搜档网
当前位置:搜档网 › 16正交分解法例题及练习

16正交分解法例题及练习

16正交分解法例题及练习
16正交分解法例题及练习

30o 45

A B O G 正交分解法专题训练

1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和45o ,求绳AO 和BO 对物体的拉力的大小。

2.如图所示,轻绳AC 与天花板夹角α=300,轻绳BC 与天花板夹角β=600.设AC 、BC 绳能承受的最大拉力均不能超过100N ,CD 绳强度足够大,求CD

绳下端悬挂的物重G 不能超过多少?

3.质量为m 的物体在恒力F 作用下,F 与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少?

300 600

4.如图所示,物体的质量kg m 4.4=,用与竖直方向成?=37θ的斜向右上方的推力F 把该物体压在竖直墙壁上,并使它沿墙壁在竖直方向上做匀速直线运动。物体与墙壁间的动摩擦因数

5.0=μ,取重力加速度2/10s m g =,求推力F 的大小。(

6.037sin =?,8.037cos =?)

5.如图,物体A 的质量为m ,斜面倾角α,A 与斜面间的动摩擦因数为μ,斜面固定,现有一个水平力F 作用在A 上,当F 多大时,物体A 恰能沿斜面匀速向上运动?

6.质量为m 的物体,用水平细绳AB 拉住,静止在倾角为θ的光滑固定斜面上,求物体对斜面压力的大小,如图1(甲)。

θ

7.如图所示重20N的物体在斜面上匀速下滑,斜面的倾角为370,求:(sin370=0.6, cos370=0.8 )

(1)物体与斜面间的动摩擦因数。

(2)要使物体沿斜面向上匀速运动,应沿斜面向上施加一个多大的推力?

8.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求

(1)物体A所受到的重力;

(2)物体B与地面间的摩擦力;

(3)细绳CO受到的拉力。

9.跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落。已知运动员和他身上装备的总重量为G1,圆顶形降落伞的重量为G2,有8条相同的拉线一端与飞行员相连(拉线重量不计)。另一端分布在伞面边缘上(图中没有把拉线都画出来),每根拉线和竖直方向都成300角,那么每根拉线上的张力大小为()

力的正交分解法

专题一:物体的受力分析 (一)物体的受力分析 物体之所以处于不同的运动状态,是由于它们的受力情况不同。要研究物体的运动,必须分析物体的受力情况。正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。 如何分析物体的受力情况呢?主要依据力的概念,从物体所处的环境(有多少个物体接触)和运动状态着手,分析它与所处环境的其他物体的相互联系。具体的分析方法是: 1、确定所研究的物体,然后找出周围有哪些物体对它产生作用。 不要找该物体施于其他物体的力。比如所研究的物体叫A,那么就应该找出“甲对A”和“乙对A”及“丙对A”的力……而“A对甲”或“A对乙”等力就不是A所受的力。也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。 2、要养成按步骤分析的习惯。 先画重力:作用点画在物体的重心。 其次画接触力(弹力和摩擦力):绕研究对象逆时针(或顺时针)观察一周,看研究对象跟其他物体有几个接触点(面),某个接触点(面)若有挤压,则画出弹力,若还有相对运动或趋势,则画出摩擦力。分析完这个接触点(面)后再依次分析其他接触点(面)。 再画其他场力:看是否有电场、磁场作用,如有则画出场力。 3、画完受力图后再作一番检查。 检查一下画出的每个力能否找出它的施力物体,若没有施力物体,则该力一定不存在。特别是检查一下分析的结果,能否使研究对象处于题目所给的运动状态,否则必然发生了多力或漏力的现象。 4、如果一个力的方向难以确定,可用假设法分析。 先假设此力不存在,观察所研究的物体会发生怎样的运动,然后审查这个力应在什么方向时,研究对象才能满足给定的运动状态。 5、合力和分力不能重复地列为物体所受的力。 力的合成与分解的过程是合力与分力“等效替代”的过程,合力和分力不能同时存在。在分析物体受力情况时,如果已考虑了某个力,那么就不能再考虑它的分力。例如,在分析斜面上物体的受力情况时,就不能把物体所受重力和“下滑力”并列为物体所受的力,因为“下滑力”是物体所受重力在沿斜面方向上的一个分力。 专题二:力的正交分解法 1、定义:把力沿着两个选定的互相垂直的方向分解,叫做力的正交分解法。 说明:正交分解法是一种很有用的方法,尤其适于物体受三个或三个以上的共点力作用的情怳。 2、正交分解的原理 一条直线上的两个或两个以上的力,其合力可由代数运算求得。当物体受到多个力的作

