搜档网
当前位置:搜档网 › 导数与不等式的证明(高考真题)【含答案】

导数与不等式的证明(高考真题)【含答案】

导数与不等式的证明(高考真题)【含答案】
导数与不等式的证明(高考真题)【含答案】

导数与不等式的证明

1.【2013湖南文科】已知函数f (x )=

x

e x

2

1x 1+-. (Ⅰ)求f (x )的单调区间;

(Ⅱ)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.

【解析】 (Ⅰ) .)

123)12)1()1)11()('2

22

222x x x xe x x e x x e x x f x x x ++--?=+?--+?-+-=((( ;

)(,0)(']0-02422单调递增时,,(当x f y x f x =>∞∈∴

单调递减)时,,当)(,0)('0[x f y x f x =≤∞+∈.

所以,)上单调递减,上单调递增;在,在(∞+∈∞=0[]0-)(x x f y 。

(Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可。

]1)1[(11111)()(22

22x e x x

e e x x e x x x

f x f x

x x x ---+=++-+-=----。 1)21()('0,1)1()(22--=?>---=x x e x x g x x e x x g 令。

,04)21()('1)21()(222<-=-=?--=x x x xe e x x h e x x h 令

0)0()(0)(=

)0()(0)(=

.000]1)1[(122

==∞+---+=?-y x x e x x

e y x x

时)上单调递减,但,在( )()(0)()(x f x f x f x f -

.0)()(212121<+≠=x x x x x f x f 时,且所以,当(证毕)

2.【2013天津理科】已知函数.

(Ⅰ) 求函数f (x )的单调区间;

(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使.

(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为, 证明: 当时, 有. (1)函数f (x )的定义域为(0,+∞).

2

l ()n f x x x =()t f s =()s g t =2>e t 2ln ()15ln 2

g t t <<

f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0

,得x =. 当x

所以函数f (x )的单调递减区间是? ?,单调递增区间是?

+∞??

. (2)证明:当0<x ≤1时,f (x )≤0.

设t >0,令h (x )=f (x )-t ,x ∈[1,+∞). 由(1)知,h (x )在区间(1,+∞)内单调递增. h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0. 故存在唯一的s ∈(1,+∞),使得t =f (s )成立.

(3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1,从而

2ln ()ln ln ln ln ln ()ln(ln )2ln ln(ln )2ln g t s s s u

t f s s s s s u u

====

++, 其中u =ln s . 要使

2ln ()15ln 2g t t <<成立,只需0ln 2

u u <<. 当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e)=e 2,矛盾. 所以s >e ,即u >1,从而ln u >0成立. 另一方面,令F (u )=ln 2u u -

,u >1.F ′(u )=11

2

u -,令F ′(u )=0,得u =2. 当1<u <2时,F ′(u )>0;当u >2时,F ′(u )<0.

故对u >1,F (u )≤F (2)<0. 因此ln 2

u

u <

成立. 综上,当t >e 2时,有2ln ()15ln 2

g t t <<.

3【2013天津文科】设[2,0]a ∈-, 已知函数332

(5),

03,0(,).

2

x f a x x a x x x x x a -+≤+-

+>??

=???

(Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;

(Ⅱ) 设曲线()y f x =在点(,())(

1,2,3i i i x f x i P =处的切线相互平行, 且1230,x x x ≠证明1231

3

x x x ++>.

(1)设函数f 1(x )=x 3

-(a +5)x (x ≤0),f 2(x )=3

2

32

a x x ax +-

+(x ≥0), ①f 1′(x )=3x 2

-(a +5),由a ∈[-2,0],从而当-1<x <0时,f 1′(x )=3x 2

-(a +5)<3-a -5≤0,所以函数f 1(x )在区间(-1,0]内单调递减.

②f 2′(x )=3x 2

-(a +3)x +a =(3x -a )(x -1),由于a ∈[-2,0],所以当0<x <1时,f 2′(x )<0;当x >1时,f 2′(x )>0.即函数f 2(x )在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.

综合①,②及f 1(0)=f 2(0),可知函数f (x )在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.

(2)由(1)知f ′(x )在区间(-∞,0)内单调递减,在区间306a +??

???

内单调递减,在区间36a +??

+∞ ???

