七年级数学上册 1.3.1 有理数的加法教案1 (新版)新人教版

1 有理数的加法

教学目的和要求:

1.使学生了解有理数加法的意义。

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)

教学重点和难点:

重点:有理数加法法则。

难点:异号两数相加的法则。

教学工具和方法: 工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)

教学过程:

一、复习引入:

1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?

2.问题:

一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?

我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。(大部分同学都会用小学学过的的知识来完成。先给予肯定,鼓励同学们对小学知识的掌握程度,再鼓励同学们想想还有没有其他情况)

二、讲授新课:

1.发现、总结(分类):

我们必须把问题说得明确些,并规定向东为正,向西为负。

(同号两数相加法则)

(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50, 即这位同学位于原来位置的东方

50米处。这一运算在数轴上表示如图:

七年级数学上册 1.3.1 有理数的加法教案1 (新版)新人教版

(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是: (―20)+(―30)=―50。 (师生共同归纳同号两数相加法则:

同号两数相加,取相同的符号,并把绝对值相加)

(异号两数相加法则)

相关推荐
相关主题
热门推荐