高一物理---正交分解法

高一物理正交分解法 所谓“正交分解法”就是将受力物体所受外力(限同一平面内的共点力)沿选 定的相互垂直的x 轴和y 轴方向分解,然后分别求出x 轴方向、y 方向的合力ΣF x 、ΣF y ,由于ΣF x 、ΣF y 相互垂直,可方便的求出物体所受外力的合力ΣF (大小和方向 一、正交分解法的三个步骤 第一步,立正交 x 、y 坐标,这是最重要的一步,x 、y 坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x 与y 的方向一定是相互垂直而正交。 第二步,将题目所给定跟要求的各矢量沿x 、y 方向分解,求出各分量,凡跟x 、y 轴方向一致的为正;凡与x 、y 轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。 第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。这是此法的核心一步。 第四步,根据各x 、y 轴的分量,求出该矢量的大小,一定表明方向,这是最终的一步。 求物体所受外力的合力或解物体的平衡问题时,常采用正交分解法。) 例1 共点力F 1=100N ,F 2=150N ,F 3=300N ,方向如图1所示,求此三力 的合力。 y 53° 37° O x 37° 解:三个力沿 x ,y 方向的分力的合力x x x x F F F F 321++=∑: ?+?-?=37sin 53sin 37cos 321F F F N N N 6.03008.01508.0100?+?-?=N 140= y y y y F F F F 321++=∑? -?+?=37cos 53cos 37sin 321F F F N N N 8.03006.01506.0100?-?+?=N 90-= (负值表示方向沿y 轴负方向) 由勾股定理得合力大小:ΣF=22)()(y x F F ∑+∑ =N 22)90(140-+=166.4N ∵ΣF x ﹥0、ΣF y ﹥0 ∴ΣF 在第四象限内,设其与x 轴正向夹角为α,则: tg α= x y F F ∑∑= N N 14090=0.6429 ∴α=32.7o 运用正交分解法解题时,x 轴和y 轴方向的选取要根据题目给出的条件合理选取,即让受力物体受到的各外力尽可能的与坐标轴重合,这样方便解题 。 运用正交分解法解平衡问题时,根据平衡条件F 合=0,应有ΣF x =0,ΣF y =0,这是解平衡问题的必要和充分条件,由此方程组可求出两个未知数。 例2 重100N 光滑匀质球静止在倾角为37o的斜面和与斜面垂直的挡板间, 求斜面和挡板对球的支持力F 1, F 2。 y F 1 x F 2 G 37° 图 3 解:选定如图3所示的坐标系,重球受力如图3所示。由于球静止,所 以有: ?? ?=?-=?-037sin 0 37cos 2 1G F G F ∴ N N G F 808.010037cos 1=?=?= N N G F 606.010037sin 2=?=?=

力的合成与分解知识点典型例题

力的合成与分解知识点 典型例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

力的合成与分解典型例题 1.合力 当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力的作用效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力. 2.共点力 如果一个物体受到两个或者更多力的作用,有些情况下这些力共同作用在同一点上,或者虽不作用在同一点上,但他们的力的作用线延长线交于一点,这样的一组力叫做共点力. 3.共点力的合成法则 求几个已知力的合力叫力的合成.力的合成就是找一个力去替代几个已知的力,而不改变其作用效果. 力的平行四边形定则:如右图所示,以表示两个力的有向线段为邻边作平行四边形,这两边夹角的对角线大小和方向就表示合力的大小和方向.(只适用于共点力) 下面根据已知两个力夹角θ的大小来讨论力的合成的几种情况: (1)当0θ=?时,即12F F 、同向,此时合力最大,12F F F =+,方向和两个 力的方向相同. (2)当180θ=?时,即12F F 、方向相反,此时合力最小,12F F F =-,方向 和12F F 、中较大的那个力相同. (3)当90θ=?时,即12F F 、相互垂直,如图,2212F F F =+,1 2 tan F F α= . (4)当θ为任意角时,根据余弦定律,合力2212122cos F F F F F θ=++ 根据以上分析可知,无论两个力的夹角为多少,必然有1212F F F F F -+≤≤成立. 【例1】 将二力F 1、F 2合成F 合,则可以肯定 ( ) A .F 1和F 合是同一性质的力 B .F 1、F 2是同一施力物体产生的力 C .F 合的效果与F 1、F 2的总效果相同 D .F 1、F 2的代数和等于F 合