,内单调递增. 因为曲线y =f (x )在点P i (x i ,f (x i ))(i =1,2,3)处的切线相互平行,从而x 1,x 2,x 3互不相等,且f ′(x 1)=f ′(x 2)=f ′(x 3).不妨设x 1<0<x 2<x 3,由213x -(a +5)=2

23x -(a +3)x 2+a =2

33x -(a +3)x 3+a ,

可得22

2333x x --(a +3)(x 2-x 3)=0,解得x 2+x 3=33a +,从而0<x 2<3

6

a +<x 3. 设g (x )=3x 2

-(a +3)x +a ,则36a g +??

???<g (x 2)<g (0)=a . 由2

13x -(a +5)=g (x 2)<a

,解得x 1<0,

所以x 1+x 2+x 3

>3

3

a +, 设t

a =235

2t -,

因为a ∈[-2,0],所以t

∈??

, 故x 1+x 2+x 3>2231111

(1)6233

t t t +-+=--≥-,即x 1+x 2+x 3>13-.

4【2014天津理科】已知函数()x

f x x ae =-()a R ?,x R ?.已知函数()y f x =有两个

零点12,x x ,且12x x <. (Ⅰ)求a 的取值范围; (Ⅱ)证明

2

1

x x 随着a 的减小而增大; (Ⅲ)证明12x x +随着a 的减小而增大.

(Ⅰ)解:由()x

f x x ae =-,可得()1x

f x ae ¢=-.

下面分两种情况讨论: (1)0a £时

()0f x ¢>在R 上恒成立,可得()f x 在R 上单调递增,不合题意.

(2)0a >时,

由()0f x ¢=,得ln x a =-.

当x 变化时,()f x ¢,()f x 的变化情况如下表:

这时,()f x 的单调递增区间是(),ln a -?;单调递减区间是()ln ,a -+¥.

于是,“函数()y f x =有两个零点”等价于如下条件同时成立: 1°()ln 0f a ->;2°存在()1,ln a s ??,满足()10f s <;

3°存在()2ln ,a s ?

+?,满足()20f s <.

由()ln 0f a ->,即ln 10a -->,解得1

0a e -<<,而此时,取10s =,满足

()1,ln a s ??,且()10f s a =-<;取222

ln s a a

=

+,满足()2ln ,a s ?+?,且

()22222ln 0a a f s e e a a

骣骣鼢珑鼢=-+-<珑鼢珑鼢珑桫桫.所以,a 的取值范围是()10,e -. (Ⅱ)证明:由()0x

f x x ae =-=,有x x a e

=

. 设()x x g x e =

,由()1x

x

g x e -¢=,知()g x 在(),1-¥上单调递增,在()1,+¥上单调递减.

并且,当(],0x ?

?时,()0g x £;当()0,x ??时,()0g x >.

由已知,12,x x 满足()1a g x =,()2a g x =. 由()1

0,a e -?,及()g x 的单调性,可得

()10,1x ?,()21,x ??.

对于任意的()1

120,,a a e -?,设12a a >,()()121g g a x x ==,其中1201x x <<<;

()()122g g a h h ==,其中1201h h <<<.

因为()g x 在()0,1上单调递增,故由12a a >,即()()11g g x h >,可得11x h >;类似可得

22x h <.

又由11,0x h >,得

222

111

x h h x x h <<. 所以,2

1

x x 随着a 的减小而增大.

(Ⅲ)证明:由11x x ae =,22x

x ae =,可得11ln ln x a x =+,22ln ln x a x =+. 故2

21211

ln ln ln

x x x x x x -=-=. 设

21

x t x =,则1t >,且2121,ln ,

x tx x x t ì=?

?í?-=??解得1ln 1t x t =-,2

ln 1t t x t =-.所以, ()121ln 1

t t

x x t ++=

-. ①

令()()1ln 1

x x

h x x +=

-,()1,x ??,则()()

2

1

2ln 1x x x h x x -+-

¢=

-.

令()1

2ln u x x x x

=-+-,得()2

1x u x x

骣-÷?¢=÷?÷?桫. 当()1,x ??

时,()0u x ¢>.因此,()u x 在()1,+¥上单调递增,故对于任意的

()1,x ??,()()10u x u >=,由此可得()0h x ¢>,故()h x 在()1,+¥上单调递增.

因此,由①可得12x x +随着t 的增大而增大.

而由(Ⅱ),t 随着a 的减小而增大,所以12x x +随着a 的减小而增大

高考导数解答题中常见的放缩大法

高考导数解答题中常见的 放缩大法 Prepared on 22 November 2020

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥->

(放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011 x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩 (放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤ ≤-,()10x e x x <-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩 第四组:三角函数放缩 ()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22 x x x -≤≤-. 第五组:以直线1y x =-为切线的函数 ln y x =,11x y e -=-,2y x x =-,11y x =-,ln y x x =.

