆变换同样可以理解为相关,只是此时需保证变换时t不变,也就是计算某时刻不同频率波形与傅里叶变换之后的频域信号之间的相关,积分后得到该时刻各频率分量在该时刻的总贡献。可以知道所有有关时间的信息都是由e^(ift)导出的。 4)从泛函的角度,我们可以把傅里叶级数中的三角函数 {1/sqrt(2π),sin(t)/sqrt(π),cos(t)/sqrt(π),...}看做一个线性函数空间的一个基,这里与线性代数里的线性空间有两点不同,第一该处是函数空间,每个元素都是一个函数而不是一个数,第二这里是无限维空间,基有无限多个元素。但是这并不影响我们的理解。我们可以像在有限维线性空间中那样将傅里叶变换理解为这个函数在以三角函数为基的空间的展开,而将傅

短时傅里叶变换及其谱图分析

西南交通大学峨眉校区 (作业小论文) 工程测试技术课程设计 短时傅里叶变换及其谱图分 姓名:xxxx 学号:2wwwww 班级:wwww 专业:工程机械 2013.03.20

短时傅里叶变换及其谱图分析 摘要:本文讨论了有噪信号的短时傅里叶变换STFT及其谱围.分析和仿真结果表明,受 白噪声污染的信号的STFT可以无偏估计原信号的STFT,而其谱图可以对愿信号的谱图作有偏 估计,估计方差是有限的,且是时间和频率的函数.在短窗的情况下,求得了该方差上限的 近似表示. 关键词:短时傅里叶变换谱图噪声污染信号估计 1.前言 信号的短时傅里叶变换STFT是最早提出的一种时。频二维表示方法,它采用加窗的复正 弦作为基函数,也称为加窗傅里叶变换。由于它采用单一的分析窗处理所有频率分量,在时- 频平面内所有点上的分辨率是相同的,因而适合于准平稳信号的处理。STFT 简单易实现,许 多联合时.频分析的应用都是由它开始的。尽管STFT按定义属于线性变换,但在各种实际应 用中常采用它的能谱分布表示方法,这就是基于短时傅里叶变换的谱图Spectrogram)表示。 谱图定义为STFT的模平方,它是二次型时.频分布,尽管不满足时一频边缘条件,但可以认为 是信号能量在时.频平面上的分布。谱图已经在信号检测,语音处理等方面得到了广泛应用 [1Ⅱ2】。 谱图具有非线性性质,对于多分量信号将产生类似于Wigner分布中的交叉项干扰,从而 引入了模糊,影响信号分析结果。在利用谱图对信号的谱估计中,加性噪声的影响使信号具有 了多分量特性.可能使得估计产生较大偏差。本文就确定性信号受自噪声污染后的STFT及其 谱图的最小方差估计问题进行了分析。文中第二部分做了理论推导,求得了有噪信号的sTFT 及其谱图的均值和方差,第三部分对短窗的情况作了近似分析,最后给出了一例简单的仿真结 果。 2.傅立叶变换的提出

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常 需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。 因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若-'1 ' 一 1 一八 餐丄I 则 嗽(0 +罰⑷ G 迅(j 由)+ 碍(Jtu ) (3-55) 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数 ,; 「" 由式(3-55)得 =侔7(/)}=-屛1} + - (sgn( /)}=丄 K 刼罠珂 + 丄用2 二足飢也)+ — 2 2 2 2 JtD J QJ 、对称性 (3-56) 则」 将上式中变量少换为x ,积分结果不变,即 证明因为 fC )二丄「EQ 讣叫田 N J 2^(i) = f F(J 噪叫 a 2^(-1)=「F(j 嫌小咕 J —TO

」一 再将t用夕代之,上述关系依然成立,即 2戒(―型)-[ Jr-CD 最后再将x用t代替,则得—Lm—? ” 所以,fl- —■-'■ ■■* 证毕 若八」是一个偶函数,即-'二丿■,相应有-,:"J,则式(3-56) 尺〔血—2对'(创)C3-57) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数二丁。式中的-兰表示频谱函数坐标轴必须正负对调。例如:/(0 =郭)一S)=l FS)= 1一2才㈣=2斶眄 例3-7若信号;二的傅里叶变换为 < r 72 G3> r <2 试求。 解将中的"换成t,并考虑;-";1为兰的实函数,有 M |r|G 戈 0 |t|>r/2 该信号的傅里叶变换由式(3-54)可知为 頁恥)卜2氓旳(号)

(整理)小波变换与傅里叶变换.

百度空间 | 百度首页 | 登录 在狂风中摇曳 我的学习BLOG 主页博客相册个人档案好友 查看文章 [转]小波变换与傅里叶变换 2009-09-22 09:59 如果有人问我,如果傅里叶变换没有学好(深入理解概念),是否能学好小波。答案是否定的。如果有人还问我,如果第一代小波变换没学好,能否学好第二代小波变换。答案依然是否定的。但若你问我,没学好傅里叶变换,能否操作(编程)小波变换,或是没学好第一代小波,能否操作二代小波变换,答案是肯定的。 一、一、基的概念 我们要明确的是基的概念。两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基,是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。

二、二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。 下面我们谈谈小波。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。 也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。 一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。 第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以

相关主题