高中物理必修一常考题型+例题及答案

高中物理必修一常考题型 一、直线运动 1、xt图像与vt图像 2、纸带问题 3、追及与相遇问题 4、水滴下落问题(自由落体) 二、力 1、滑动摩擦力的判断 2、利用正交分解法求解 3、动态和极值问题 三、牛顿定律 1、力、速度、加速度的关系; 2、整体法与隔离法 3、瞬时加速度问题 4、绳活结问题 5、超重失重 6、临界、极值问题 7、与牛顿定律结合的追及问题 8、传送带问题 9、牛二的推广 10、板块问题 11、竖直弹簧模型

一、直线运动 1、xt 图像与vt 图像 2014生全国(2) 14.甲乙两汽车在一平直公路上同向行驶。在t =0到t=t 1的时间内,它们的v-t 图像如图所示。 在这段时间内 A.汽车甲的平均速度比乙大 B.汽车乙的平均速度等于2 21v v C.甲乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 2016全国(1) 21.甲、乙两车在平直公路上同向行驶,其v -t 图像如图所示。已知两车在t =3s 时并排行驶,则 A.在t=1s 时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5m C .两车另一次并排行驶的时刻是t =2s D.甲、乙两车两次并排行驶的位置之间沿公路方向的距离 为40m 2、纸带问题 【2012年广州调研】 34.(18分) (1) 用如图a 所示的装置“验证机械能守恒定律” ①下列物理量需要测量的是__________、通过计算得到的是_____________(填写代号) A .重锤质量 B .重力加速度 C .重锤下落的高度 D .与下落高度对应的重锤的瞬时速度 ②设重锤质量为m 、打点计时器的打点周期为T 、重力加速度为g .图b 是实验得到的一条纸带, A 、 B 、 C 、 D 、 E 为相邻的连续点.根据测得的s1、s2、s3、s4写出重物由B 点到D 点势能减少量的表达式__________,动能增量的表达式__________.由于重锤下落时要克服阻力做功,所以该实验的动能增量总是__________(填“大于”、“等于”或“小于”)重力势能的减小量

高中物理牛顿运动定律典型例题精选讲解解析

2012牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛 顿(定义使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力 的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右 为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, 0 图1

力的正交分解法经典试题内附答案

力的正交分解法经典试题(内附答案) 1.如图1,一架梯子斜靠在光滑竖直墙和粗糙水平面间静止,梯子和竖直墙的夹角为α。当α再增大一些后,梯子仍然能保持静止。那么α增大后和增大前比较,下列说法中正确的是 C A.地面对梯子的支持力增大 B.墙对梯子的压力减小 C.水平面对梯子的摩擦力增大 D.梯子受到的合外力增大 2.一个质量可以不计的细线,能够承受的最大拉力为F。现在把重力G=F 的重物通过光滑的轻质小钩挂在这根细线上,两手握住细线的两端,开始两手并拢,然后沿水平方向慢慢地分开,为了不使细线被拉断,细线的两端之间的夹角不能大于(C ) A.60° B.90° C.120° D .150° 3.放在斜面上的物体,所受重力G可以分解使物体沿斜面向下滑的分力G 1和使物体压紧斜面的分力G 2,当斜面倾角增大时(C ) A. G 1和G 2都增大 B. G 1和G 2都减小 C. G 1增大,G 2减小 D . G 1减小,G2增大 4.如图所示,细绳MO 与NO所能承受的最大拉力相同,长度MO>NO ,则在不断增加重物G 的重力过程中(绳O C不会断)( A ) A.ON 绳先被拉断 B .O M绳先被拉断 C.ON 绳和OM 绳同时被拉断 D.条件不足,无法判断 5.如图所示,光滑的粗铁丝折成一直角三角形,BC 边水平,AC 边竖直,∠AB C=β,AB 、AC 边上分别套有细线系着的铜环,细线长度小于BC,当它们静止时,细线与AB 边成θ角,则 ( D ) A.θ=β B .θ<β C.θ>2 π D .β<θ<2 π θ G C O M N α 图