高考导数解答题中常见的放缩大法

高考导数解答题中常见 的放缩大法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥->

高考导数题型大全及答案

高考导数题型大全及答案

第三讲 导数的应用 研热点(聚焦突破) 类型一 利用导数研究切线问题 导数的几何意义 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f ′(x 0); (2)曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). [例1] (2012年高考安徽卷改编)设函数f (x )=a e x + 1 a e x +b (a >0).在点(2,f (2))处的切线方程为y =32x ,求a ,b 的值. [解析] ∵f ′(x )=a e x -1a e x , ∴f ′(2)=a e 2- 1a e 2=32, 解得a e 2=2或a e 2=-12 (舍去), 所以a =2e 2,代入原函数可得2+12+b =3, 即b =1 2, 故a =2e 2,b =12 . 跟踪训练 已知函数f (x )=x 3-x . (1)求曲线y =f (x )的过点(1,0)的切线方程; (2)若过x 轴上的点(a ,0)可以作曲线y =f (x )的三条切线,求a 的取值范围. 解析:(1)由题意得f ′(x )=3x 2-1.曲线y =f (x )在点M (t ,f (t ))处的切线方程为y -f (t )=f ′(t )(x - t ),即y =(3t 2-1)·x -2t 3,将点(1,0)代入切线方程得2t 3-3t 2+1=0,解得t =1或- 1 2,代入y =(3t 2-1)x -2t 3得曲线y =f (x )的过点(1,0)的切线方程为y =2x -2或y =-14x +1 4 . (2)由(1)知若过点(a ,0)可作曲线y =f (x )的三条切线,则方程2t 3-3at 2+a =0有三个相异的实根,记g (t )=2t 3-3at 2+a .

(完整版)导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

高考导数大题大全理科答案

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'11 2()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知1 2e ()e ln ,x x f x x x -=+ 从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1 (,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为1 1().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 22 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = (2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 和2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令21a x -=,则01a <<且12a ≠-知:当102 a <<时,10x -<<;当112a <<时,01x <<. 记2 2 ()ln 2g x x x =+-, (Ⅰ)当10x -< <时,2()2ln()2g x x x =-+-,所以/22 2222 ()0x g x x x x -=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当1 02 a << 时, 12()()0f x f x +<. (Ⅱ)当01x <<时,2()2ln 2g x x x =+ -,所以/222222 ()0x g x x x x -=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时 1 12 a <<,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围为1 (,1)2. 3. (1)证明:因为对任意x ∈R ,都有() ()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R 上的偶函数. (2)解:由条件知(e e 1)e 1x x x m --+-≤-在(0,+∞)上恒成立. 令t = e x (x >0),则t >1,所以m ≤211 11111 t t t t t -- =--+-++-对于任意t >1成立. 因为11111t t -+ +≥- = 3,所以1113111 t t - ≥--++-, 当且仅当t = 2,即x = ln2时等号成立.

2016年高考导数试题及答案(精选)

1.(新课标1)已知函数 有两个零点. (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明: +x 2<2. 解:(Ⅰ) '()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1 ,)x ∈+∞时,'()0f x >.所 以 ()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0 b <且ln 2a b <,则22 3()(2)(1)()022 a f b b a b a b b >-+-=->,故()f x 存在两个零点. (iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2 e a ≥-,则ln(2)1a -≤,故当 (1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以() f x 不存在两个零点. 若2 e a <- ,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设1 2x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1) -∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于 222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以 222222(2)(2)x x f x x e x e --=---. 设 2()( 2 ) x x g x xe x e -=---, 则 2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从 而22()(2)0g x f x = -<,故122x x +<. 2(新课标2)(I)讨论函数x x 2f (x) x 2 -= +e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈ 时,函数2 x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a , 求函数()h a 的值域.