6.质量为m的木块沿倾角为θ的斜面匀速下滑,如图1所示,那么斜面对物体的作用力方向是 [D ] A.沿斜面向上 B.垂直于斜面向上 C.沿斜面向下 D.竖直向上 7.物体在水平推力F的作用下静止于斜面上,如图3所示,若稍稍增大推力,物体仍保持静止,则 [BC ] A.物体所受合力增大 B.物体所受合力不变 C.物体对斜面的压力增大 D.斜面对物体的摩擦力增大 8.如图4-9所示,位于斜面的物块M在沿斜面向上的力F作用下,处于静止状态,则斜面作用于物块的静摩擦力的(ABCD ) A.方向可能沿斜面向上 B.方向可能沿斜面向下 C.大小可能等于零 D.大小可能等于F

高中物理牛顿运动定律典型例题精选讲解

牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示, F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s 2 的加速度的作用力为 1N,即1N=1kg.m/s 2 . 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300 ,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向, 竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, F N -mg=masin300 因为 56=mg F N ,解得5 3 =mg F f . 练习2.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图3-1-15所示.在物体始终相对于斜 面静止的条件下,下列说法中正确的是( ) A .当θ一定时,a 越大,斜面对物体的正压力越小 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当a 一定时,θ越大,斜面对物体的正压力越小 D .当a 一定时,θ越大,斜面对物体的摩擦力越小 练习3.一物体放置在倾角为θ的斜面上,斜面固定于在水平面上加速运动的小车中,加速度为a ,如图3—1-16所示,在物体始终相对于斜面静止的条件下,下列说法中正确的是() A .当θ一定时,a 越大,斜面对物体的正压力越大 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当θ一定时,a 越大,斜面对物体的正压力越小 D .当θ一定时,a 越大,斜面对物体的摩擦力越小 问题2:必须弄清牛顿第二定律的瞬时性。 1.物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力.若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;或合外力变为零,加速度也立即变为零(物体运动的加速度可以突变). 2.中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性: A .轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等. B .软:即绳(或线)只能受拉力,不能承受压力(因绳能变曲),由此特点可知,绳与其物体相互间作用力的方向总是沿着绳子且背离受力物体的方向. C .不可伸长:即无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变. 30a F m g F f 图1 x y x a a 图图

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

力的正交分解专项练习(含详细答案)

力的正交分解专项练习(含详细答案) 1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和40o ,求绳AO 和BO 对物体的拉力的大小。 2. 如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 3. (8分)如图6所示,θ=370 ,sin370 =0.6,cos370 =0.8。箱子重G =200N ,箱子与地面的动摩擦因数μ=0.30。要匀速拉动箱子,拉力F 为多大? 4.(8分)如图,位于水平地面上的质量为M 的小木块,在大小为F 、方向与水平方向成a 角的拉力作用下沿地面作匀速直线运动。求: (1 ) 地面对物体的支持力? (2) 木块与地面之间的动摩擦因数?

5.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直放置的档板,在 档板和斜面之间放一个重力G=20N 的光滑球,把球的重力沿垂直于斜面和垂直于档板的方向分解为力F 1和F 2,求这两个分力F 1和F 2的大小。 6.(6分)长为20cm 的轻绳BC 两端固定在天花板上,在中点系上一重60N 的重物,如图11 所示: (1)当BC 的距离为10cm 时,AB 段绳上的拉力为多少? (2)当BC 的距离为102cm 时.AB 段绳上的拉力为多少? 7.质量为m 的物体在恒力F 作用下,F 与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少? 8.如图所示重20N 的物体在斜面上匀速下滑,斜面的倾角为370,求: (1)物体与斜面间的动摩擦因数。 (2)要使物体沿斜面向上匀速运动,应沿斜面向上施加一个多大的推力? (sin370=0.6, cos370=0.8 )

高中物理公式集锦以及典型例题分析合集

一、力学 胡克定律:f = kx 重力:G = mg 滑动摩擦力:f = μN 求F 1、F 2的合力的公式:θcos 2212221F F F F F ++=合 两个分力垂直时:2221F F F +=合 万有引力:F =G 221r m m G = 6.67×10-11 N ·m 2 / kg 2 万有引力=向心力 '422 222mg ma r T m r m r v m r Mm G =====πω 2R Mm G mg = GM gR =2 黄金代换式 第一宇宙速度:s km gR r GM v /9.7=== 第二宇宙速度:v 2=11.2km /s , 第三宇宙速度:v 3=16.7km /s 牛二定律: t p ma F ??==合 匀变速直线运动:v t = v 0 + a t S = v o t +12 a t 2 as v v t 2202=- 初速为零的匀加速直线运动, 在1s 、2s ……内的位移比为12:22:32……n 2 在第1s 内、第 2s 内……位移比为1:3:5……(2n-1) 在第1m 内、第2m 内……时间比为1:()21-:(32-)……(n n --1) 连续相邻的相等的时间间隔内的位移差:? s = a T 2 CheckBox1

匀速圆周运动公式 线速度:V = t s =2πR T =ωR=2πf R 向心加速度:a =v R R T R 222244===ωππ2 f 2 R 角速度:ω=φπ πt T f ==22 向心力:F= ma = m v R m 2=ω2 R = m 422πT R =42πm f 2R 平抛:水平分运动:水平位移:x= v o t 水平分速度:v x = v o 竖直分运动:竖直位移:y =2 1g t 2 竖直分速度:v y = g t 功 : αcos Fs W = 动能: 22 1mv E k = 重力势能:E p = mgh (与零势面有关) 动能定理: W 合= ?E k = E k 2 - E k 1 = 21222 121mv mv - 机械能守恒: mgh 1 +222212 121mv mgh mv += 功率:P = W t =Fv cos α (t 时间内的平均功率) 物体的动量 P=mv, 力的冲量 I=Ft 动量定理:F 合t=mv 2-mv 1 动量守恒定律:11v m +m 2v 2 = m 1v 1’+m 2v 2’ 简谐振动的回复力 F=-kx 加速度x m k a -=

16正交分解法例题及练习

3045 A B O G 正交分解法专题训练 1.如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和45o ,求绳AO 和BO 对物体的拉力的大小。 … 2.如图所示,轻绳AC 与天花板夹角α=300,轻绳BC 与天花板夹角β=600.设AC 、BC 绳能承受的最大拉力均不能超过100N ,CD 绳强度足够大,求CD 绳下端悬挂的物重G 不能超过多少 . 3.质量为m 的物体在恒力F 作用下,F 与水平方向之间的夹角为θ,沿天花板向右做匀速运动,物体与顶板间动摩擦因数为μ,则物体受摩擦力大小为多少 》 300 [ 600

4.如图所示,物体的质量kg m 4.4=,用与竖直方向成?=37θ的斜向右上方的推力F 把该物体压在竖直墙壁上,并使它沿墙壁在竖直方向上做匀速直线运动。物体与墙壁间的动摩擦因数 5.0=μ,取重力加速度2 /10s m g =,求推力F 的大小。(6.037sin =?,8.037cos =?) ; . 5.如图,物体A 的质量为m ,斜面倾角α,A 与斜面间的动摩擦因数为μ,斜面固定,现有一个水平力F 作用在A 上,当F 多大时,物体A 恰能沿斜面匀速向上运动 : 6.质量为m 的物体,用水平细绳AB 拉住,静止在倾角为θ的光滑固定斜面上,求物体对斜面压力的大小,如图1(甲)。 > θ

" 7.如图所示重20N的物体在斜面上匀速下滑,斜面的倾角为370,求:(sin370=, cos370= ) (1)物体与斜面间的动摩擦因数。 (2)要使物体沿斜面向上匀速运动,应沿斜面向上施加一个多大的推力 / 8.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 ; ¥

高中物理必修一牛顿第二定律典型例题

高一物理牛顿第二定律典型例题讲解与错误分析 【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动. 【答】 D. 【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少? 【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度. (1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0. (2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为: 它的方向与反向后的这个力方向相同.