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

(完整版)高考导数专题(含详细解答)

导数及其应用 导数的运算 1. 几种常见的函数导数: ①、c '= (c 为常数); ②、n (x )'= (R n ∈); ③、)(sin 'x = ;④、)(cos 'x = ; ⑤、 x (a )'= ; ⑥、x (e )'= ; ⑦、a (log x )'= ; ⑧、(ln x )'= . 2. 求导数的四则运算法则: ()u v u v '''±=±;v u v u uv '+'=')(;2)(v v u v u v u '-'=' )0(2 ''' ≠-=??? ??v v u v vu v u 注:① v u ,必须是可导函数. 3. 复合函数的求导法则: )()())((x u f x f x ??'?'=' 或 ' ?'='x u x u y y 一、求曲线的切线(导数几何意义) 导数几何意义:0()f x '表示函数()y f x =在点(0x ,0()f x )处切线L 的斜率; 函数()y f x =在点(0x ,0()f x )处切线L 方程为000()()()y f x f x x x '-=- 1.曲线 在点处的切线方程为( )。 A: B: C: D: 答案详解B 正确率: 69%, 易错项: C 解析:本题主要考查导数的几何意义、导数的计算以及直线方程的求解。 对求导得 ,代入 得 即为切线的斜率,切点为 ,所以切线方 程为 即 。故本题正确答案为B 。 2. 变式一:

3.设函数2 ()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1)) f 处切线的斜率为 ( ) A .4 B .14- C .2 D .1 2- 4.已知函数()f x 在R 上满足2 ()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 ( ) A .21y x =- B .y x = C .32y x =- D .23y x =-+ 变式二: 5.在平面直角坐标系xoy 中,点P 在曲线3 :103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的 斜率为2,则点P 的坐标为 .

导数高考解答题专题

导数高考解答题专题 1、(2018北京文)设函数()()23132e x f x ax a x a ??=-+++??. (1)若曲线()y f x =在点()()22f ,处的切线斜率为0,求a ; (2)若()f x 在1x =处取得极小值,求a 的取值范围. 2、(2018全国新课标Ⅰ文)已知函数()e ln 1x f x a x =--.设2x =是()f x 的极值点,求a , 并求()f x 的单调区间 3、(2018全国新课标Ⅱ文)已知函数()()32113 f x x a x x = -++.若3a =,求()f x 的单调区间 4、(2018全国新课标Ⅲ文)已知函数21()e x ax x f x +-=.求曲线()y f x =在点(0,1)-处的切线方程 5、(2017北京文、理)已知函数 ()e cos x f x x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 在区间π[0,]2 上的最大值和最小值.

6、(2017全国新课标Ⅰ文)已知函数()f x =e x (e x ?a )?a 2x .讨论()f x 的单调性 7、(2017全国新课标Ⅱ文)设函数2()(1)e x f x x =-.讨论()f x 的单调性 8、(2017全国新课标Ⅲ文)已知函数()f x =ln x +ax 2+(2a +1)x .讨论()f x 的单调性 9、(2017天津文)设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,求()f x 的 单调区间

20122017年全国高考文科导数大题官方解答

2012--2017全国卷高考真题导数大题 1.(2012新课标全国卷1文21,本小题满分12分) 设函数()2x f x e ax =--. (Ⅰ)求()f x 的单调区间; (Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值. 解:(Ⅰ)()f x 定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增; 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,)0f x '>( , 所以()f x 在(,ln )a -∞,单调递减,在(ln ,)a +∞单调递增; (Ⅱ)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++, 故当0x >时,()()10x k f x x '-++>等价于1 (0)1 x x k x x e +< +>-,① 令1 ()1 x x g x x e +=+-,则22 1(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+=--, 由(Ⅰ)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x 在(0,)+∞存在唯一零点,故()g x '在(0,)+∞存在唯一零点, 设此零点为α,则(1,2)α∈, 当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,)0g x '>( , 所以()g x 在(0,)+∞的最小值是()g α, 又()0g α'=,可得2e α α=+,所以()1(2,3)g αα=+∈, 由于①等价于()k g α<,故整数k 的最大值为2. 2.(2013新课标全国卷1文21,本小题满分12分) 已知函数2 ()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为