【例3】沿光滑斜面下滑的物体受到的力是 [ ] A.力和斜面支持力 B.重力、下滑力和斜面支持力 C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力 【误解一】选(B)。 【误解二】选(C)。 【正确解答】选(A)。 【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。若理解为对斜面的正压力,则是斜面受到的力。 在用隔离法分析物体受力时,首先要明确研究对象并把研究对象从周围物体中隔离出来,然后按场力和接触力的顺序来分析力。在分析物体受力过程中,既要防止少分析力,又要防止重复分析力,更不能凭空臆想一个实际不存在的力,找不到施力物体的力是不存在的。 【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ] A.不断增大 B.不断减少 C.先增大后减少 D.先增大到一定数值后保持不变 【误解一】选(A)。

2020届高考物理计算题复习《力的正交分解法》(解析版)

《力的正交分解法》 一、计算题 1.如图所示,两个质量均为m的小环套在一水平放置的粗糙长杆上,两根长度均为l 的轻绳一端系在小环上,另一端系在质量为M的木块上,两个小环之间的距离也为l,此时小环刚好不滑动.试求: 每个小环对杆的压力; 小环与杆之间的动摩擦因数为多大假设最大静摩擦力等于动摩擦力,重力加速度为? 2.如图甲所示,质量为的物体置于倾角为的固定斜面上.用平行于 斜面向上的推力作用于物体上,使其能沿斜面匀速上滑,,,. 求物体与斜面之间的动摩擦因数; 如图乙所示,若改用水平向右的推力作用于物体上,也能使物体沿斜面匀速上滑,求大小.

3.如图所示,质量为的物体处于静止状态,细绳 OA沿水平方向,细绳OB与水平方向夹角为求:OA、 OB两根细绳的拉力大小分别是多少.,取 4.如图所示,物体重60N,放在倾角为的斜面上,用的水平推力推 物体,物体沿斜面匀速向下滑动.求: 物体所受滑动摩擦力的大小. 物体与斜面间的动摩擦因数.

5.如图所示,斜面始终静止在地面上,斜面上物体A质量为,与斜面间的最大 静摩擦力为正压力的倍,为使物体A在斜面上静止,取, ,。问: 的质量的最大值和最小值各是多少? 对应于B质量的最大值和最小值两种情形时,地面对斜面的摩擦力分别为多大? 6.如图所示,A、B两物体叠放在水平地面上,已知A、B的 质量分别为,,A、B之间以及B 与地面之间的动摩擦因数均为,一轻绳一端系住物 体A,另一端系于墙上,绳与竖直方向的夹角为,今 欲用外力将物体B匀速向右拉出,求:水平力F的大小和 轻绳拉力T的大小。已知,, 7.如图所示,质量为的木板B放在水平地面上,质量为的货箱 A放在木板B上,一根轻绳一端栓在货箱上,另一端栓在地面的木桩上,绳绷紧时与水平面的夹角为,已知货箱A与木板B之间的动摩擦因数,木板B与地面之间的动摩擦因数为,重力加速度,现用水平力F将 木板B从货箱A下面匀速抽出,试求: 绳上张力T的大小; 拉力F的大小。

典型共点力平衡问题例题

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少? (3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情 况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、 摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。

设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得T≈8N, (2)圆环将要滑动时,得m G g=Tctgθ,m G=0.6kg。 (3)前已证明φ为直角。 例4]如图1所示,质量为m=5kg的物体放在水平面上,物体与水平面间的动摩擦因数求当物体做匀速直线运动时,牵引力F的最小值和方向角θ。 [分析]本题考察物体受力分 析:由于求摩擦力f时,N受F制约, 而求F最小值,即转化为在物理问 题中应用数学方法解决的实际问 题。我们可以先通过物体受力分析。 据平衡条件,找出F与θ关系。进 一步应用数学知识求解极值。 [解]作出物体m受力分析如图2,由平衡条件。 ∑F x=Fcosθ-μN=0(1) ∑F y=Fsinθ+N-G=0(2) 由cos(θ-Ф)=1即θ—Ф=0时

物体的受力(动态平衡)分析及典型例题

物体的受力(动态平衡)分析及典型例题 受力分析就是分析物体的受力,受力分析是研究力学问题的基础,是研究力学问题的关键。 受力分析的依据是各种力的产生条件及方向特点。 一.几种常见力的产生条件及方向特点。 1.重力。 重力是由于地球对物体的吸引而使物体受到的力,只要物体在地球上,物体就会受到重力。 重力不是地球对物体的引力。重力与万有引力的关系是高中物理的一个小难点。 重力的方向:竖直向下。 2.弹力。 弹力的产生条件是接触且发生弹性形变。 判断弹力有无的方法:假设法和运动状态分析法。 弹力的方向与施力物体形变的方向相反,与施力物体恢复形变的方向相同。 弹力的方向的判断:面面接触垂直于面,点面接触垂直于面,点线接触垂直于线。 【例1】如图1—1所示,判断接触面对球有无弹力,已知球静止,接触面光滑。图a 中接触面对球 无 弹力;图b 中斜面对小球 有 支持力。 【例2】如图1—2所示,判断接触面MO 、ON 对球有无弹力,已知球静止,接触面光滑。水平面ON 对球 有 支持力,斜面MO 对球 无 弹力。 【例3】如图1—4所示,画出物体A 所受的弹力。 a 图中物体A 静止在斜面上。 b 图中杆A 静止在光滑的半圆形的碗中。 c 图中A 球光滑,O 为圆心,O '为重心。

【例4】如图1—6所示,小车上固定着一根弯成α角的曲杆,杆的另一端固定一个质量为m 的球,试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a 水平向右加速运动;(3)小车以加速度a 水平向左加速运动;(4)加速度满足什么条件时,杆对小球的弹力沿着杆的方向。 3.摩擦力。 摩擦力的产生条件为:(1)两物体相互接触,且接触面粗糙;(2)接触面间有挤压;(3)有相对运动或相对运动趋势。 摩擦力的方向为与接触面相切,与相对运动方向或相对运动趋势方向相反。 判断摩擦力有无和方向的方法:假设法、运动状态分析法、牛顿第三定律分析法。 【例5】如图1—8所示,判断下列几种情况下物体A 与接触面间有、无摩擦力。 图a 中物体A 静止。图b c 中物体 A 沿光滑斜面下滑。图d 中物体A 静止。 图a 中 无 摩擦力产生,图b 中 无 摩擦力产生,图c 中 无 摩擦力产生,图d 中 有 摩擦力产生。 【例6】如图1—9所示为皮带传送装置,甲为主动轮,传动过程中皮带不打滑,P 、Q 分别为两轮边缘上的两点,下列说法正确的是:( B ) A .P 、Q 两点的摩擦力方向均与轮转动方向相反 B .P 点的摩擦力方向与甲轮的转动方向相反, Q 点的摩擦力方向与乙轮的转动方向相同 C .P 点的摩擦力方向与甲轮的转动方向相同, Q 点的摩擦力方向与乙轮的转动方向相反 D .P 、Q 两点的摩擦力方向均与轮转动方向相同

正交分解法例题及练习

正交分解法 在运用正交分解法解题时,一般按如下步骤: ㈠ 以力的作用点为原点作直角坐标系,标出x 轴和y 轴,如果这时物体处于平衡状态,则两轴的方向可根据自己需要选择,如果力不平衡而产生加速度,则x 轴(或y 轴)一定要和加速度的方向重合; ㈡将与坐标轴成角度的力分解成x 轴和y 轴方向的两个分力,并在图上标明,用符号F x 和F y 表示; ㈢在图上标出与x 轴或与y 轴的夹角,然后列出F x 、F y 的数学表达式。如:F 与x 轴夹角分别为θ,则 θθsin ;cos F F F F y x ==。与两轴重合的力就不需要分解了; ㈣列出x 轴方向上和各分力的合力和y 轴方向上的各分力的合力的两个方程,然后再求解。 一、 运用正交分解法典型例题 例1.物体放在粗糙的水平地面上,物体重50N ,受到斜向上方向与水平面成300角的力F 作用,F = 50N ,物体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和 地面的支持力分别是多少? 解析:对F 进行分解时,首先把F 按效果分解成竖直向上的分力和 水平向右的分力, 对物体进行受力分析如图2 所示。F 的效果可以由分解的水平方向分力F x 和竖直方向的分力F y 来代替。则: 030sin ,30cos F F F F y X == 由于物体处于静止状态时所受合力为零,则在竖直方向有: G F N =+030sin 030sin F G N -= 则在水平方向上有: 030cos F f = 例2.如图3所示,一物体放在倾角为θ的光滑斜面上,求使物体下滑的力和使物体压紧斜面的力。 解析:使物体下滑的力和使物体压紧斜面的力都是由重力引起的,把重力分解成两个互相垂直的两个力,如图4所示,其中F 1 为使物体下滑的力,F 2为物体压紧斜面的力,则: θ θcos sin 21G F G F == 3 F 1 G 图4 F 2 θ θ 300 图1 y x f F G N 图2 α

相关主题