(完整版)高考导数解答题中常见的放缩大法.doc

( 高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟, 将复杂的函数求导, 再对导函数 求导,再求导,然后就没有然后了 ......如果懂得了最常见的放缩,如:人教版课本中常用的 结论 ⑴ sin x x, x (0, ) ,变形即为 sin x 1,其几何意义为 y sin x, x (0, ) 上的的点与 原点连线斜率小于 1. x ⑵ e x x 1 ⑶ x ln( x 1) ⑷ ln x x e x , x 0 . 将这些不等式简单变形如下: 1 1 ln x x 1,e x x 1,e x ex,ln x 1 那么很多问题将迎刃而解。 x ex 例析:( 2018 年广州一模) 设 f ( x) ax ln x 1, 若对任意的 x 0, f ( x) x e 2 x 恒成立, 求 a 的取值范围。 放缩法:由 e x x 1可得: e 2 x ln x 1 xe x (ln x 1) e 2x ln x (ln x 1) 2x ln x 1 (ln x 1) 2 x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数) ln x x 1, ln x x , ln 1 x x (放缩成双撇函数) ln x 1 x 1 x 1 , ln x 1 x 1 0 x 1 , 2 x 2 x ln x x 1 x 1 , ln x x 1 , 0 x 1 x x (放缩成二次函数) ln x x 2 x , ln 1 x x 1 x 2 1 x 0 , 1 x 2 2 ln 1 x x x 0 2 ln x 1 1 ,ln x 2 x 1 1 , ln x 2 x 1 (放缩成类反比例函数) x 1 x x 0 x 1 , x 1 ln 1 x x , ln 1 x 2x , ln 1 x 2x x 0 1 1 x 0 1 x x x 第二组:指数放缩

高考导数大题汇编理科答案

高考导数大题汇编理科答 案 Last revision date: 13 December 2020.

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,' 112()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知12e ()e ln ,x x f x x x -=+从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1(,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为11 ().e e g =-. 设函数2()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 2 2 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = ,(2x =-舍去). 当1(0,)x x ∈时,/ ()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1x = 2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令2a - 01x <<. 记(g x (Ⅰ)当1 - 因此,g 1()( f x f +(Ⅱ)当0 因此,(g x 1()( f x f + 综上所 3. (1)证明函数. (2)解:由条 令t = 因为 当且 因此 (3)解:令函 当x ≥1时, 因此g (x )在 由于存在x 0故1 e+e 2 --令函数() h x 当(0,e x ∈

高考导数题型大全及答案

第三讲导数的应用 研热点(聚焦突破) 类型一利用导数研究切线问题 导数的几何意义 (1)函数y=f(x)在x=x 0处的导数f′(x )就是曲线y=f(x)在点(x ,f(x ))处的切线的斜率,即k=f′(x ); (2)曲线y=f(x)在点(x 0,f(x ))处的切线方程为y-f(x )=f′(x )(x-x ). [例1](2012年高考卷改编)设函数f(x)=a e x+ 1 a e x+b(a>0).在点(2,f(2))处的切线方程为y =3 2x,求a,b的值.[解析]∵f′(x)=a e x- 1 a e x, ∴f′(2)=a e2- 1 a e2= 3 2,解得a e 2=2或a e2=- 1 2(舍去), 所以a= 2 e2,代入原函数可得2+ 1 2+b=3,即b= 1 2,故 a= 2 e2 ,b= 1 2 . 跟踪训练 已知函数f(x)=x3-x. (1)求曲线y=f(x)的过点(1,0)的切线方程; (2)若过x轴上的点(a,0)可以作曲线y=f(x)的三条切线,求a的取值围. 解析:(1)由题意得f′(x)=3x2-1.曲线y=f(x)在点M(t,f(t))处的切线方程为y-f(t)=f′(t)(x-t), 即y=(3t2-1)·x-2t3,将点(1,0)代入切线方程得2t3-3t2+1=0,解得t=1或-1 2 ,代入y =(3t2-1)x-2t3得曲线y=f(x)的过点(1,0)的切线方程为y=2x-2或y=-1 4 x+ 1 4 . (2)由(1)知若过点(a,0)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a=0有三个相异的实 根,记g(t)=2t3-3at2+a. 则g′(t)=6t2-6at=6t(t-a). 当a>0时,函数g(t)的极大值是g(0)=a,极小值是g(a)=-a3+a,要使方程g(t)=0有三个相异的实数根,需使a>0且-a3+a<0,即a>0且a2-1>0,即a>1; 当a=0时,函数g(t)单调递增,方程g(t)=0不可能有三个相异的实数根;

高考导数题型及解题方法

导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2 00x y =①又函数的导数为x y 2/ =, 所以过),(00y x A 点的切线的斜率为 / 2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 52000--= x y x ②,由①②联立 方程组得,??????====25 5 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(2 3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围

2019届高考导数解答题中常见的放缩大法

2019届高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1 ln ,,1,1ln 11-≥≥+≥-≤≤- 那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ?? >-<< ???, )ln 1x x <> ,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102x x x x +≤- -<<,()()21 ln 102 x x x x +≥-> (放缩成类反比例函数)1 ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥ +,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩 (放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤≤-,()1 0x e x x <-<, (放缩成二次函数)()21102x e x x x ≥++>,2311 126 x e x x x ≥+++, 第三组:指对放缩 ()()ln 112x e x x x -≥+--= 第四组:三角函数放缩 ()sin tan 0x x x x <<>,21sin 2x x x ≥-,2211 1cos 1sin 22 x x x -≤≤-. 第五组:以直线1y x =-为切线的函数 ln y x =,11x y e -=-,2y x x =-,1 1y x =- ,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e x ln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。作为学生没有多大必要去去了解大学的知识,但是作为老师却是有很大的必要去理解感悟高考题命题的背景。超越函数本质上就是高等数学中的泰勒公式。即从某个点0x 处,我们可以构建一个多项式来近似函数在这一点的邻域中的值,如果这个点是0,就是形式比较简单的麦克劳林级数。简而言之,它的功能就是把超越式近似表示为幂函数。常见的幂级数展示式有:

导数及其应用高考题精选(含答案)

导数及其应用高考题精选 1.(2010 ·海南高考·理科T3)曲线2 x y x =+在点()1,1--处的切线方程为( ) (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为 2 2 (2)y x '=+,所以,在点()1,1--处的切线斜率1 2 2 2(12) x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位: 万元)与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-, 则使该生产厂家获得最大年利润的年产量为( ) (A) 13万件 (B) 11万件 (C) 9万件 (D) 7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故

选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为( ) (A ) 1 12 (B) 1 4 (C) 13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积,考查了考生的想象能力、推理论证能力和运算求解能力. 【思路点拨】先求出曲线y=2x ,y=3x 的交点坐标,再利用定积分求面积. 【规范解答】选A,由题意得: 曲线y=2x ,y=3x 的交点坐标为 (0,0),(1,1),故所求封闭图形的面积为123 0x -x )dx= ?(111 1-1=3412 ??,故选A. 4.(2010·辽宁高考理科·T10)已知点P 在曲线y=4 1 x e +上,α为 曲线在点P 处的切线的倾斜角,则α的取值范围是( ) (A)[0,4 π) (B)[,)42 ππ 3(, ]24 ππ (D) 3[ ,)4 π π 【命题立意】本题考查了导数的几何意义,考查了基本等式,函数的值域,直线的倾斜角与斜率。 【思路点拨】先求导数的值域,即tan α的范围,再根据正切函数的性质求α的范围。 【规范解答】选D.

2018年全国高考卷数学导数解答题含答案

2018年全国I-III 文理数学卷导数解答题 1、(2018年全国I 理)已知函数1()ln f x x a x x = -+. (1)讨论()f x 的单调性; (2)若()f x 存在两个极值点12,x x ,证明:()()1212 2f x f x a x x -<-- 解:(1)()f x 的定义域为(0,)+∞,222 11()1a x ax f x x x x -+'=--+=-. (i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,) +∞单调递减. (ii )若2a >,令()0f x '= 得,x = 或x =. 当)x ∈+∞U 时,()0f x '<; 当(22a a x ∈时,()f x '>.所以()f x 在)+∞ 单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >. 由于()f x 的两个极值点12,x x 满足2 10x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于 12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于222 12ln 0x x x -+<. 设函数1()2ln g x x x x = -+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从

而当(1,)x ∈+∞时,()0g x <. 所以22212ln 0x x x -+<,即1212 ()()2f x f x a x x -<--. 2、(2018年全国I 文)已知函数()e ln 1x f x a x =--. (1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1e a ≥时,()0f x ≥. 解:(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x . 由题设知,f ′(2)=0,所以a = 212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x -. 当02时,f ′(x )>0. 所以f (x )在(0,2)单调递减,在(2,+∞)单调递增. (2)当a ≥1e 时,f (x )≥e ln 1e x x --. 设g (x )=e ln 1e x x --,则e 1()e x g x x '=-. 当01时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1e a ≥时,()0f x ≥. 3、(2018年全国II 理)已知函数2()e x f x ax =-. (1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a . 解:(1)当1a =时,()1f x ≥等价于2(1)e 10x x -+-≤. 设函数2()(1)e 1x g x x -=+-,则22()(21)e (1)e x x g'x x x x --=--+=--. 当1x ≠时,()0g'x <,所以()g x 在(0,)+∞单调递减. 而(0)0g =,故当0x ≥时,()0g x ≤,即()1f x ≥. (2)设函数2()1e x h x ax -=-.

相关主题